
L387A

VERY LOW DROP 5V REGULATOR WITH RESET

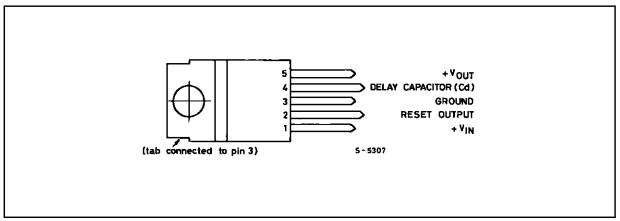
- PRECISE OUTPUT VOLTAGE (5 V ± 4 %)
- VERY LOW DROPOUT VOLTAGE
- OUTPUT CURRENT IN EXCESS OF 500mA
- POWER-ON, POWER-OFF INFORMATION (RESET FUNCTION)
- HIGH NOISE IMMUNITY ON RESET DELAY CAPACITOR

DESCRIPTION

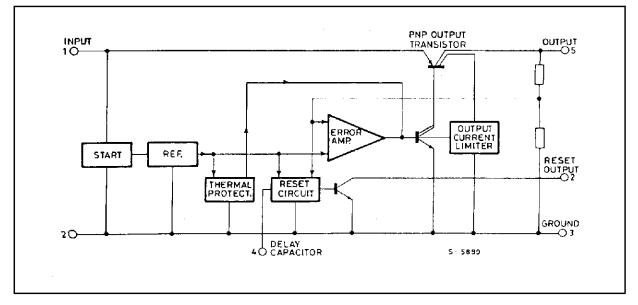
The L387A is a very low drop voltage regulator in a Pentawatt[®] package specially designed to provide stabilized 5V supplies in consumer and industrial applications. Thanks to its very low input/output voltage drop this device is very useful in battery powered equipment, reducing consumption and prolonging battery life. A reset output makes the L387A particularly suitable for microprocessor systems. This output provides a reset signal when power is applied (after an external programmable delay) and goes low when

power is removed, inhibiting the microprocessor. An hysteresis on reset delay capacitor raises the immunity to the ground noise.

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vi	D.C. Input Voltage	35	V
Tj, T _{stg}	Junction and Storage Temperature Range	–55 to 150	°C

APPLICATION CIRCUIT



L387A

PIN CONNECTION (Top views)

BLOCK DIAGRAM

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case	Max	4	°C/W
--	-----	---	------

ELECTRICAL CHARACTERISTICS	(refer to the test circuit,	$V_i = 14.4 V_i$	T _j = 25 °C,	$C_{o} = 100 \ \mu F;$
unless otherwise specified)				

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_o = 5 \text{ mA to } 500 \text{ mA} T_j = 25 ^{\circ}\text{C}$	4.80	5.00	5.20	V
		$-40 \le T_j \le 125 \ ^\circ C$	4.75	5.00	5.25	V
Vı	Operating Input Voltage	(*), Over Full T Range (- 40 to 125 °C) (see note **)			26	V
ΔV_{o}	Line Regulation	$V_i = 6 V$ to 26 V $I_o = 5 mA$		5	50	mV
ΔV_{o}	Load Regulation	$I_o = 5 \text{ mA to } 500 \text{ mA}$		15	60	mV
$V_{I}-V_{o}$	Dropout Voltage	V _O = V _{O NOM} – 100 mV I _o = 350 mA I _o = 500 mA		0.40 0.60	0.65 0.8	V V
lq	Quiescent Current	$\label{eq:loss} \begin{array}{c} I_{o} = 0 \text{ mA} \\ I_{o} = 150 \text{ mA} \\ I_{o} = 350 \text{ mA} \\ I_{o} = 500 \text{ mA} \end{array}$ $\label{eq:Vi} V_{i} = 6.2 \text{ V} \qquad \qquad I_{o} = 500 \text{ mA} \end{array}$		5 20 60 100 160	15 35 100 160 180	mA mA mA mA
$\frac{\Delta V_0}{\Delta T}$	Temperature Output Voltage Drift			- 0.5		mV/°C
SVR	Supply Voltage Rejection	$ I_o = 350 \text{ mA} & f = 120 \text{ Hz} \\ C_o = 100 \mu \text{F} & V_i = 12 \text{ V} \pm 5 \text{ V}_{pp} $			60	
I _{SC}	Output Short Circuit Current			1.2	1.6	A
VR	Reset Output Voltage	$ \begin{array}{ll} I_R = 3 \mbox{ mA} & 1 < V_0 < 4.70 \mbox{ V} \\ I_R = 16 \mbox{ mA} & 1.5 < V_0 < 4.75 \mbox{ V} \\ \mbox{Over Full T} (-40 \ ^\circ C \le T_j \le 125 \ ^\circ C) \end{array} $			0.5 0.8	V V
I _R	Reset Output Leakage Current	V₀ in Regulation V _R = 5V Over Full T Range			50	μΑ
t _d	Delay Time for Reset Output	Cd = 100 nF Over Full T Range		25		ms
VRT (off)		V₀ @ Reset out H to L Transition, Over Full T Range	4.75	V _o - 0.15		V
I _{C4}	Charging Current (current generator)	V ₄ = 3 V	10	20	30	μΑ
V _{RT (on)}	Power on V _o Threshold	$V_{o} @ \mbox{Reset}$ out L to H Transition , \mbox{Over} Full T Range		V _{RT (off)} + 0.05 V	V _o - 0.04 V	V
V ₄	Comparator Threshold	V ₄ @ Reset out H to L Transition	3.2		3.9	V
	(pin 4)	V ₄ @ Reset out L to H Transition	3.7		4.3	V
V _H	Hysteresis Voltage	Over Full T Range		450		mV

(*) For a DC voltage 26 < Vi < 37 V the device is not operating.
 (**) Design limits are guaranteed (but not 100 % production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

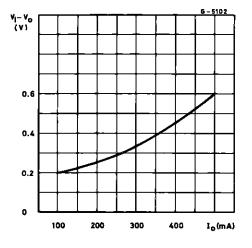


Figure 1 : Dropout Voltage vs. Output Current.

Figure 3 : Output Voltage vs. Temperature.

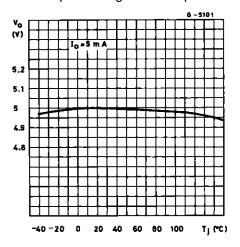
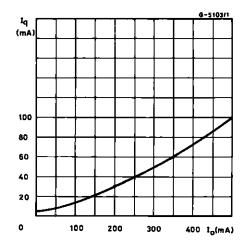
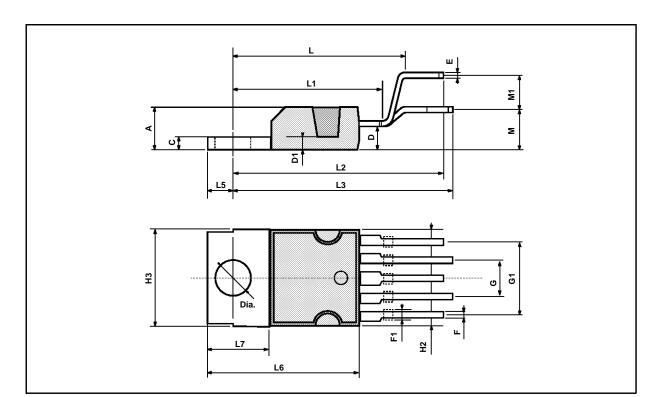




Figure 2 : Quiescent Current vs. Output Current.

DIM	DIM. mm				inch	inch		
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			4.8			0.189		
С			1.37			0.054		
D	2.4		2.8	0.094		0.110		
D1	1.2		1.35	0.047		0.053		
E	0.35		0.55	0.014		0.022		
F	0.8		1.05	0.031		0.041		
F1	1		1.4	0.039		0.055		
G		3.4		0.126	0.134	0.142		
G1		6.8		0.260	0.268	0.276		
H2			10.4			0.409		
H3	10.05		10.4	0.396		0.409		
L		17.85			0.703			
L1		15.75			0.620			
L2		21.4			0.843			
L3		22.5			0.886			
L5	2.6		3	0.102		0.118		
L6	15.1		15.8	0.594		0.622		
L7	6		6.6	0.236		0.260		
М		4.5			0.177			
M1		4			0.157			
Dia	3.65		3.85	0.144		0.152		

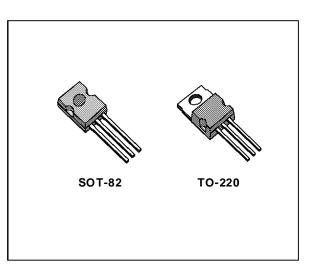
PENTAWATT PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

PENTAWATT® is registered trademarks of SGS-THOMSON Microelectronics © 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.


L4805-L4885-L4892 L4808-L4810-L4812

VERY LOW DROP VOLTAGE REGULATORS

- INPUT/OUTPUT DROP TYP. 0.4V
- 400mA OUTPUT CURRENT
- LOW QUIESCENT CURRENT
- REVERSE POLARITY PROTECTION
- OVERVOLTAGE PROTECTION (± 60V)
- FOLDBACK CURRENT LIMITING
- THERMAL SHUTDOWN

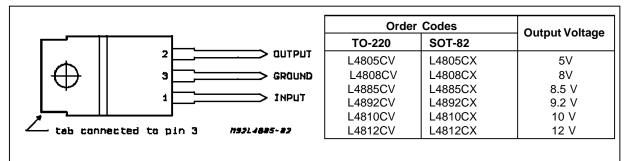
DESCRIPTION

L4800 series devices are voltage regulators with a very low voltage drop (typically 0.4V at full rated current), output current up to 400mA, low quiescent current and comprehensive on-chip protection. These devices are protected against load dump and field decay transients of \pm 60V, polarity reversal and overheating. A foldback current limiter protects against load short circuits. Available in 5V, 8.5V, 9.2V, 10V and 12V versions (all \pm 4%, T_I = 25°C) these regulators are designed for automotive, industrial and consumer applications where low consumption is particularly important.

In automotive applications the L4805 is ideal for 5V logic supplies because it can operate even when the battery voltage falls below 6V. In battery backup and standby applications the low consumption of these devices extends battery life.

INPUT OUTPUT BANDGAP REFERENCE & DUMP PROTECTION THERMAL PROTECTION THERMAL PROTECTION BANDGAP REFERENCE & CURRENT LIMITER M92L4885-81

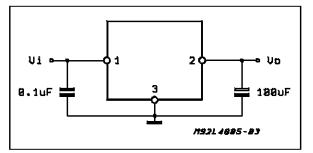
BLOCK DIAGRAM


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit		
VI	DC Input Voltage	+ 35	V		
	DC Input Reverse Voltage	- 18	V		
	Transient Input Overvoltages : Load Dump : $5ms \le T_{rise} \le 10ms$,	60	V		
	$ \begin{array}{l} \tau_{f} \mbox{ Fall Time Constant = 100ms,} \\ R_{source \leq 0.5\Omega} \\ \mbox{ Field Decay :} \\ \mbox{ 5ms } \leq t_{fall} \leq 10ms, \ R_{source} \leq 10\Omega \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
	τ_r Rise Time Constant = 33ms				
Tj, T _{stg}	Junction and Storage Temperature Range	- 55 to + 150	°C		

THERMAL DATA

Symbol	Parameter	SOT82	TO220	Unit
R _{th j-case}	Thermal Resistance Junction-case Max.	8	4	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	100	75	°C/W


PIN CONNECTION (top view)

TEST AND APPLICATION CIRCUIT

The output capacitor is required for stability. Though the 100 μ F shown is the minimum recommended value, actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) also factors in the IC stability. Since ESR varies from one brand to the next, some bench work may be required to determine the minimum capacitor value to use in production. Worst-case is usually determined at the minimum ambient temperature and maximum load expected.

Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristics of a particular system. Capacitors must also be rated at all ambient temperature expected in the system. Many aluminum type electrolytics will freeze at temperatures less than -30 °C, reducing their effective capacitance to zero. To maintain regulator stability down to -40 °C, capacitors rated at that temperature (such as tantalums) must be used.

L4805-L4808-L4885-L4892-L4810-L4812

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 5mA to 400mA (L4805)	4.80	5.00	5.20	V
		$I_0 = 5mA \text{ to } 400mA \text{ (L4808)}$	7.68	8.00	8.32	V
		I _O = 5mA to 400mA (L4810)	8.16	8.50	8.84	V
		I _O = 5mA to 400mA (L4812)	8.83	9.20	9.57	V
		I _O = 5mA to 400mA (L4885)	9.60	10.00	10.40	V
		I _O = 300mA (L4892)	11.50	12.00	12.50	V
VI	Operating Input Voltage				26	V
$\Delta V_0/V_0$	Line Regulation	$VI = 13 \text{ to } 26V; I_0 = 5mA$		1	10	mV/V
$\Delta V_0/V_0$	Load Regulation	IO = 5 to 400mA*		3	15	mV/V
V _I - V _O	Dropout Voltage	$I_{O} = 400 \text{mA}^{*}$		0.4	0.7	V
		I _O = 150mA		0.2	0.4	V
Iq	Quiescent Current	$I_{O} = OmA$		0.8	2	mA
		I _O = 150mA		25	45	mA
		$I_{O} = 400 \text{mA}^{*}$		65	90	mA
$\frac{\Delta V_{O}}{\Delta T \bullet V_{O}}$	Temperature Output Voltage Drift			0.1		_mV °C∙V
SVR	Supply Voltage Rejection	$I_{O} = 350 \text{mA}; \text{ f} = 320 \text{Hz};$ $C_{O} = 100 \mu\text{F}; V_{I} = V_{O} + 3 \text{V} + 2 \text{V}_{pp}$		60		dB
lo	Max Output Current			800		mA
I _{SC}	Output Short Circuit Current (fold back condition)			350	500	mA

ELECTRICAL CHARACTERISTICS (V_I = 14.4V; $C_O = 100\mu$ F; $T_j = 25^{\circ}C$ unless otherwise specified.)

 * only for L4892 the current test conditions is I_{0} = 300mA

ELECTRICAL CHARACTERISTICS (V_I = 14.4V; C_O = 100μ F; T_j = -40 to 125° C (note 1) unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 5mA to 400mA (L4805)	4.70	5.00	5.30	V
		I _O = 5mA to 400mA (L4808)	7.50	8.00	8.50	V
		I _O = 5mA to 400mA (L4810)	8.00	8.50	9.00	V
		I _O = 5mA to 400mA (L4812)	8.65	9.20	9.75	V
		$I_0 = 5mA \text{ to } 400mA \text{ (L4885)}$	9.40	10.00	10.60	V
		I _O = 300mA (L4892)	11.30	12.00	12.70	V
VI	Operating Input Voltage	see note 2			26	V
$\Delta V_0/V_0$	Line Regulation	$VI = 14$ to 26V; $I_0 = 5mA$		2	15	mV/V
$\Delta V_0/V_0$	Load Regulation	IO = 5 to 400mA*		5	25	mV/V
V _I - V _O	Dropout Voltage	$I_{O} = 400 \text{mA}^{*}$		0.5	0.9	V
		I _O = 150mA		0.25	0.5	V
lq	Quiescent Current	$I_{O} = 0 mA$		1.2	3	mA
		I _O = 150mA		40	70	mA
		I _O = 400mA*		80	140	mA
Ιo	Max Output Current			870		mA
I _{SC}	Output Short Circuit Current (fold back condition)			230		mA

Notes : 1. This limits are guaranteed by design, correlation and statistical control on production samples over the indicated temperature and supply voltage ranges.

