FEATURES

44 V Supply Maximum Ratings
± 15 V Analog Signal Range
Low On Resistance (<24 Ω)
Ultralow Power Dissipation ($3.9 \mu \mathrm{~W}$)
Low Leakage (<0.25 nA)
Fast Switching Times
$t_{\text {ON }}<165 \mathrm{~ns}$
$\mathrm{t}_{\text {OFF }}<130 \mathrm{~ns}$
Latch-up Proof
Break-Before-Make Switching Action
TTL/CMOS Compatible
Plug-in Replacement for DG411/DG412/DG413

APPLICATIONS

Audio and Video Switching
Automatic Test Equipment
Precision Data Acquisition
Battery Powered Systems
Sample Hold Systems

GENERAL DESCRIPTION

The ADG431, ADG432 and ADG433 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced $\mathrm{LC}^{2} \mathrm{MOS}$, trench isolated process which provides low power dissipation yet gives high switching speed and low on resistance. Trench isolation gives all the benefits of dielectric isolation and ensures no latch up even under extreme overvoltage conditions.
The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.
The ADG431, ADG432 and ADG433 contain four independent SPST switches. The ADG431 and ADG432 differ only in that the digital control logic is inverted. The ADG431 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG432. The ADG433 has two switches with digital control logic similar to that of the ADG431 while the logic is inverted on the other two switches.
Each switch conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break before make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

REV. 0

[^0] otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The ADG431, ADG432 and ADG433 are fabricated on an enhanced LC ${ }^{2}$ MOS, trench isolated process giving an increased signal range which extends fully to the supply rails.
2. Ultralow Power Dissipation
3. Low R_{ON}
4. Trench Isolation Guards Against Latch-up A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
5. Break Before Make Switching

This prevents channel shorting when the switches are configured as a multiplexer.
6. Single Supply Operation

For applications where the analog signal is unipolar, the ADG431, ADG432 and ADG433 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V .

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

ADG431/ADG432/ADG433-SPECIFICATIONS ${ }^{1}$

Dual Supply $\left(V_{D D}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%\right.$, GND $=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$\begin{array}{r} \text { B } \\ +25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \text { Version } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} \mathrm{T} \\ +25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \text { Version } \\ & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R_{ON} R_{ON} vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ R_{ON} Drift R_{ON} Match	$\begin{aligned} & 17 \\ & 24 \\ & 15 \\ & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \text { to } \mathrm{V}_{\mathrm{SS}} \\ & 26 \end{aligned}$	$\begin{aligned} & 17 \\ & 24 \\ & 15 \\ & 0.5 \\ & 5 \end{aligned}$	$\mathrm{V}_{\mathrm{DD}} \text { to } \mathrm{V}_{\mathrm{SS}}$ 27	V Ω typ Ω max \% typ \%/ ${ }^{\circ} \mathrm{C}$ typ \% typ	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \end{aligned}$ $\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.35 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.35 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 17 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} ;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	0.005 9	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.02 \end{aligned}$	0.005 9	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.02 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG433 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 90 \\ & 60 \\ & 25 \\ & 5 \\ & 68 \\ & 85 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	165 130	$\begin{aligned} & 90 \\ & 60 \\ & 25 \\ & 5 \\ & 68 \\ & 65 \\ & 85 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	175 145	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{Test} \mathrm{Circuit}^{2} 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{Test} \mathrm{Circuit} 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+10 \mathrm{~V} ; \end{aligned}$ Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ;$ Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$ Power Dissipation	$\begin{aligned} & 0.0001 \\ & 0.1 \\ & 0.0001 \\ & 0.1 \\ & 0.0001 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.1 \\ & 0.0001 \\ & 0.1 \\ & 0.0001 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 7.7 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{W} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^1]Single Supply ${ }_{\left(\mathrm{V}_{00}=+12 \mathrm{~V}\right.} \pm 10 \%, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%, 6 \mathrm{NO}=0 \mathrm{~V}$, unless otherwise noteded)

Parameter	$$		$$		Units	Test Conditions/Comments
Analog Signal Range R_{ON} R_{ON} vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ R_{ON} Drift $\mathrm{R}_{\text {ON }}$ Match	$\begin{aligned} & 28 \\ & 42 \\ & 20 \\ & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 45 \end{aligned}$	$\begin{aligned} & 28 \\ & 42 \\ & 20 \\ & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 45 \end{aligned}$	V Ω typ Ω max \% typ \%/ ${ }^{\circ} \mathrm{C}$ typ \% typ	$\begin{aligned} & 0<\mathrm{V}_{\mathrm{D}}<8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V} \end{aligned}$ $\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage I_{D}, Is (ON)	$\begin{aligned} & \pm 0.04 \\ & \pm 0.25 \\ & \pm 0.04 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 0.04 \\ & \pm 0.25 \\ & \pm 0.04 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \pm 17 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 12.2 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=12.2 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 12.2 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=+12.2 \mathrm{~V} /+1 \mathrm{~V} ;$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	0.005 9	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.01 \end{aligned}$	0.005 9	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.01 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG433 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	165 60 25 25 68 85 9 9 35	240 115	$\begin{aligned} & 165 \\ & 60 \\ & 25 \\ & 25 \\ & \\ & 68 \\ & 85 \\ & 8 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	$\begin{aligned} & 240 \\ & 115 \end{aligned}$	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+10 \mathrm{~V} ; \end{aligned}$ Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ;$ Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$ Power Dissipation	$\begin{aligned} & 0.0001 \\ & 0.03 \\ & 0.0001 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.03 \\ & 0.0001 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 1.9 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{W}$ max	$\mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or 5 V $\mathrm{V}_{\mathrm{L}}=+5.25 \mathrm{~V}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Truth Table (ADG431/ADG432)