2. For a DC voltage 26V < Vi < 35V the device is not operating.

Figure 1: Dropout Voltage vs. Output Current

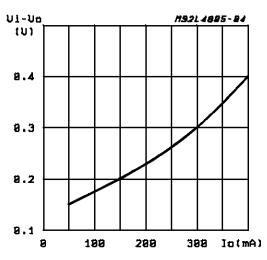


Figure 3: Output Voltage vs. Temperature

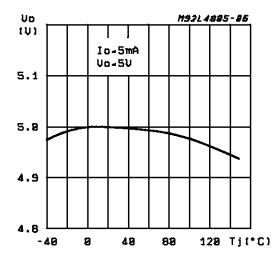


Figure 2: Quiescent Current vs. Output Current

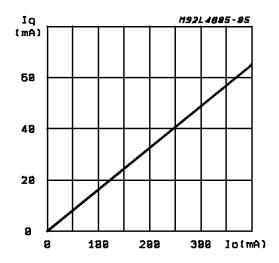


Figure 4: Foldback Current Limiting(L4805)

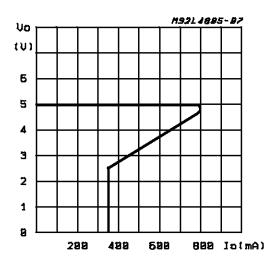
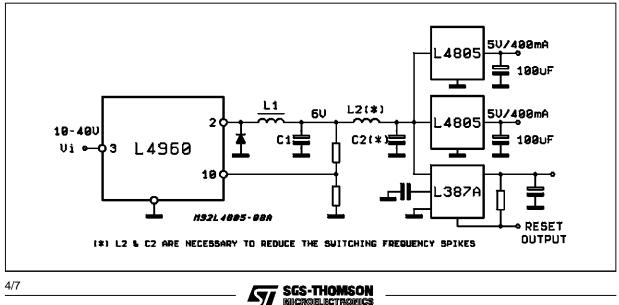
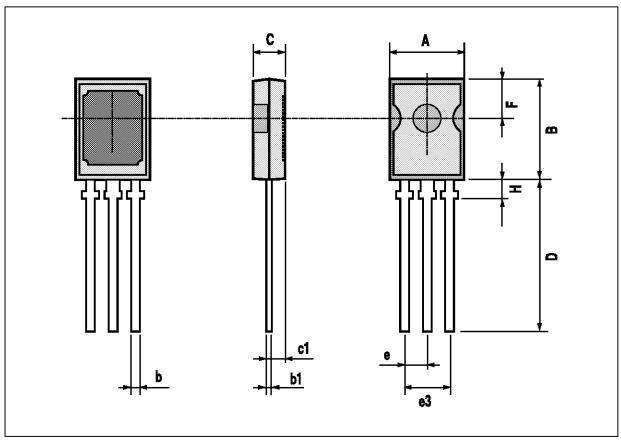



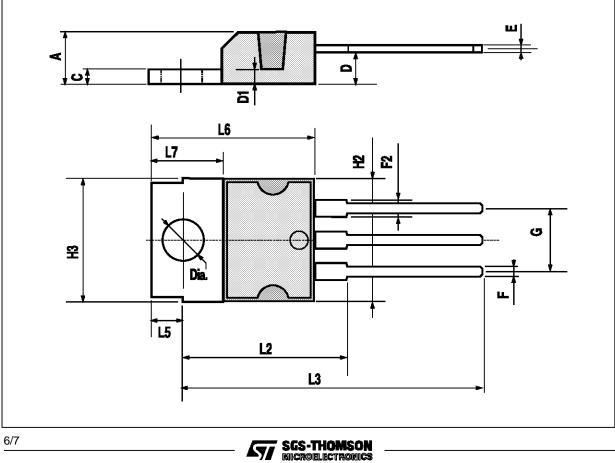
Figure 5: Preregulator for Distributed Supplies


MICROELECTRONICS

0.100

DIM.	mm			inch			
Dim	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	7.4		7.8	0.291		0.307	
В	10.5		10.8	0.413		0.425	
b	0.7		0.9	0.028		0.035	
b1	0.49		0.75	0.019		0.030	
С	2.4		2.7	0.094		0.106	
c1		1.2			0.047		
D		15.7			0.618		
е		2.2			0.087		
e3		4.4			0.173		
F		3.8			0.150		

SOT82 PACKAGE MECHANICAL DATA


Н

2.54

TO220 PACKAGE MECHANICAL DATA

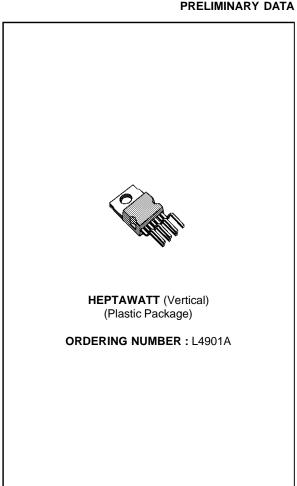
DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	MIN. TYP.	
А			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.8		1.05	0.031		0.041
F2	1.15		1.4	0.045		0.055
G	4.95	5.08	5.21	0.195	0.200	0.205
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L2		16.2			0.638	
L3	26.3	26.7	27.1	1.035	1.051	1.067
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
Dia	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

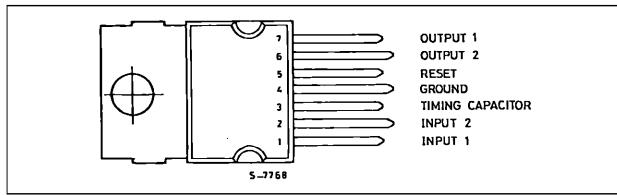


L4901A

DUAL 5V REGULATOR WITH RESET

PRELIMINARY DATA

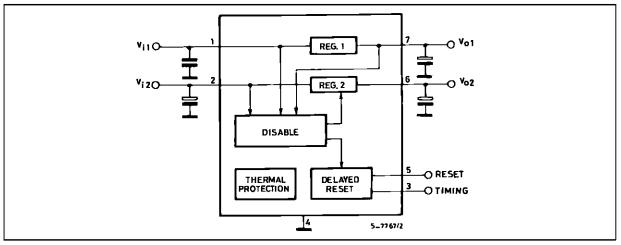
- OUTPUT CURRENTS : I₀₁ = 400mA $I_{0,2} = 400 \text{mA}$
- FIXED PRECISION OUTPUT VOLTAGE 5V ± 2%
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PRO-**GRAMMABLE TIMING**
- RESET OUTPUT LEVEL RELATED TO OUT-PUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- LOW LEAKAGE CURRENT, LESS THAN 1µA AT OUTPUT 1
- LOW QUIESCENT CURRENT (Input 1)
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- RESET OUTPUT HIGH
- OUTPUT TRANSISTORS SO A PROTECTION
- SHORT CIRCUIT AND THERMAL OVER-LOAD PROTECTION

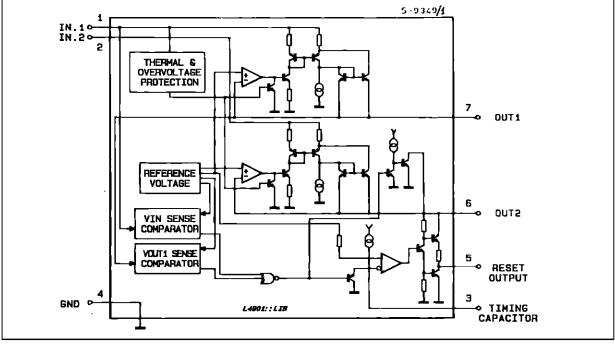


DESCRIPTION

The L4901A is a monolithic low drop dual 5V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions during switch on/off can be realized.


PIN CONNECTION


PIN DESCRIPTION

N°	Name	Function
1	Input 1	Low Quiescent Current 400mA Regulator Input.
2	Input 2	400mA regulator input.
3	Timing Capacitor	If Reg. 2 is switched-ON the delay capacitor is charged with a 10μ A constant current. When Reg. 2 is switched-OFF the delay capacitor is decharged.
4	GND	Common Ground.
5	Reset Output	When pin 3 reaches 5V the reset output is switched high. Therefore $t_{RD} = C_t \left(\frac{5V}{10\mu A}\right)$; $t_{RD} (ms) = C_t (nF)$
6	Output 2	5V - 400mA Regulator Output. Enabled if V _o 1 > V _{RT} and V _{IN 2} > V _{IT} . If Reg. 2 is switched-OFF the C ₀₂ capacitor is discharged.
7	Output 1	5V – 400mA regulator output with Low leakage (in switch-OFF condition).

BLOCK DIAGRAM

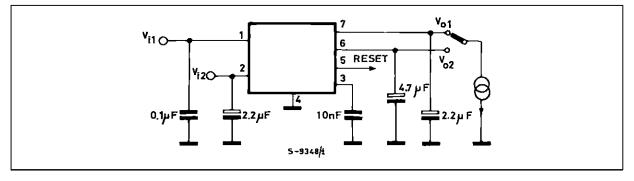
SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{IN}	DC Input Voltage Transient Input Overvoltage (t = 40ms)	24 60	V V
lo	Output Current	Internally Limited	
Tj	Storage and Junction Temperature	– 40 to 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Thermal Resistance Junction-case Max.	4	°C/W


ELECTRICAL CHARACTERISTICS (V_{IN} = 14, 4V, T_{amb} = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	DC Operating Input Voltage				20	V
V ₀₁	Output Voltage 1	R Load 1kΩ	4.95	5.05	5.15	V
V _{02 H}	Output Voltage 2 HIGH	R Load 1kΩ	V ₀₁ –0.1	5	V ₀₁	V
V _{02 L}	Output Voltage 2 LOW	$I_{02} = -5mA$		0.1		V
I ₀₁	Output Current 1	$\Delta V_{01} = -100 mV$	400			mA
I _{L01}	Leakage Output 1 Current	$V_{IN} = 0, V_{01} \le 3V$			1	μΑ
I ₀₂	Output Current 2	$\Delta V_{02} = -100 mV$	400			mA
V _{I01}	Output 1 Dropout Voltage (*)	$I_{01} = 10mA$ $I_{01} = 100mA$ $I_{01} = 300mA$		0.7 0.8 1.1	0.8 1 1.4	V V V
VIT	Input Threshold Voltage		V ₀₁ + 1.2	6.4	V ₀₁ + 1.7	V
VITH	Input Threshold Voltage Hyst.			250		mV
ΔV_{01}	Line Regulation 1	$7V < V_{IN} < 18V, I_{01} = 5mA$		5	50	mV
ΔV_{02}	Line Regulation 2	$7V < V_{IN} < 18V, I_{02} = 5mA$		5	50	mV
ΔV_{01}	Load Regulation 1	5mA < I ₀₁ < 400mA		50	100	mV
ΔV_{02}	Load Regulation 2	5mA < I ₀₁ < 400mA		50	100	mV
lq	Quiescent Current	$\begin{array}{l} I_{02} = I_{01} \leq 5mA \\ 0 < V_{IN} < 13V \\ 7V < V_{IN} < 13V \end{array}$		4.5 1.6	6.5 3.5	mA
I _{Q1}	Quiescent Current 1	$\begin{array}{l} I_{01} \leq 5mA, \; I_{02} = 0, \; V_{IN2} = 0 \\ 6.3V < V_{IN} < 13V \end{array}$		0.6	0.9	mA
V _{RT}	Reset Threshold Voltage		$V_{02} - 0.15$	4.9	V ₀₂ –0.05	V
V _{RTH}	Reset Threshold Hysteresis		30	50	80	mV
V _{RH}	Reset Output Voltage HIGH	I _R = 500μA	V ₀₂ – 1	4.12	V ₀₂	V
V _{RL}	Reset Output Voltage LOW	I _R = -<0>5mA		0.25	0.4	V
t _{RD}	Reset Pulse Delay	$C_t = 10nF$	3	5	11	ms
td	Timing Capacitor Discharge Time	Ct = 10nF			20	μs
$\frac{\Delta V_{01}}{\Delta T}$	Thermal Drift	$-20^\circ C \leq T_{amb} \leq 125^\circ C$		0.3 – 0.8		mV/°C
$\frac{\Delta V_{02}}{\Delta T}$	Thermal Drift	$-20^\circ C \leq T_{amb} \leq 125^\circ C$		0.3 – 0.8		mV/°C
SVR1	Supply Voltage Rejection	f = 100Hz, V _R = 0.5V	50	84		dB
SVR2	Supply Voltage Rejection	lo = 100mA	50	80		dB
T _{JSD}	Thermal Shut Down			150		°C

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.

TEST CIRCUIT

APPLICATION INFORMATION

In power supplies for μ P systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4901A makes it very easy to supply such equipments; it provides two voltage regulators (both 5 V high precision) with separate inputs plus a reset output for the data save function.

CIRCUIT OPERATION (see Figure 1)

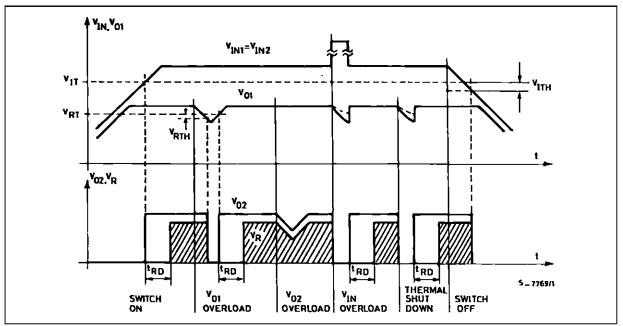
After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input 2 reaches V_{IT} and the output 1 is higher than V_{RT} the output 2 (V_{02}) switches on and the reset output (V_R) also goes high after a programmable time T_{RD} (timing capacitor).

Figure 1

 V_{02} and V_R are switched together at low level when one of the following conditions occurs :

- an input overvoltage
- an overload on the output 1 ($V_{01} < V_{RT}$);
- a switch off (V_{IN} < V_{IT} V_{ITH}) ;


and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V_{01} output features :

- 5 V internal reference without voltage divider between the output and the error comparator;
- very low drop series regulator element utilizing current mirrors ;

permit high output impedance and then very low leakage current error even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The V_{01} regulator also features low consumption (0.6 mA typ.) to minimize battery drain in applications where the V_1 regulator is permanently connected to a battery supply.

The V_{02} output can supply other non essential 5 V circuits which may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access only in correct power conditions, or as a "BACK-UP ENABLE"

Figure 2

to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

APPLICATIONS SUGGESTIONS

Figure 2 shows an application circuit for a μ P system typically used in trip computers or in car radios with programmable tuning.

Reg. 1 is permanently connected to a battery and supplies a CMOS time-of-day clock and a CMOS microcomputer chip with volatile memory.

Reg. 2 may be switched OFF when the system is inactive.

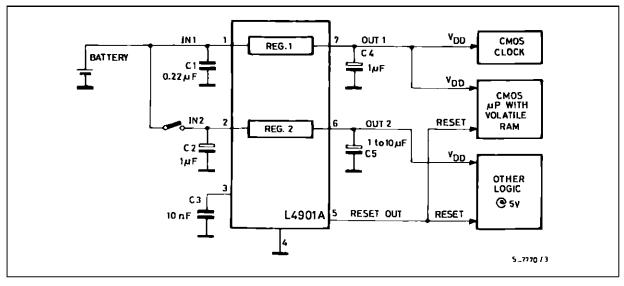
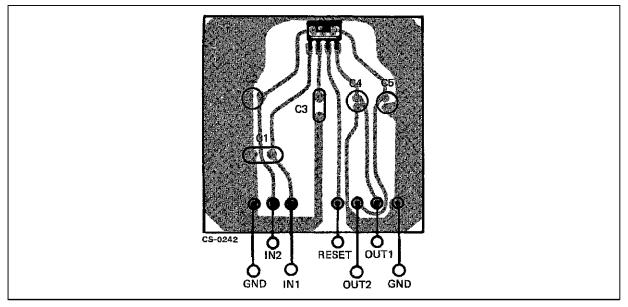


Figure 3 : P.C. Board Component Layout of Figure 2.



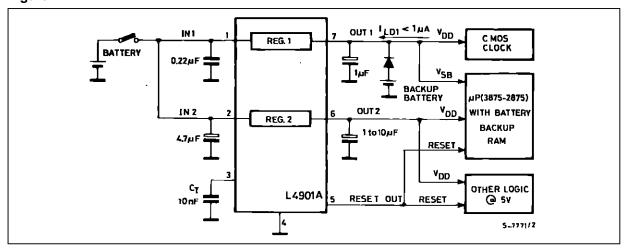
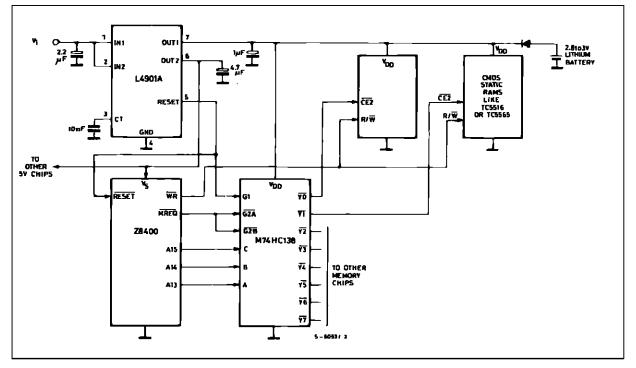


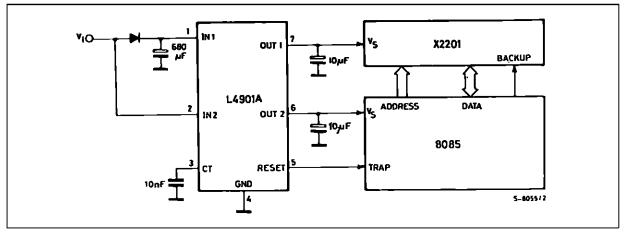
Figure 4 shows the L4901A with a back up battery on the V₀₁ output to maintain a CMOS time-of-day clock and a stand by type N-MOS μ P. The reset output makes sure that the RAM is forced into the low consumption stand by state, so the access to memory is inhibit and the back up battery voltage cannot drop so low that memory contents are corrupted.

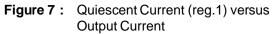

Figure 4

In this case the main on-off switch disconnects both regulators from the supply battery.

The L4901A is also ideal for microcomputer systems using battery backup CMOS static RAMs. As shown in Figure 5 the reset output is used both to disable the μ P and, through the address decoder M74HC138, to ensure that the RAMS are disabled as soon as the main supply starts to fall.

Figure 5

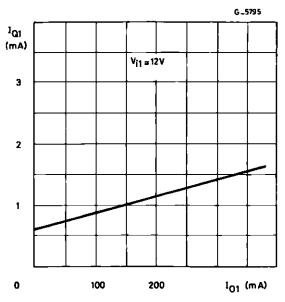
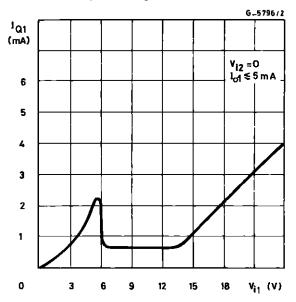


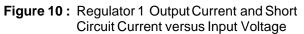


Another interesting application of the L4901A is in μ P system with shadow memories (see Figure 6). When the input voltage goes below V_{IT}, the reset ouput enables the execution of a routine that saves the machine's state in the shadow RAM (xicor x 2201 for example).

Thanks to the low consumption of the Reg. 1 a 680 μ F capacitor on its input is sufficient to provide enough energy to complete the operation. The diode on the input guarantees the supply of the equipment even if a short circuit on V₁ occurs.

Figure 6


Figure 8: Quiescent Current (reg.1) versus Input Voltage

6-5797/1 I_{Q1ot} (mA) l₀₁= l₀₂ ≤ 5mA V_{i1}= V_{i2} Б 5 4 3 2 1 Y; (Y) 12 15 18 0 3 6 9

Figure 9 : Total Quiescent Current versus Input Voltage

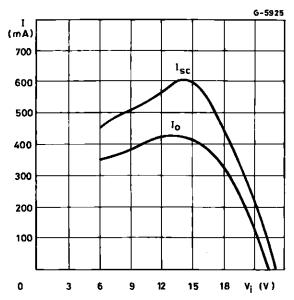


Figure 11 : Regulator 1 Output Current and Short Circuit Current versus Input Voltage

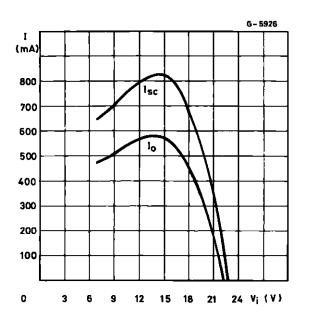
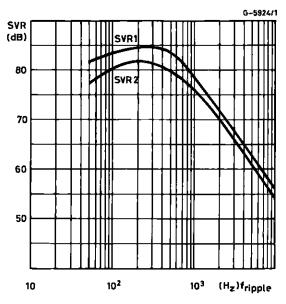
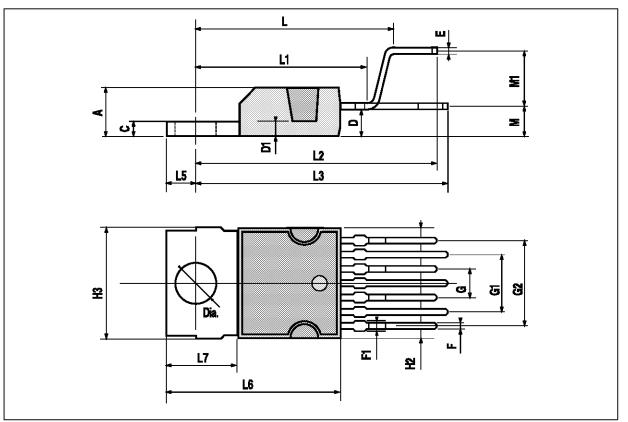



Figure 12 : Supply Voltage Rejection Regulators 1 and 2 versus Input Ripple Frequence



SGS-THOMSON

Á7/,

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		2.8			0.110	
M1		5.08			0.200	
Dia	3.65		3.85	0.144		0.152

HEPTAVATT PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

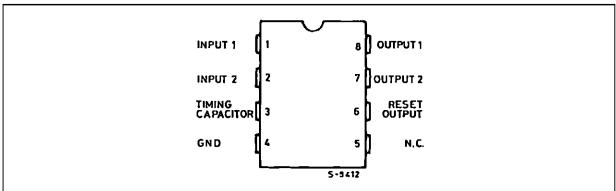
SGS-THOMSON Microelectronics GROUP OF COMPANIES

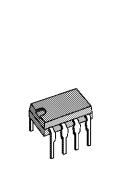
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

L4904A

DUAL 5V REGULATOR WITH RESET

PRELIMINARY DATA

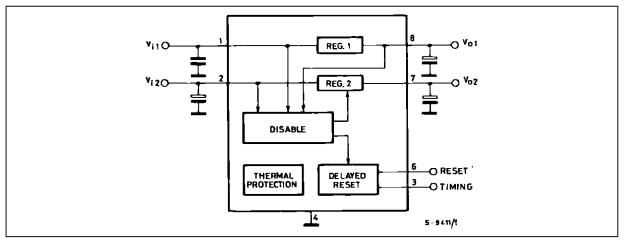

- OUTPUT CURRENTS : I₀₁ = 50mA
 I₀₂ = 100mA
- FIXED PRECISION OUTPUT VOLTAGE 5V ± 2 %
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PRO-GRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUTPUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- LOW LEAKAGE CURRENT, LESS THAN 1μA AT OUTPUT 1
- LOW QUIESCENT CURRENT (Input 1)
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- RESET OUTPUT NORMALLY HIGH
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVER-LOAD PROTECTION



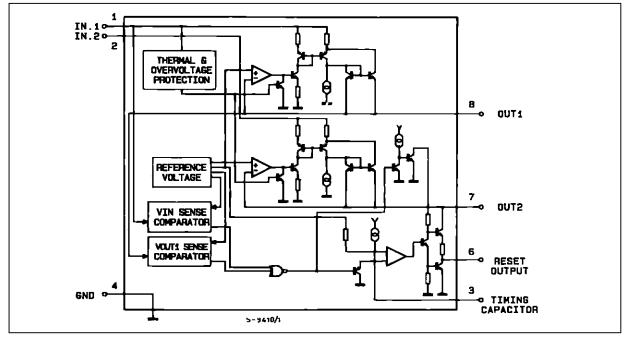
The L4904A is a monolithic low drop dual 5V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions during switch on/off can be realized.

PIN CONNECTION


Minidip

ORDERING NUMBER : L4904A


PIN FUNCTIONS

N°	Name	Function
1	Input 1	Low Quiescent Current 50mA Regulator Input.
2	Input 2	100mA Regulator Input.
3	Timing Capacitor	If Reg. 2 is switching-ON the delay capacitor is charged with a 10μ A constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.
4	GND	Common Ground.
5	N.C.	Not connected.
6	Reset Output	When pin 3 reaches 5V the reset output is switched high. Therefore $t_{RD} = C_t \left(\frac{5V}{10\mu A}\right)$; t_{RD} (ms) = C_t (nF).
7	Output 2	5V - 100mA Regulator Output. Enabled if V ₀ 1 > V _{RT} and V _{IN2} > V _{IT} . If Reg. 2 is switched-OFF the C ₀₂ capacitor is discharged.
8	Output 1	5V – 50mA regulator output with low leakage in switch-OFF condition.

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

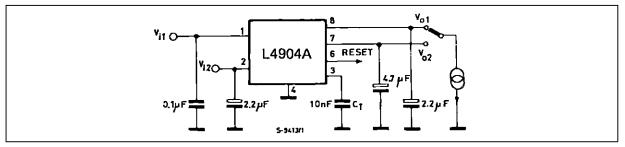
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vin	DC Input Voltage Transient Input Overvoltage (t = 40ms)	24 60	V V
lo	Output Current	Internally Limited	
Ptot	Power Dissipation at T _{amb} = 50°C	1	W
Tj	Storage and Junction Temperature	- 40 to 150	°C

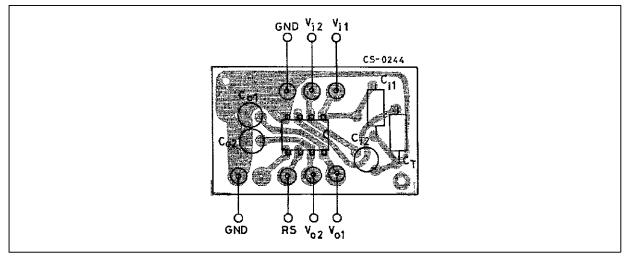
THERMAL DATA

Syr	mbol	Parameter	Value	Unit
R _{th}	h j-amb	Thermal Resistance Junction-ambient Max	100	°C/W

ELECTRICAL CHARACTERISTICS ($V_{IN} = 14.4V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	DC Operating Input Voltage				20	V
V ₀₁	Output Voltage 1	R Load 1kΩ	4.95	5.05	5.15	V
V _{02 H}	Output Voltage 2 HIGH	R Load 1kΩ	V ₀₁ –0.1	5	V ₀₁	V
V _{02 L}	Output Voltage 2 LOW	$I_{02} = -5mA$		0.1		V
I 01	Output Current 1	$\Delta V_{01} = -100 \text{mV}$	50			mA
I _{L01}	Leakage Output 1 Current	$V_{IN} = 0, V_{01} \le 3V$			1	μA
I ₀₂	Output Current 2	$\Delta V_{02} = -100 mV$	100			mA
V ₁₀₁	Output 1 Dropout Voltage (*)	$I_{01} = 10mA$ $I_{01} = 50mA$		0.7 0.75	0.8 0.9	V V
VIT	Input Threshold Voltage		V ₀₁ + 1.2	6.4	V ₀₁ + 1.7	V
VITH	Input Threshold Voltage Hyst.			250		mV
ΔV_{01}	Line Regulation	$7V < V_{IN} < 18V, I_{01} = 5mA$		5	50	mV
ΔV_{02}	Line Regulation 2	$7V < V_{IN} < 18V, I_{02} = 5mA$		5	50	mV
ΔV_{01}	Load Regulation 1	$V_{IN} = 8V, 5mA < I_{01} < 50mA$		5	20	mV
ΔV_{02}	Load Regulation 2	$V_{IN} = 8V, 5mA < I_{02} < 100mA$		10	50	mV
IQ	Quiescent Current			4.5 1.6	6.5 3.5	mA
I _{Q1}	Quiescent Current 1	$\begin{array}{l} 6.3V < V_{IN1} < 13V, \ V_{IN2} = 0 \\ I_{01} \leq 5mA, \ I_{02} = 0 \end{array}$		0.6	0.9	mA
V _{RT}	Reset Threshold Voltage		V ₀₂ -0.15	4.9	$V_{02} - 0.05$	V
V _{RTH}	Reset Threshold Hysteresis		30	50	80	mV
V _{RH}	Reset Output Voltage HIGH	I _R = 500μA	V ₀₂ – 1	4.12	V ₀₂	V
V_{RL}	Reset Output Voltage LOW	$I_R = -5mA$		0.25	0.4	V
t _{RD}	Reset Pulse Delay	$C_t = 10nF$	3		11	ms
t _d	Timing Capacitor Discharge Time	$C_t = 10nF$			20	μs
$\frac{\Delta V_{01}}{\Delta T}$	Thermal Drift	$-20^{\circ}C ≤ <0>T_{amb} ≤ 125^{\circ}C$		0.3 0.8		mV/°C
$\frac{\Delta V_{02}}{\Delta T}$	Thermal Drift	– 20°C ≤<0>T _{amb} ≤ 125°C		0.3 - 0.8		mV/°C
S _{VR1}	Supply Voltage Rejection	$f = 100Hz, V_R = 0.5V, I_o = 50mA$	50	84		dB
S _{VR2}	Supply Voltage Rejection	$f = 100Hz, V_R = 0.5V, I_o = 100mA$	50	80		dB
T _{JSD}	Thermal Shut Down			150		°C

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.