ADG431 In	ADG432 In	Switch Condition
0	1	ON
1	0	OFF

Truth Table (ADG433)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

ADG431/ADG432/ADG433

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
V_{DD} to $\mathrm{V}_{\text {SS }}$	
V_{DD} to GND . -0.3 V to +25 V	
V ${ }_{\text {SS }}$ to GND . + +0.3 V to -25 V	
V_{L} to GND . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	
Analog, Digital Inputs ${ }^{2} \ldots \ldots . \ldots \mathrm{V}_{\text {SS }}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or	
Continuous Current, S or D	30 mA
Peak Current, S or D . 100 mA	
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)	
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Cerdip Package, Power Dissipation	.900 mW

θ_{JA}, Thermal Impedance $76^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $+300^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation 470 mW
$\theta_{\mathrm{J} A}$, Thermal Impedance $117^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation 600 mW
θ_{JA}, Thermal Impedance. $77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) $+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG431/ADG432/ADG433 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

(DIP/SOIC)

ORDERING GUIDE

Model 1	Temperature Range	Package Option
ADG431BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG431BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG431TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG432BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG432BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG432TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG433BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG433BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$

NOTES
${ }^{1}$ To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers
${ }^{2} \mathrm{~N}=$ Plastic DIP; $\mathrm{R}=0.15$ " Small Outline IC (SOIC); $\mathrm{Q}=$ Cerdip.

TERMINOLOGY

V_{DD}	Most positive power supply potential.	C_{S} (OFF)	"OFF" switch source capacitance.
$\mathrm{V}_{\text {SS }}$	Most negative power supply potential in dual	C_{D} (OFF)	"OFF" switch drain capacitance.
	supplies. In single supply applications, it may	$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" switch capacitance.
	be connected to GND.	$\mathrm{C}_{\text {IN }}$	Input Capacitance to ground of a digital input.
$\mathrm{V}_{\text {L }}$	Logic power supply (+5 V).	t_{ON}	Delay between applying the digital control in-
GND	Ground (0 V) reference.		put and the output switching on.
S	Source terminal. May be an input or output.	$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control in-
D	Drain terminal. May be an input or output.		put and the output switching off.
IN	Logic control input.	t_{D}	"OFF" time or "ON" time measured between
R_{ON}	Ohmic resistance between D and S.		the 90% points of both switches, when switch-
R_{ON} vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	The variation in R_{ON} due to a change in the analog input voltage with a constant load curent.	Crosstalk	ing from one address state to another. A measure of unwanted signal which is coupled
R_{ON} Drift	Change in $\mathrm{R}_{\text {ON }}$ vs. temperature.		through from one channel to another as a result
$\mathrm{R}_{\text {ON }}$ Match	Difference between the R_{ON} of any two switches.	Off Isolation	of parasitic capacitance. A measure of unwanted signal coupling through
$\mathrm{I}_{\text {S }}$ (OFF)	Source leakage current with the switch "OFF."		an "OFF" switch.
I_{D} (OFF)	Drain leakage current with the switch "OFF."	Charge	A measure of the glitch impulse transferred
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."	Injection	the digital input to the analog output during
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.		switching.

Typical Performance Graphs

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Dual Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 3. Leakage Currents as a Function of Temperature

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supply

Figure 5. Supply Current vs. Input Switching Frequency

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 7. Off Isolation vs. Frequency

Figure 8. Crosstalk vs. Frequency

TRENCH ISOLATION

In the ADG431, ADG432 and ADG433, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in Junction Isolated switches, are eliminated, the result being a completely latch-up proof switch.
In Junction Isolation, the N and P wells of the PMOS and NMOS transistors form a diode which is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A Silicon-Controlled Rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With Trench Isolation, this diode is removed, the result being a latch-up proof switch.
Trench Isolation also leads to lower leakage currents. The ADG431, ADG432 and ADG433 have a leakage current of 0.25 nA as compared with a leakage current of several nanoamps in non-Trench Isolated switches. Leakage current is an important parameter in sample-and-hold circuits, this current being responsible for the discharge of the holding capacitor with time causing droop. The ADG431/ADG432/ADG433's low leakage current, along with its fast switching speeds, make it suitable for fast and accurate sample-and-hold circuits.

Figure 9. Trench Isolation

APPLICATION

Figure 10 illustrates a precise, fast sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output $\mathrm{V}_{\text {OUt }}$ follows the input signal $\mathrm{V}_{\text {IN }}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor C_{H}.
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG431/ADG432/ ADG433 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically $30 \mu \mathrm{~V} / \mu \mathrm{s}$.
A second switch SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD711 which will minimize charge injection effects. Pedestal error is also reduced by the compensation network R_{C} and C_{C}. This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the $\pm 10 \mathrm{~V}$ input range. Both the acquisition and settling times are 850 ns .

Figure 10. Fast, Accurate Sample-and-Hold

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay

Test Circuit 6. Charge Injection

ADG431/ADG432/ADG433

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
16-Pin Cerdip
(Q-16)

16-Pin Plastic DIP
(N-16)

16-Pin SOIC
(R-16A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

[^1]: NOTES
 ${ }^{1}$ Temperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