L4904A

TEST CIRCUIT

APPLICATION INFORMATION

In power supplies for μ P systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4904A makes it very easy to supply such equipments; it provides two voltage regulators (booth 5V high precision) with separate inputs plus a reset output for the data save function.

CIRCUIT OPERATION (see Figure 2)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input 2 reaches V_{1T} and the output 1 is higher than V_{RT} the output 2 (V_{02}) switches on and the reset output (V_R) also goes high after a programmable time T_{RD} (timing capacitor).

 V_{02} and V_R are switched together at low level when one of the following conditions occurs :

- an input overvoltage
- an overload on the output 1 ($V_{01} < V_{RT}$);
- a switch off (V_{IN} < V_{IT} V_{ITH});

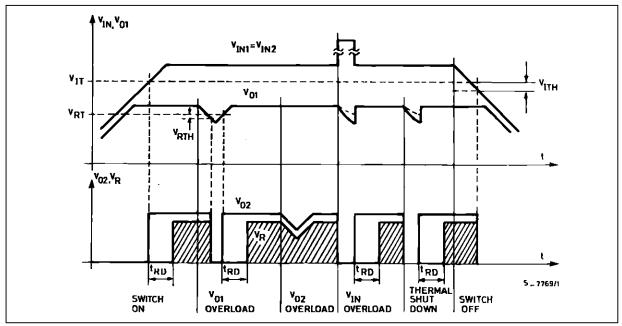
and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V₀₁ output features :

- 5 V internal reference without voltage divider between the output and the error comparator;
- very low drop series regulator element utilizing mirrors;

permit high output impedance and then very low leakage current even in power down conditions.


This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The V_{01} regulator also features low consumption (0.6 mA typ.) to minimize battery drain in applications where the V_1 regulator is permanently connected to a battery supply.

The V_{02} output can supply other non essential 5 V circuits which may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access only in correct power conditions, or as a "BACK-UP ENABLE" to transfer data into in a NV SHADOW MEMORY when the supply is interrupted.

Figure 2

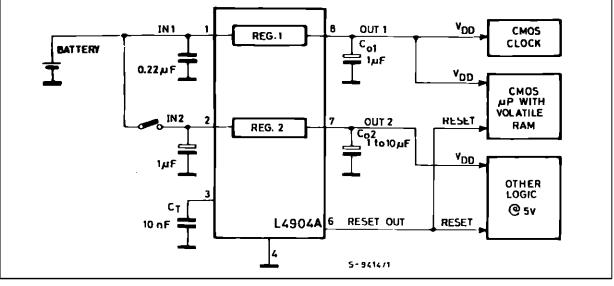
APPLICATION SUGGESTIONS

Figure 3 shows an application circuit for a µP system.

Reg. 1 is permanently connected to a battery and supplies a CMOS time-of-day clock and a CMOS microcomputer chip with volatile memory.

Reg. 2 may be switched OFF when the system is inactive.

Figure 4 shows the L4904A with a back up battery on the V₀₁ output to maintain a CMOS time-of-day clock and a stand by type C-MOS µP. The reset


output makes sure that the RAM is forced into the low consumption stand by state, so the access to memory is inhibit and the back up battery voltage cannot drop so low that memory contents are corrupted.

In this case the main on-off switch disconnects both regulators from the supply battery.

Application Circuits of a Microprocessor system (Figure 3) or with data save battery (Figure 4). The reset output provide delayed rising front at the turn-off of the regulator 2.

Figure 3

L4904A

Figure 4

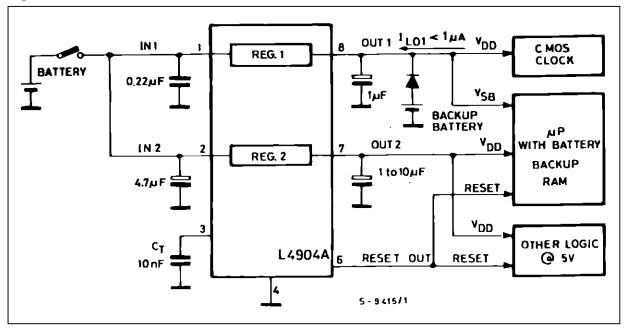


Figure 5 : Quiescent Current (reg. 1) versus Output Current

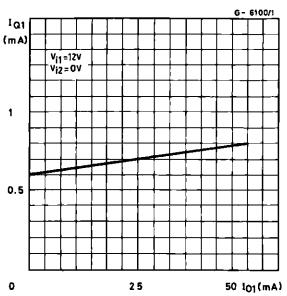


Figure 7 : Total Quiescent Current versus Input Voltage

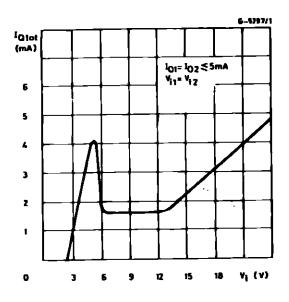


Figure 6 : Quiescent Current (reg. 1 versus Input Voltage

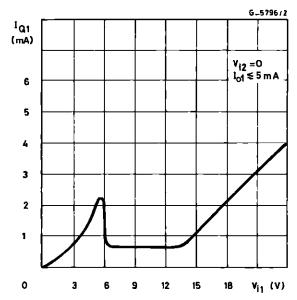
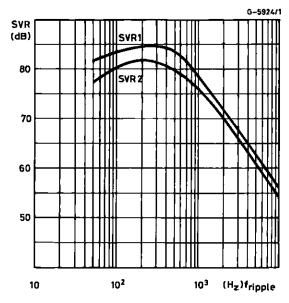
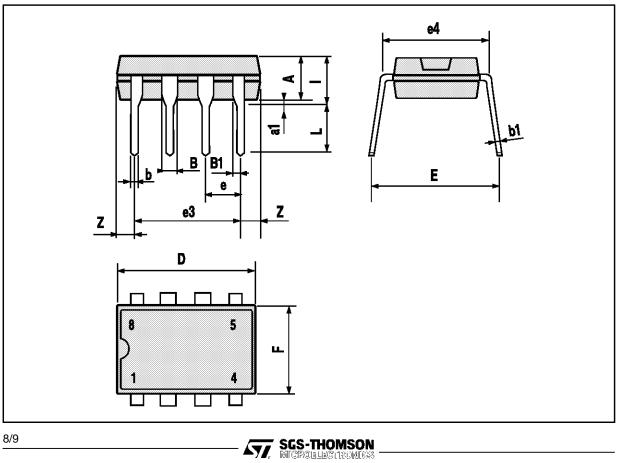



Figure 8: Supply Voltage Rejection Regulators 1 and 2 versus Input Ripple Frequence



L4904A

MINIDIP PACKAGE MECHANICAL DATA

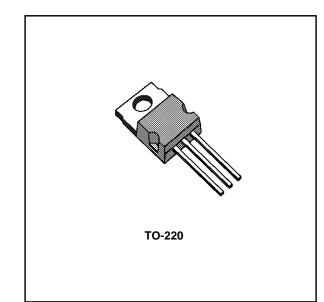
DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

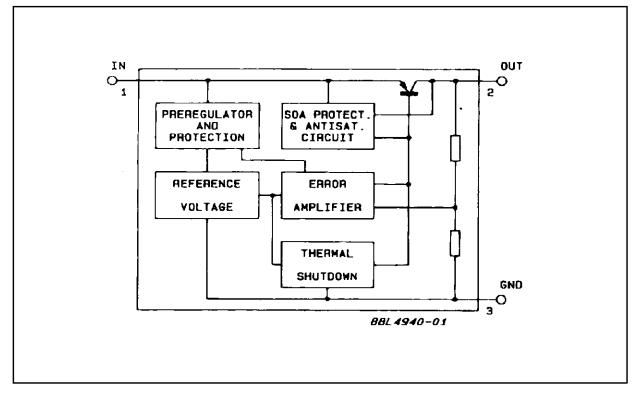
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

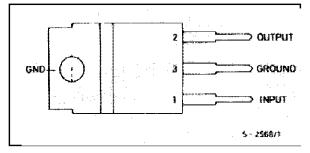
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.


L4940 SERIES

VERY LOW DROP 1.5 A REGULATORS


- PRECISE 5 V, 8.5 V, 10 V, 12 V OUTPUTS
- LOW DROPOUT VOLTAGE (500 mV typ at 1.5A)
- VERY LOW QUIESCENT CURRENT
- THERMAL SHOUTDOWN
- SHORT CIRCUIT PROTECTION
- REVERSE POLARITY PROTECTION

DESCRIPTION

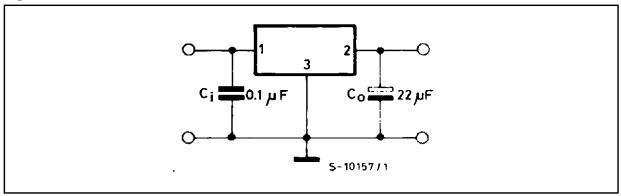

The L4940 series of three terminal positive regulators is available in TO-220 package and with several fixed output voltages, making it useful in a wide range of industrial and consumer applications. Thanks to its very low input/output voltage drop, these devices are particularly suitable for battery powered equipments, reducing consumption and prolonging battery life. Each type employs internal current limiting, antisaturation circuit, thermal shutdown and safe area protection.

APPLICATION CIRCUIT

PIN CONNECTION AND ORDER CODES

ORDERING NUMBERS	OUTPUT VOLTAGE
L4940V5	5V
L4940V85	8.5V
L4940V10	10V
L4940V12	12V

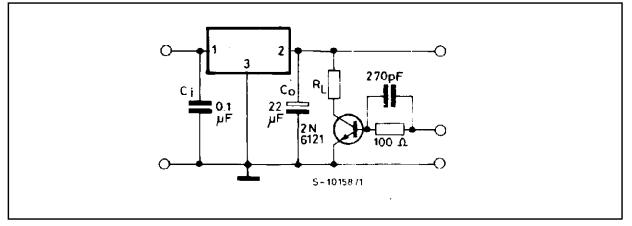
ABSOLUTE MAXIMUM RATING

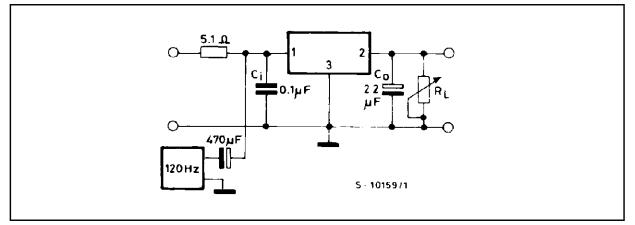

Symbol	Desc	ription		Values	Unit
VI	Forward Input Voltage			30	V
V _{IR}	Reverse Input Voltage	V ₀ = 5 V	Ro = 100 Ω	-15	V
		V _O = 8.5 V	R _O = 180 Ω		
		V _O = 10 V	R _O = 200 Ω		
		V _O = 12 V	R _O = 240 Ω		
lo	Output Current			Internally Limited	
Ptot	Power Dissipation			Internally Limited	
Tj, T _{stg}	Junction and Storage Temperatur	e		-40 to 150	°C

THERMAL DATA

Symb	ol	Description	Value	Unit	
R _{th-j-c}		Thermal Resistance Junction-case	Max	3	°C/W
R _{th-j-a}		Thermal Resistance Junction-ambient	Max	50	°C/W

TEST CIRCUITS


Figure 1. - DC Parameters.



TEST CIRCUITS: (continued)

Figure 2. - Load Regulation

Figure 3. - Ripple Rejection

ELECTRICAL CHARACTERISTICS FOR L4940V5 (refer to the test circuits, $T_j = 25$ °C,

 $V_i = 7V, C_i = 0.1 \ \mu\text{F}, C_o = 22 \ \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _o = 500 mA	4.9	5	5.1	V
Vo	Output Voltage	$I_o = 5 \text{ mA to } 1500 \text{ mA}$ V _i = 6.5 to 16 V	4.8	5	5.2	V
Vi	Operating Input Voltage	$I_o = 5 \text{ mA}$			17	V
ΔV_{o}	Line Regulation	$I_o = 5 \text{ mA}$ $V_i = 6 \text{ to } 17 \text{ V}$		4	10	mV
ΔV_{o}	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $I_o = 500 \text{ to } 1000 \text{ mA}$		8 5	25 15	mV
ΙQ	Quiscent Current			5 30	8 50	mA
ΔI_Q	Quiscent Current Change				3 15	mA
$\frac{\Delta V_0}{\Delta T}$	Output Voltage Drift			0.5		mV/°C
SVR	Supply Voltage Rejection	I _o = 1 A f = 120 Hz	58	68		dB
Vd	Dropout Voltage	$I_{o} = 0.5 \text{ A}$ $I_{o} = 1.5 \text{ A}$		200 500	400 900	mV
I _{sc}	Short Circuit Current			2 2.2	2.7 2.9	A
Zo	Output Impedance	f = 1 KHz I _o = 0.5A		30		mΩ
e _N	Output Noise Voltage	B = 100 Hz to 100 KHz		30		μV/V₀

ELECTRICAL CHARACTERISTICS FOR L4940V85 (refer to the test circuits, $T_j = 25$ °C, $V_i = 10.5V$, $C_i = 0.1 \mu$ F, $C_o = 22 \mu$ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	l _o = 500 mA	8.3	8.5	8.7	V
Vo	Output Voltage	$I_o = 5 \text{ mA to } 1500 \text{ mA}$ V _i = 10.2 to 16 V	8.15	8.5	8.85	V
Vi	Operating Input Voltage	$I_0 = 5 \text{ mA}$			17	V
ΔV_{o}	Line Regulation	$I_o = 5 \text{ mA}$ $V_i = 9.5 \text{ to } 17 \text{ V}$		4	9	mV
ΔV_{o}	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $I_o = 500 \text{ to } 1000 \text{ mA}$		12 8	30 16	mV
lq	Quiscent Current	$I_o = 5 \text{ mA}$ $I_o = 1.5 \text{ AV}_i = 10.2 \text{ V}$		4 30	8 50	mA
Δlq	Quiscent Current Change	$I_0 = 5 \text{ mA}$ $I_0 = 1.5 \text{ AV}_i = 10.2 \text{ to } 16 \text{ V}$			2.5 15	mA
$\frac{\Delta \text{ V}_{\text{o}}}{\Delta \text{ T}}$	Output Voltage Drift			0.8		mV/°C
SVR	Supply Voltage Rejection	$I_0 = 1 \text{ Af} = 120 \text{ Hz}$	58	66		dB
Vd	Dropout Voltage	$I_0 = 0.5 A$ $I_0 = 1.5 A$		200 500	400 900	mV
I _{sc}	Short Circuit Current	$V_i = 14 V$ $V_i = 10.2 V$		2 2.2	2.7 2.9	A
Zo	Output Impedance	$f = 1 \text{ KHz } I_0 = 0.5 \text{A}$		32		mΩ
e _N	Output Noise Voltage	B = 100 Hz to 100 KHz		30		μV/V₀

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	l _o = 500 mV	9.8	10	10.2	V
Vo	Output Voltage	$I_0 = 5 \text{ mA to } 1500 \text{ mA}$ V _i = 11.7 to 16 V	9.6	10	10.4	V
Vi	Operating Input Voltage	$I_o = 5 \text{ mA}$			17	V
ΔV_{o}	Line Regulation	$I_o = 5 \text{ mA}$ $V_i = 11 \text{ to } 17 \text{ V}$		3	8	mV
ΔV_{o}	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $I_o = 500 \text{ to } 1000 \text{ mA}$		15 10	35 20	mV
ΙQ	Quiscent Current			4 30	8 50	mA
ΔI_Q	Quiscent Current Change	$ I_o = 5 \text{ mA} \\ I_o = 1.5 \text{ A} V_i = 11.7 \text{ to } 16 \text{ V} $			2 13	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift			1		mV/°C
SVR	Supply Voltage Rejection	I _o = 1 A f = 120 Hz	56	62		dB
V _d	Dropout Voltage	$I_{o} = 0.5 \text{ A}$ $I_{o} = 1.5 \text{ A}$		200 500	400 900	mV
I _{sc}	Short Circuit Current	V _i = 14 V V _i = 11.7 V		2 2.2	2.7 2.9	A A
Zo	Output Impedance	f = 1 KHz I _o = 0.5A		36		mΩ
e _N	Output Noise Voltage	B = 100 Hz to 100 KHz		30		μV/V _o

ELECTRICAL CHARACTERISTICS FOR L4940V10 (refer to the test circuits, $T_j = 25 \text{ °C}$, $V_i = 12V, C_i = 0.1 \,\mu\text{F}, C_o = 22 \,\mu\text{F}$ unless otherwise specified)

ELECTRICAL CHARACTERISTICS FOR L4940V12 (refer to the test circuits, $T_j = 25$ °C, $V_i = 14V$, $C_i = 0.1 \ \mu$ F, $C_o = 22 \ \mu$ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	l _o = 500 mV	11.75	12	12.25	V
Vo	Output Voltage	$I_o = 5 \text{ mA to } 1500 \text{ mA}$ V _i = 13.8 to 17 V	11.5	12	12.5	V
Vi	Operating Input Voltage	$I_o = 5 \text{ mA}$			17	V
ΔV_{o}	Line Regulation	$I_o = 5 \text{ mA} V_i = 13 \text{ to } 17 \text{ V}$		3	7	mV
ΔV_{o}	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $I_o = 500 \text{ to } 1000 \text{ mA}$		15 10	35 25	mV
lq	Quiscent Current			4 30	8 50	mA
ΔI_Q	Quiscent Current Change	$I_o = 5 \text{ mA}$ $I_o = 1.5 \text{ A}$ $V_i = 13.8 \text{ to } 16 \text{ V}$			1.5 10	mA
$\frac{\Delta V_0}{\Delta T}$	Output Voltage Drift			1.2		mV/°C
SVR	Supply Voltage Rejection	I _o = 1 A f = 120 Hz	55	61		dB
Vd	Dropout Voltage	l _o = 0.5 A l _o = 1.5 A		200 500	400 900	mV
I _{sc}	Short Circuit Current	V _i = 14 V		2	2.7	А
Zo	Output Impedance	f = 1 KHz I _o = 0.5A		40		mΩ
e _N	Output Noise Voltage	B = 100 Hz to 100 KHz		30		μV/V _o

Figure 4. Dropout voltage vs. Output Current

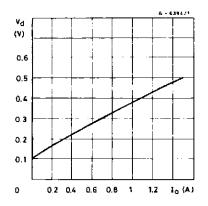


Figure 6. Output voltage vs. Temperature (L4940V5).

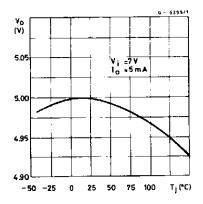


Figure 8. Output voltage vs. Temperature (L4040V10).

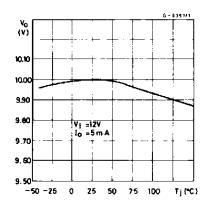


Figure 5. Dropout Voltage vs. Temperature

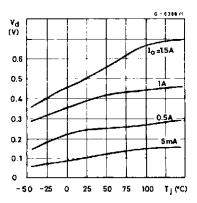


Figure 7. Output Voltage vs. Temperature (L4940V85).

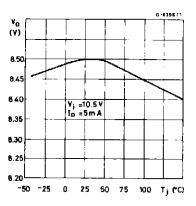


Figure 9. Output Voltage vs. Temperature (L4940V12).

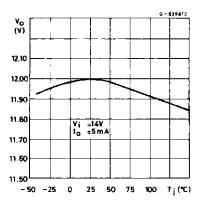


Figure 10. Quiescent Current vs. Temperature (L4940V5).

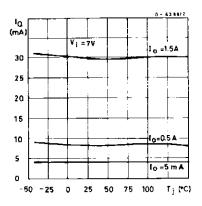


Figure 12. Quiescent Current vs. Output Current (L4940V5).

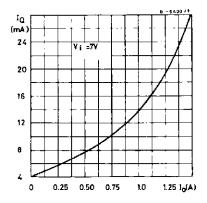


Figure 14. Peak Output Current vs. Input/Output Differential Voltage (L4940V5).

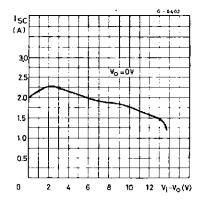


Figure 11. Quiescent Current vs. Input Voltage (L4940V5).

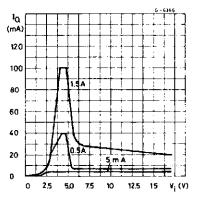


Figure 13. Short-circuit Current vs. Temperature (L4940V5).

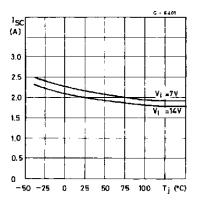


Figure 15. Low Voltage Behavior (L4940V5).

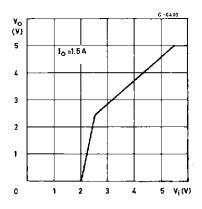
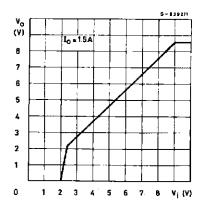



Figure 16. Low Voltage Behavior (L4940V85).

Figure 18. Low Voltage Behavior (L4940V12).

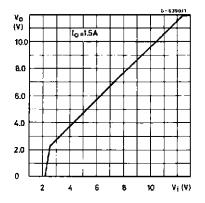


Figure 20. Supply Voltage Rejection vs. Output Current.

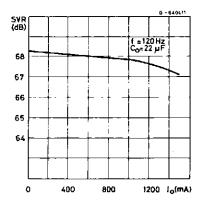
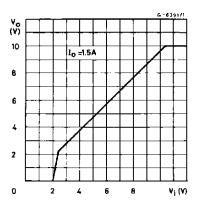



Figure 17. Low Voltage Behavior (L4940V10).

Figure 19. Supply Voltage Rejection vs. Frequency (L4940V5).

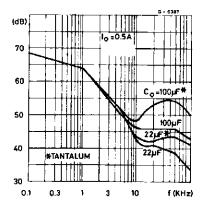


Figure 21. Load Dump Characteristics (L4940V5).

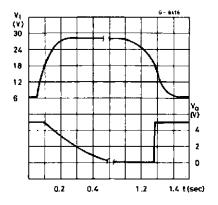


Figure 22. Line Transient Response (L4940V5).

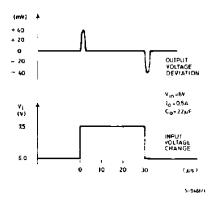


Figure 23. Load Transient Response.

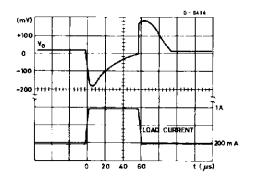


Figure 24. Total Power Dissipation.

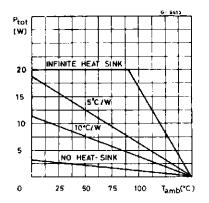
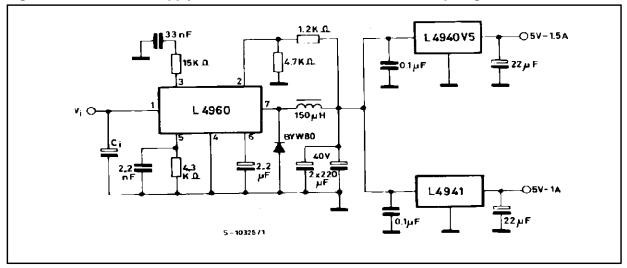



Figure 25. Distributed Supply with On-card L4940 and L4941 Low-drop Regulators.

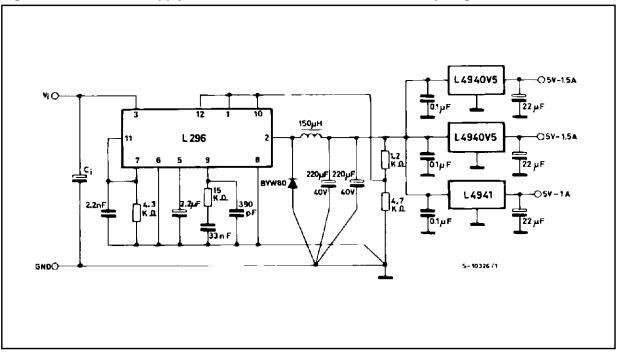
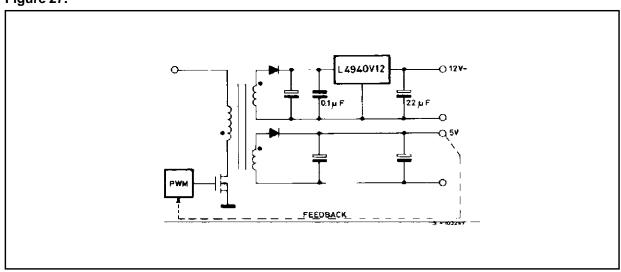
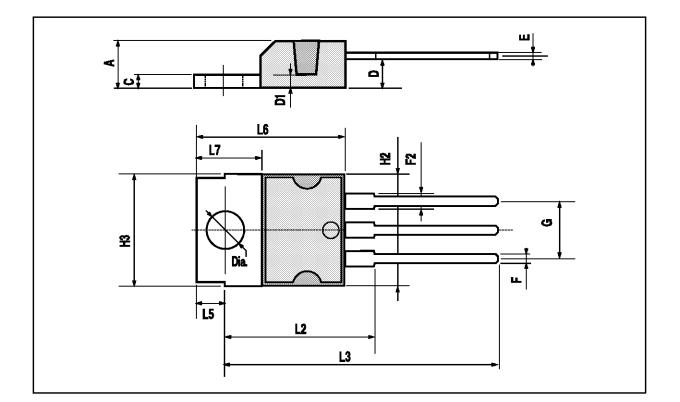



Figure 26. Distributed Supply with On-card L4940 and L4941 Low-drop Regulators.

ADVANTAGES OF THESE APPLICATIONS ARE :

- On card regulation with short-circuit and thermal protection on each output.
- Very high total system efficiency due to the switching preregulation and very low-drop postregulations.


ADVANTAGES OF THIS CONFIGURATION ARE :

- Very high regulation (line and load) on both the output voltages.
- 12 V output short-circuit and thermally protected.
- Very high efficiency on the 12 V output due to the very low drop regulator.

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.8		1.05	0.031		0.041
F2	1.15		1.4	0.045		0.055
G	4.95	5.08	5.21	0.195	0.200	0.205
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L2		16.2			0.638	
L3	26.3	26.7	27.1	1.035	1.051	1.067
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
Dia	3.65		3.85	0.144		0.152

TO220 PACKAGE MECHANICAL DATA

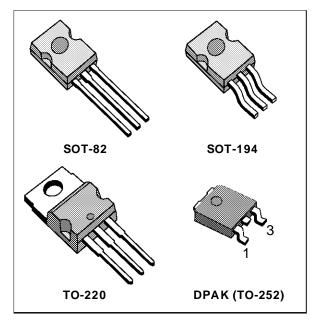
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

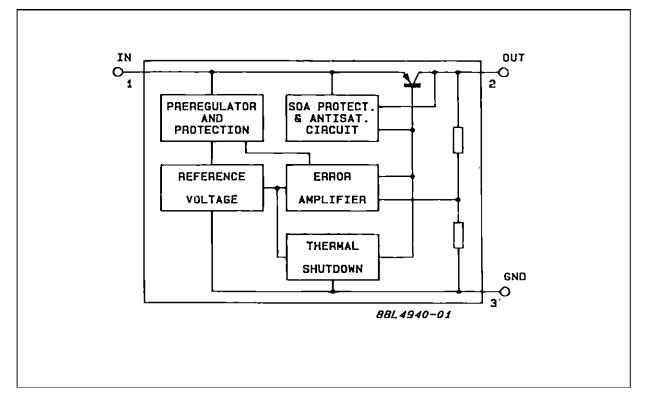
SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

L4941

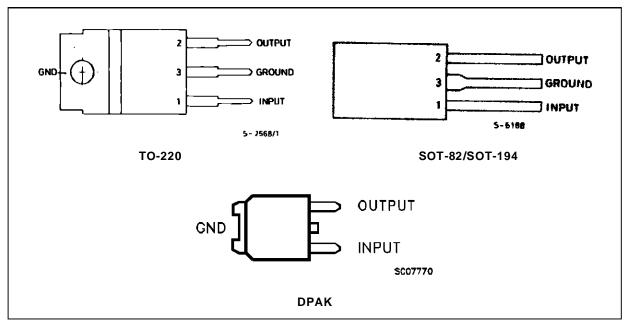


VERY LOW DROP 1A REGULATOR


- LOW DROPOUT VOLTAGE (450 mV typ at 1A)
- VERÝ LOW QUIESCENT CURRENT
- THERMAL SHUTDOWN
- SHORT CIRCUIT PROTECTION
- REVERSE POLARITY PROTECTION

DESCRIPTION

The L4941 is a three terminal 5 V positive regulator available in TO-220, SOT-82, SOT-194 and DPAK packages, making it useful in a wide range of the industrial and consumer applications. Thanks to its very low input/output voltage drop, this device is particularly suitable for battery powered equipment, reducing consumption and prolonging battery life. It employs internal current limiting, antisaturation circuit, thermal shut-down and safe area protection.



BLOCK DIAGRAM

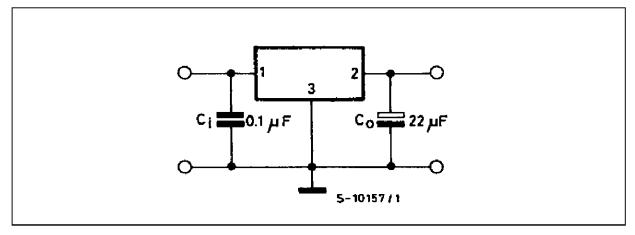
L4941

PIN CONNECTIONS AND ORDERING NUMBER (top view)

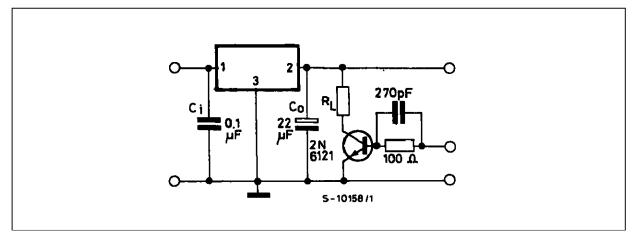
ORDERING NUMBERS	OUTPUT VOLTAGE	PACKAGE
L4941BV	5V	TO-220
L4941BX	5V	SOT-82
L4941BS	5V	SOT-194
L4941BDT	5V	DPAK

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Forward Input Voltage	30	V
V _{iR}	Reverse Input Voltage ($R_0 = 100 \Omega$)	– 15	V
Ι _ο	Output Current	Internally Limited	
P _{tot}	Power Dissipation	Internally Limited	
T _j , T _{stg}	Junction and Storage Temperature	– 40 to 150	°C


THERMAL DATA

			SOT-82 SOT-194 DPAK	TO-220	
R _{thj-case}	Thermal Resistance Junction-case	Max	8	3	°C/W
R _{thj-amb}	Termal resistance Junction-ambient	Max	100	50	°C/W



TEST CIRCUITS

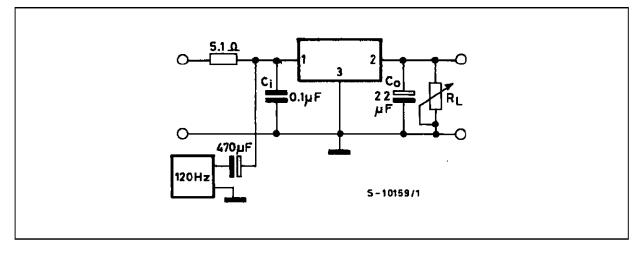

Figure 1 : DC Parameters.

Figure 2 : Load Regulation.

Figure 3 : Ripple Rejection.

ELECTRICAL CHARACTERISTICS (refer to the test circuits $T_i = 3$	$25 ^{\circ}\text{C}, \text{C}_{\text{i}} = 0.1 \mu\text{F}, \text{C}_{\text{o}} = 22 \mu\text{F},$
unless otherwise specified)	

Symbol	Parameter	Test Cond	ditions	Min.	Тур.	Max.	Unit
Output V	oltage	·			5		
Input Vol	tage (unless otherwise spe	cified)			7		
Vo	Output Voltage	$I_o = 5 \text{ mA to } 1 \text{ A}$ $V_i = 6 \text{ V to } 14 \text{ V}$		4.8	5	5.2	V
Vi	Operating Input Voltage	I _o = 5 mA				16	V
ΔV_{o}	Line Regulation	$V_i = 6 V \text{ to } 16 V$ $I_o = 5 \text{ mA}$			5	20	mV
ΔV_o	Load Regulation	$I_o = 5$ mA to 1 A $I_o = 0.5$ A to 1 A			8 5	20 15	mV
Ι _Q	Quiescent Current	V _i = 6 V	$I_o = 5 \text{ mA}$		4	8	mA
		$v_i = 0 v$	$I_o = 1 A$		20	40	
Δlq	Quiescent Current	V _i = 6 V to 14 V	l _o = 5 mA			3	mA
	Change		I _o = 1 A			- 10	
Vd	Dropout Voltage	I _o = 0.5 A			250	450	mV
		I _o = 1 A			450	700	
ΔVo	Output Voltage Drift				0.6		mV/°C
ΔT							
SVR	Supply Voltage Rejection	f = 120 Hz I _o = 0.5 A		58	68		dB
Isc	Short Circuit Current	V _i = 14 V			1.6	2.0	Α
	Limit	V _i = 6 V			1.8	2.2	
Zo	Output Impedance	f = 1 kHz I _o = 0.5 A			30		mΩ
e _N	Output Noise Voltage	B = 100 Hz to 100 H	кНz		30		μV/V₀

Figure 4 : Dropout voltage vs. Output Current.

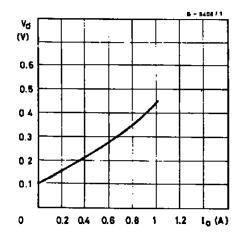


Figure 5 : Dropout Voltage vs. Temperature.

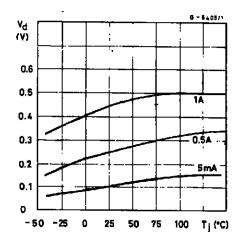


Figure 6 : Output voltage vs. Temperature.

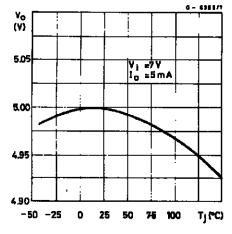


Figure 8 : Quiescent Current vs.Input Voltage.

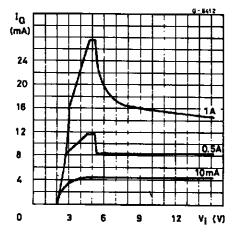


Figure 10 : Short-circuit Current vs. Temperature.

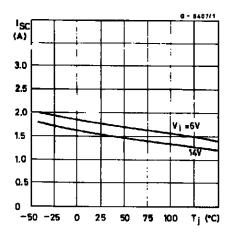


Figure 7: Quiescent Current vs. Temperature

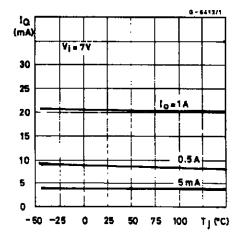


Figure 9: Quiescent Current vs.Output Current.

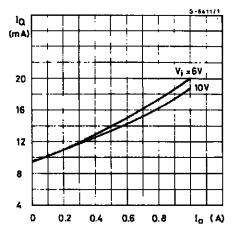


Figure 11 : Peak Output Current vs. Input/Output Differential Voltage.

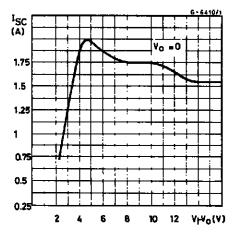


Figure 12 : Low Voltage Behavior.

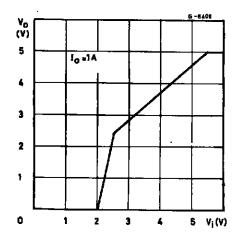


Figure 14 : Supply Voltage Rejection vs. Output Current.

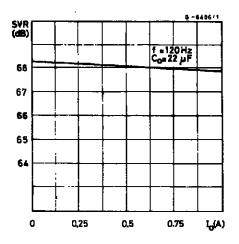
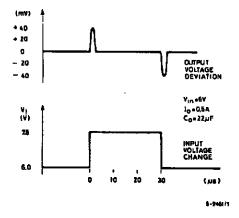



Figure 16 : Line Transient Response.

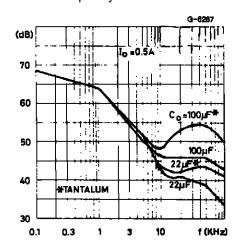


Figure 13 : Supply Voltage Rejection vs. Frequency

Figure 15 : Load Dump Characteristics.

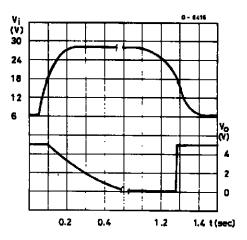


Figure 17 : Load Transunt Response.

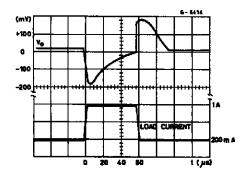


Figure 18 : Total Power Dissipation (TO-220).

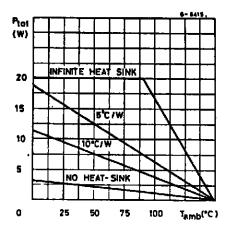
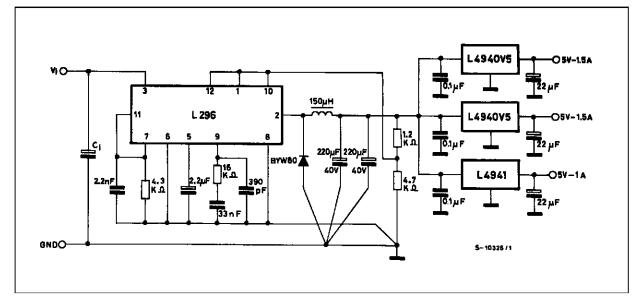



Figure 19 : Distribued Supply with On-card L4940 and L4941 Low-drop Regulators.

ADVANTAGES OF THESE APPLICATIONS ARE :

- On card regulation with short-circuit and thermal protection on each output.
- Very high total system efficiency due to the switching preregulation and very low-drop postregulations.

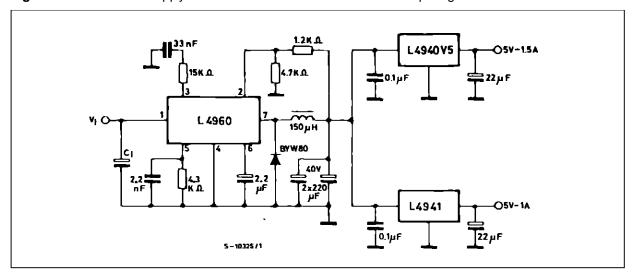
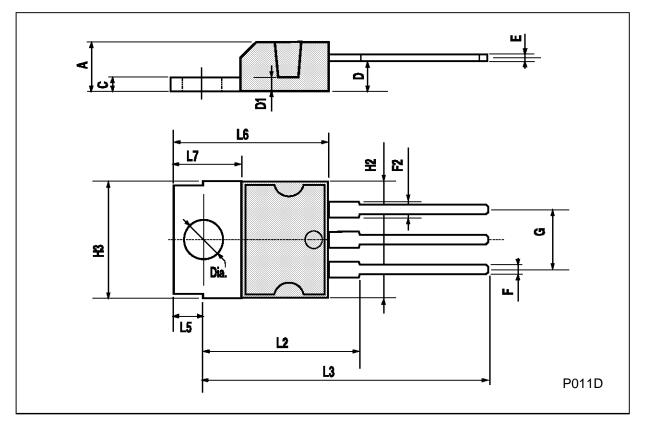
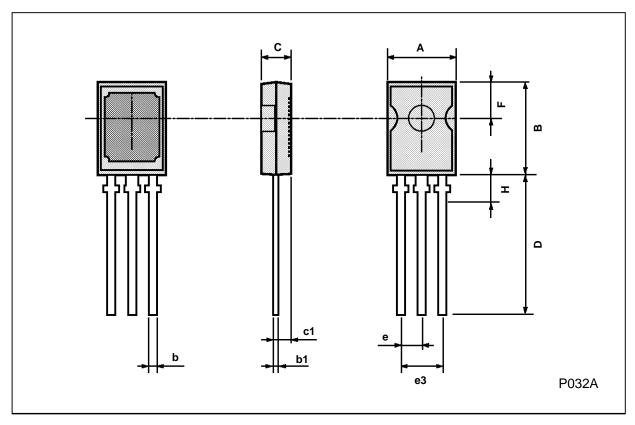



Figure 20 : Distribued Supply with On-card L4940 and L4941 Low-drop Regulators.

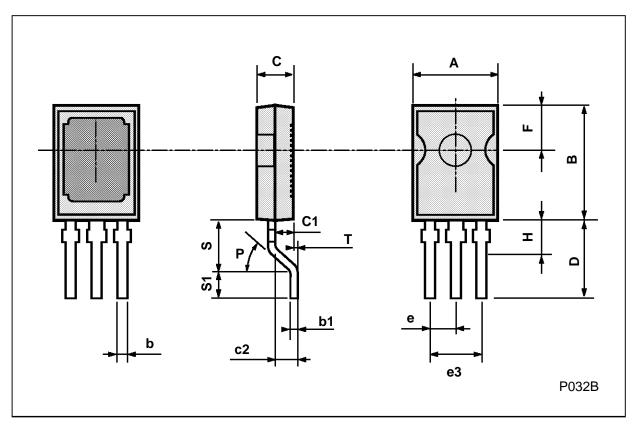
16	-	-	636	-	235		82	- 99	99	- 69	99	÷.,	11	6.0	÷	80		- 22	92	-	86	С.	11		24		÷.	æ	60	22	10	201	87	88	84			 1	88	88	83	-	Ē	- 66	22		
	3	10						92		3	z	ъ		0	П	3	22	22	r		1		2	82	-	83		α.	8	11	20	۰.	14	10	а.			22		34	ε.	22	82	- 1	κ.		
	-	63	æ			÷	82		-				18	ω.		- 2	20	- 14		22	20	E.		-					8		88	20			88			22	- 10		н.	202	20		- 24		
	8	88	1	~	м		1	-	2	16	22	э.	÷	z	а.	а.	2	98	х.	ч.	æ	8	2	ε.	20	6		λ.	8	а.	-	-	0	× 1	81	-	89	÷	æ	0	21	200	82		8	2.3	

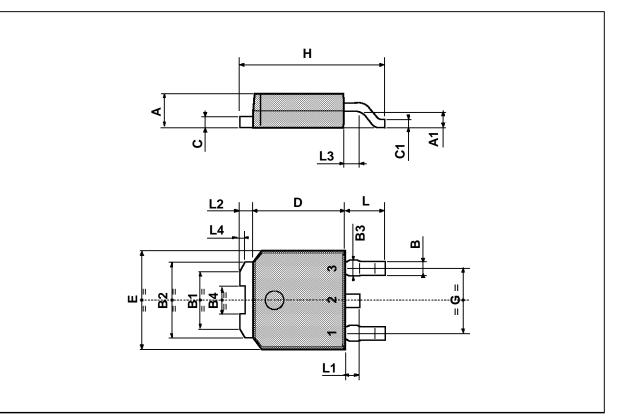
DIM.		mm		inch								
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.						
А			4.8			0.189						
С			1.37			0.054						
D	2.4		2.8	0.094		0.110						
D1	1.2		1.35	0.047		0.053						
E	0.35		0.55	0.014		0.022						
F	0.8		1.05	0.031		0.041						
F2	1.15		1.4	0.045		0.055						
G	4.95	5.08	5.21	0.195	0.200	0.205						
H2			10.4			0.409						
HЗ	10.05		10.4	0.396		0.409						
L2		16.2			0.638							
L3	26.3	26.7	27.1	1.035	1.051	1.067						
L5	2.6		3	0.102		0.118						
L6	15.1		15.8	0.594		0.622						
L7	6		6.6	0.236		0.260						
Dia.	3.65		3.85	0.144		0.152						



L4941

SOT-82 MECHANICAL DATA


DIM.		mm		inch									
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.							
А	7.4		7.8	0.291		0.307							
В	10.5		11.3	0.413		0.445							
b	0.7		0.9	0.028		0.035							
b1	0.49		0.75	0.019		0.030							
С	2.4		2.7	0.04		0.106							
c1		1.2			0.047								
D		15.7			0.618								
е		2.2			0.087								
e3		4.4			0.173								
F		3.8			0.150								
Н			2.54		0.100								


	8																						

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	7.4		7.8	0.291		0.307
В	10.5		11.3	0.413		0.445
b	0.7		0.9	0.028		0.035
b1	0.49		0.75	0.019		0.030
С	2.4		2.7	0.094		0.106
c1		1.2			0.047	
c2		1.3			0.051	
D		6			0.236	
е		2.2			0.087	
e3		4.4			0.173	
F		3.8			0.150	
н			2.54			0.100
Р		-	45°	² (typ.)		
S		4			0.157	
S1		2			0.079	
Т		0.1			0.004	

DIM.		mm		inch					
Divi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А	2.2		2.4	0.086		0.094			
A1	0.9		1.1	0.035		0.043			
В	0.64		0.8	0.025		0.031			
B1	3.4		3.6	0.133		0.141			
B2	5.2		5.4	0.204		0.212			
B3			0.9			0.035			
B4	1.9		2.1	0.074		0.082			
С	0.48		0.6	0.018		0.023			
C1	0.45		0.6	0.017		0.023			
D	6		6.2	0.236		0.244			
E	6.4		6.6	0.252		0.260			
G	4.4		4.6	0.173		0.181			
Н	9.35		10.1	0.368		0.397			
L	2.55		3.05	0.100		0.120			
L1	0.6		1	0.023		0.039			
L2		0.8			0.031				
L3	0.8		1.2	0.031		0.047			
L4	0.3		0.45	0.012		0.017			

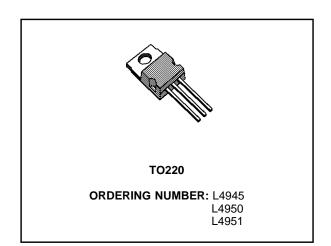
L4941

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and r eplaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life s upport devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

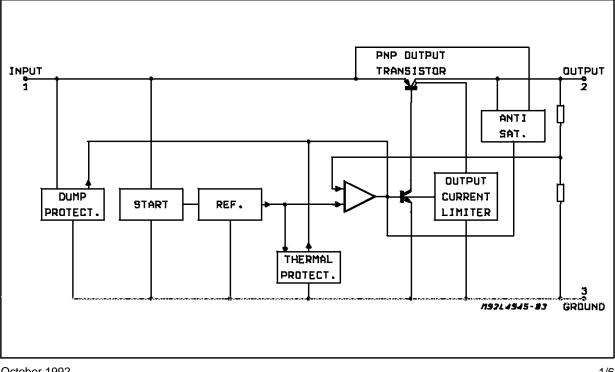
SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A


L4945/L4950 L4951

5V/8.5V/10V VERY LOW DROP VOLTAGE REGULATORS

- PRECISE OUTPUT VOLTAGE: 5V ± 4% (L4945) 8.5V ± 4% (L4950) $10V \pm 4\%$ (L4951) **OVER FULL TEMPERATURE RANGE** (−40 / 125 °C)
- VERY LOW VOLTAGE DROP (0.75Vmax) OVER FULL TEMPERATURE RANGE
- OUTPUT CURRENT UP TO 500mA
- OVERVOLTAGE AND REVERSE VOLTAGE PROTECTIONS
- REVERSE VOLTAGE PROTECTION
- SHORT CIRCUIT PROTECTION AND THER--MAL SHUT-DOWN (with hysteresis)
- LOW START UP CURRENT

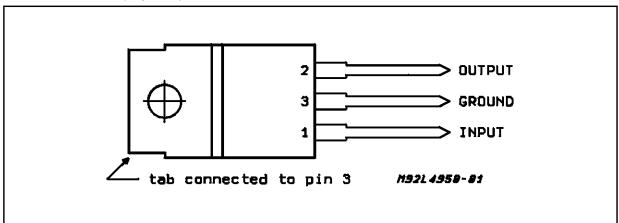

DESCRIPTION

The devices are a monolithic integrated circuit in Versawatt package specially designed to provide a stabilized supply voltage for automotive and industrial electronic systems. Thanks to their very

low voltage drop, in automotive applications the devices can work correctly even during the cranking phase, when the battery voltage could fall as low as 6V. Furthermore, they incorporate a complete range of protection circuits against the dangerous overvoltages always present on the battery rail of the car.

BLOCK DIAGRAM

October 1992

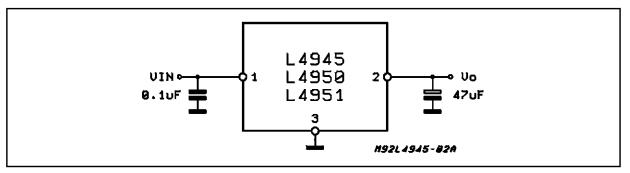

L4945 - L4950 - L4951

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	$\begin{array}{l} \text{DC Input Voltage} \\ \text{DC Reverse Input Voltage} \\ \text{Transient Input Overvoltages :} \\ \text{Load Dump :} \\ \text{5ms} \leq t_{\text{rise}} \leq 10\text{ms} \\ \tau_{\text{f}} \text{ Fall Time Constant} = 100\text{ms} \\ \text{R}_{\text{SOURCE}} \geq 0.5\Omega \\ \text{Field Decay :} \\ \text{5ms} \leq t_{\text{fall}} \leq 10\text{ms}, \ \text{R}_{\text{SOURCE}} \geq 10\Omega \\ \tau_{\text{r}} \text{ Rise Time Constant} = 33\text{ms} \\ \text{Low Energy Spike :} \\ t_{\text{rise}} = 1\mu\text{s}, \ t_{\text{fall}} = 500\mu\text{s}, \ \text{R}_{\text{SOURCE}} \geq 10\Omega \\ f_{\text{r}} \text{ Repetition Frequency} = 5\text{Hz} \end{array}$	35 - 18 80 - 80 ± 100	V V V V
TJ	Junction Temperature Range	– 40 to 150	°C
T _{OP}	Operating Temperature Range	– 40 to 125	°C
T _{stg}	Storage Temperature Range	– 55 to 150	°C

Note: The circuit is ESD protected according to MIL-STD-883C.

PIN CONNECTION (Top view)



THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max	3	°C/W

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $V_i = 14.4V$, $C_o = 47\mu$ F, ESR < 10Ω , $R_p = 1K\Omega$, $R_L = 1K\Omega$, $-40^{\circ}C \le T_J \le 125^{\circ}C$, unless otherwise specified)

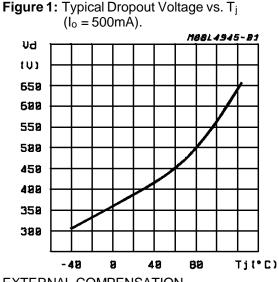
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$ I_o = 0 mA \text{ to } 500 mA \\ Over Full T Range & for L4945 \\ $	4.80 8.16 9.60	5.00 8.50 10	5.20 8.84 10.4	V V V
		Tj = 25°C for L4945 for L4950 for L4951	4.90 8.33 9.80	5.00 8.50 10	5.10 8.67 10.2	V V V
Vi	Operating Input Voltage	$I_0 = 0mA \text{ to } (*) 500mA$	6		26	V
ΔVo	Line Regulation	$V_i = 6V \text{ to } 26V;$ $I_o = 5mA$		2	10	mV
ΔVo	Load Regulation	$I_o = 5mA$ to 500mA		15	60	mV
V _i -V _o	Dropout Voltage	$I_o = 500 \text{mA}, T_J = 25^{\circ}\text{C}$ Over Full T Range		0.40	0.55 0.75	V V
lq	Quiescent Current	$ \begin{array}{l} I_{o}=0mA, \ T_{J}=25^{\circ}C\\ I_{o}=0mA \ Over \ Full \ T\\ I_{o}=500mA \ Over \ Full \ T \end{array} $		5 6.5 110	10 13 180	mA mA mA
$\frac{\Delta V_o}{T}$	Temperature Output Voltage Drift			- 0.5		mV/°C
SVR	Supply Volt. Rej.	$ \begin{array}{l} I_{o} = 350 mA \ ; \ f = 120 Hz \\ C_{o} = 100 \mu F \ ; \\ V_{i} = 12 V \pm 5 V_{pp} \end{array} $	50	60		dB
I _{sc}	Output Short Circuit Current		0.50	0.80	1.50	A

(*) For a DC voltage $26 < V_i < 37V$ the device is not operating

FUNCTIONAL DESCRIPTION

The block diagram shows the basic structure of the devices : the reference, the error amplifier, the driver, the power PNP, the protection and reset functions.

The power stage is a Lateral PNP transistor which allows a very low dropout voltage (typ. 400mV at $T_J = 25^{\circ}$ C, max. 750mV over the full temperature range @ $I_O = 500$ mA). The typical curve of the dropout voltage as a function of the junction temperature is shown in Fig. 1 : that is the worst case, where $I_O = 500$ mA.

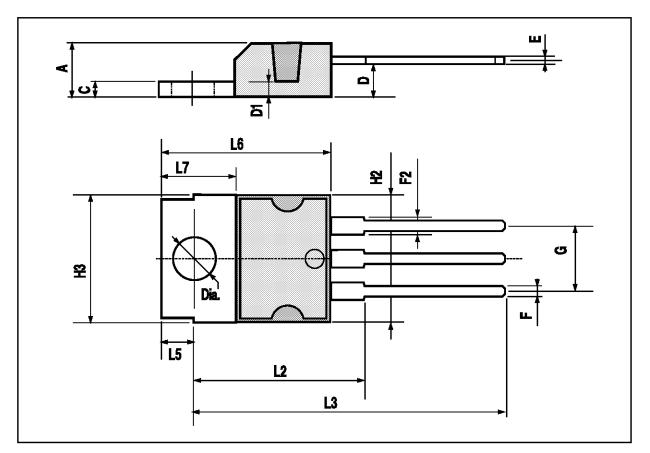

The current consumption of the devices (quiescent current) are maximum 10mA - over full T - when no load current is required.

The internal antisaturation circuit allows a drastic reduction in the current peak which takes place during the start up.

The three gain stages (operational amplifier, driver and power PNP) require the external capacitor ($C_{omin} = 20\mu F$) to guarantee the global stability of the system.

Load dump and field decay protections (\pm 80V, t = 300ms), reverse voltage (– 18V) and short circuit protection, thermal shutdown are the main features that make the devices specially suitable for applications in the automotive environment.

EXTERNAL COMPENSATION Since the purpose of a voltage regulator is to supply and load variations, the open loop gain of the regulators must be very high at low frequencies. This may cause instability as a result of the various poles present in the loop. To avoid this instability dominant pole compensation is used to reduce phase shift due to other poles at the unity gain frequency. The lower the frequency of these others poles at the unity gain frequency. The lower the frequency of these other poles, the greater must be capacitor esed to create the dominant pole for the same DC gain.


Where the output transistor is a lateral PNP type there is a pole in the regulation loop at a frequencybtoo low to be compensated by a capacitor which can be integrated. An external compensation is therefore necessary so a very high value capacitor must be connected from the output to ground.

The paeassitic equivalent series resistance of the capacitor used adds a zero to the regulation loop. This zero may compromise the stability of the system since its effect tends to cancel the effect of the pole added. In regulators this ESR must be less than 3Ω and the minimum capacitor value is 47μ F.

DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
с			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.8		1.05	0.031		0.041
F2	1.15		1.4	0.045		0.055
G	4.95	5.08	5.21	0.195	0.200	0.205
H2			10.4			0.409
НЗ	10.05		10.4	0.396		0.409
L2		16.2			0.638	
L3	26.3	26.7	27.1	1.035	1.051	1.067
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
Dia	3.65		3.85	0.144		0.152

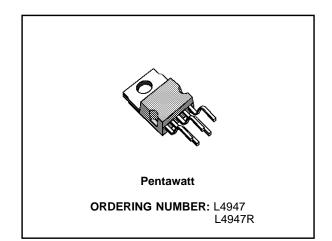
TO220 (VERSAWATT) PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

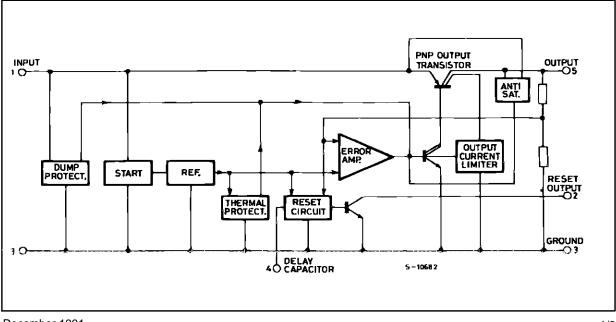
SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.


L4947 L4947R

5V-0.5A VERY LOW DROP REGULATOR WITH RESET

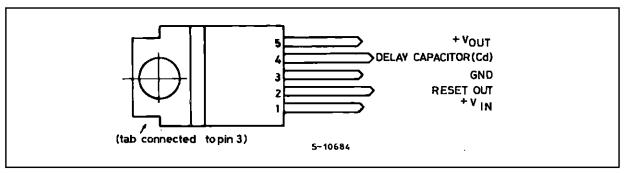
- PRECISE OUTPUT VOLTAGE (5V ± 4%) OVER FULL TEMPERATURE RANGE (- 40 / 125 °C)
- VERY LOW VOLTAGE DROP (0.75Vmax) OVER FULL T RANGE
- OUTPUT CURRENT UP TO 500mA
- RESET FUNCTION
- POWER-ON RESET DELAY PULSE DE-FINED BY THE EXTERNAL CAPACITOR
- + 80V LOAD DUMP PROTECTION
- 80V LOAD DUMP PROTECTION
- REVERSE VOLTAGE PROTECTION
- SHORT CIRCUIT PROTECTION AND THER-MAL SHUT-DOWN (with hysteresis)
- LOW START UP CURRENT


DESCRIPTION

The L4947/L4947R is a monolithic integrated circuit in Pentawatt package specially designed to provide a stabilized supply voltage for automotive and industrial electronic systems. Thanks to its very low voltage drop, in automotive applications the L4947/L4947R can work correctly even during the cranking phase, when the battery voltage

could fall as low as 6V. Furthermore, it incorporates a complete range of protection circuits against the dangerous overvoltages always present on the battery rail of the car. The reset function makes the device particularly suited to supply microprocessor based systems : a signal is available (after an externally programmable delay) to reset the microprocessor at power-on phase ; at power-off, this signal becomes low inhibiting the microprocessor.

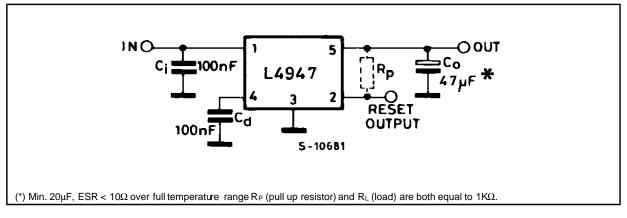
BLOCK DIAGRAM


L4947 - L4947R

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	$\begin{array}{l} DC \ \text{Input Voltage} \\ DC \ \text{Reverse Input Voltage} \\ Transient \ \text{Input Overvoltages}: \\ \text{Load Dump}: \\ 5ms \leq t_{rise} \leq 10ms \\ \tau_{f} \ \text{Fall Time Constant} = 100ms \\ \text{R}_{SOURCE} \geq 0.5\Omega \\ \text{Field Decay}: \\ 5ms \leq t_{rall} \leq 10ms, \ \text{R}_{SOURCE} \geq 10\Omega \\ \tau_{r} \ \text{Rise Time Constant} = 33ms \\ \text{Low Energy Spike}: \\ t_{rise} = 1\mu s, \ t_{rall} = 500\mu s, \ \text{R}_{SOURCE} \geq 10\Omega \\ f_{r} \ \text{Repetition Frequency} = 5Hz \end{array}$	35 - 18 80 - 80 ± 100	V V V V
V _R	Reset Output Voltage	35	V
T _J , T _{stg}	Junction and Storage Temperature Range	– 55 to 150	°C

Note: The circuit is ESD protected according to MIL-STD-883C.


PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max	3.5	°C/W

TEST CIRCUIT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 0mA$ to 500mA Over Full T Range T _J = 25°C	4.80 4.90	5.00 5.00	5.20 5.10	V V
Vi	Operating Input Voltage	$I_0 = 0$ mA to (*) 500 mA	6	0.00	26	v
ΔVo	Line Regulation	$V_i = 6V \text{ to } 26V \text{ ;}$ $I_0 = 5\text{mA}$		2	10	mV
ΔV_{o}	Load Regulation	$I_o = 5mA$ to 500mA		15	60	mV
$V_i - V_o$	Dropout Voltage	l₀ = 500mA, TJ = 25°C Over Full T Range		0.40	0.55 0.75	V V
lq	Quiescent Current	$\begin{array}{l} I_{o}=0mA, \ T_{J}=25^{\circ}C\\ I_{o}=0mA \ Over \ Full \ T\\ I_{o}=500mA \ Over \ Full \ T \end{array}$		5 6.5 110	10 13 180	mA mA mA
ΔV_o	Temperature Output Voltage Drift			- 0.5		mV/°C
SVR	Supply Volt. Rej.	$\begin{array}{l} I_{o} = 350 mA \; ; \; f = 120 Hz \\ C_{o} = 100 \mu F \; ; \\ V_{i} = 12 V \pm 5 V_{pp} \end{array}$	50	60		dB
Isc	Output Short Circuit Current		0.50	0.80	1.50	A
VR	Reset Output Saturation Voltage	$1.5V < V_o < V_{RT (off)},$ $I_R = 1.6mA$			0.40	V
		$3.0V < V_o < V_{RT (off)},$ $I_R = 8mA$			0.40	V
I _R	Reset Output Leakage Current	V_0 in Regulation, $V_R = 5V$			50	μΑ
V_{RTpeak}	Power On-Off Reset out Peak Voltage	1K Ω Reset Pull-up to V _o , T _J = 25°C		0.50	0.80	V
V _{RT (off)}	Power OFF V_0 Threshold	$T_J = 25^{\circ}C$ L4947: V _o @ Reset Out H to L Transition	4.70 4.75	Vo <i>-</i> 0.15		V V
		L4947R: V _o @ Reset Out H to L Transition	4.55	Vo <i>-</i> 0.30		V
V _{RT (on)}	Power ON V_o Threshold	V_o @ Reset Out L to H Transition		V _{RT (off)} + 0.05	V _o – 0.04	V
V _{Hyst}	Power ON-Off Hysteresis	V _{RT (on)} –V _{RT (off)}		0.05		V
V _d	Delay Comparator Threshold	V _d @ Reset Out L to H Transition	3.65	4.00	4.35	V
		V _d @ Reset Out H to L Transition	3.20	3.55	3.90	V
V_{dH}	Delay Comparator Hysteresis			0.45		V
ld	Delay Capacitor Charging Current	$V_d=3V,\ T_J=25^\circ C$		20		/μA
V _{disch}	Delay Capacitor Discharge Voltage	Vo < V _{RT (off)}		0.55	1.20	V
Td	Power on Reset Delay Time	$C_d=100nF,\ T_J=25^\circ C$	10	20	30	ms

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $V_i = 14.4V$, $C_o = 47\mu$ F, ESR < 10Ω , $R_p = 1K\Omega$, $R_L = 1K\Omega$, $-40^{\circ}C \le T_J \le 125^{\circ}C$, unless otherwise specified)

(*) For a DC voltage $26 < V_i < 37V$ the device is not operating

FUNCTIONAL DESCRIPTION

The L4947/L4947R is a very low drop 5V/0.5A voltage regulator provided with a reset function and therefore particularly suited to meet the requirements of supplying the microprocessor systems used in automotive and industrial applications.

The block diagram shows the basic structure of the device : the reference, the error amplifier, the

driver, the power PNP, the protection and reset functions.

The power stage is a Lateral PNP transistor which allows a very low dropout voltage (typ. 400mV at $T_J = 25^{\circ}$ C, max. 750mV over the full temperature range @ $I_O = 500$ mA). The typical curve of the dropout voltage as a function of the junction temperature is shown in Fig. 1 : that is the worst case, where $I_O = 500$ mA.

The current consumption of the device (quiescent current) is maximum 13mA - over full T - when no load current is required.

The internal antisaturation circuit allows a drastic reduction in the current peak which takes place during the start up.

The reset function supervises the regulator output voltage inhibiting the microprocessor when the device is out of regulation and resetting it at the power-on after a settable delay. The reset is LOW when the output voltage value is lower than the reset threshold voltage. At the power-on phase the output voltage increases (see Fig. 2) and - when it reaches the power-on Vo threshold V_{RT} (On) - the reset output becomes HIGH after a delay time set by the external capacitor C_d. At the power-off the output voltage decreases : at the V_{RT(Off)} threshold value (Vo-0.15V typ. for L4947 and Vo-0.3V typ. for L4947R value) the reset output

Figure 1: Typical Dropout Voltage vs. T_j ($I_o = 500$ mA).

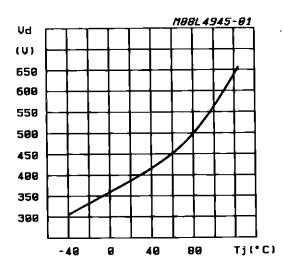
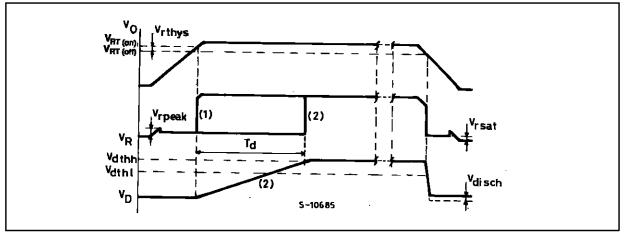


Figure 2: Reset Waveforms: (1) Without External Capacitor C_d. (2) With External Capacitor C_d.

put instantaneously goes down (LOW status) inhibiting the microprocessor. The typical power onoff hysteresis is 50mV.

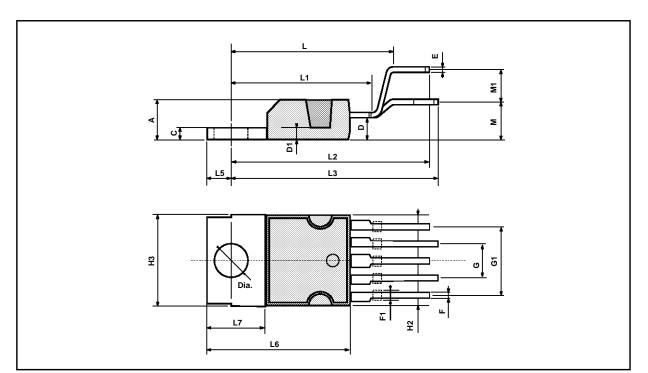
The three gain stages (operational amplifier, driver and power PNP) require the external capacitor ($C_{omin} = 20\mu F$) to guarantee the global stability of the system.


Load dump and field decay protections (\pm 80V), reverse voltage (– 18V) and short circuit protection, thermal shutdown are the main features that make the L4947/L4947R specially suitable for applications in the automotive environment.

EXTERNAL COMPENSATION

Since the purpose of a voltage regulator is to supply and load variations, the open loop gain of the regulator must be very high at low frequencies. This may cause instability as a result of the various poles present in the loop. To avoid this instability dominant pole compensation is used to reduce phase shift due to other poles at the unity gain frequency. The lower the frequency of these others poles at the unity gain frequency. The lower the frequency of these other poles, the greater must be capacitor esed to create the dominant pole for the same DC gain.

Where the output transistor is a lateral PNP type there is a pole in the regulation loop at a frequencybtoo low to be compensated by a capacitor which can be integrated. An external compensation is therefore necessary so a very high value capacitor must be connected from the output to ground.


The paeassitic equivalent series resistance of the capacitor used adds a zero to the regulation loop. This zero may compromise the stability of the system since its effect tends to cancel the effect of the pole added. In regulators this ESR must be less than 3Ω and the minimum capacitor value is 47μ F.

SGS-THOMSON MICROELECTRONICS

DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
с			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.8		1.05	0.031		0.041
F1	1		1.4	0.039		0.055
G		3.4		0.126	0.134	0.142
G1		6.8		0.260	0.268	0.276
H2			10.4			0.409
НЗ	10.05		10.4	0.396		0.409
L		17.85			0.703	
L1		15.75			0.620	
L2		21.4			0.843	
L3		22.5			0.886	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
м		4.5			0.177	
M1		4			0.157	
Dia	3.65		3.85	0.144		0.152

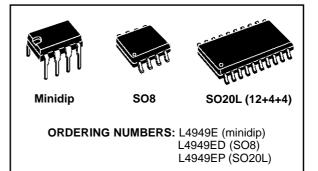
PENTAWATT PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved PENTAWATT® is a Registered Trademark of SGS-THOMSON Microelectronics

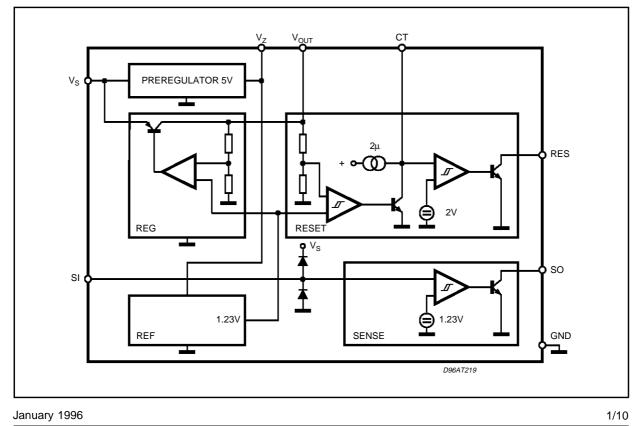
SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.



MICS L4949E MULTIFUNCTION VERY LOW DROP VOLTAGE REGULATOR

OPERATING DC SUPPLY VOLTAGE RANGE 5V - 28V


- TRANSIENT SUPPLY VOLTAGE UP TO 40V
- EXTREMELY LOW QUIESCENT CURRENT IN STANDBY MODE
- HIGH PRECISION STANDBY OUTPUT VOLT-AGE 5V±1%
- OUTPUT CURRENT CAPABILITY UP TO 100mA
- VERY LOW DROPOUT VOLTAGE LESS THAN 0.5V
- RESET CIRCUIT SENSING THE OUTPUT VOLTAGE
- PROGRAMMABLE RESET PULSE DELAY WITH EXTERNAL CAPACITOR
- VOLTAGE SENSE COMPARATOR
- THERMAL SHUTDOWN AND SHORT CIR-CUIT PROTECTIONS

PRODUCT PREVIEW

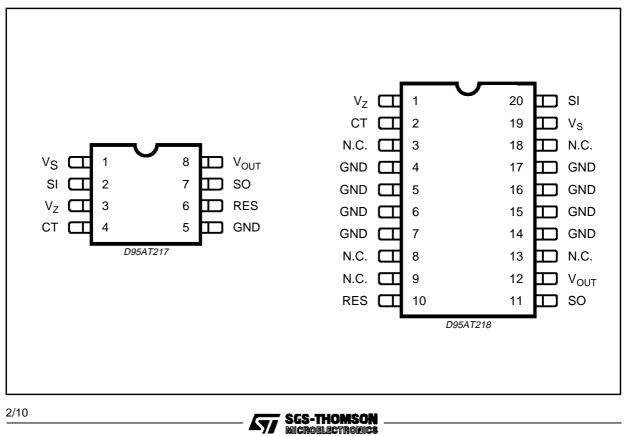
DESCRIPTION

The L4949E is a monolithic integrated 5V voltage regulator with a very low dropout output and additional functions as power-on reset and input voltage sense. It is designed for supplying the microcomputer controlled systems especially in automotive applications.

BLOCK DIAGRAM

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{SDC}	DC Operating Supply Voltage	28	V
V _{STR}	Transient Supply Voltage (T < 1s)	40	V
lo	Output Current	Internally Limited	
Vo	Output Voltage	20	V
I _{SI}	Sense Input Current	±1	mA
I _{EN}	Enable Input Current	-1	mA
V _{EN}	Enable Input Voltage	Vs	
$V_{\text{RES}},V_{\text{SO}}$	Output Voltages	20	V
I _{RES} , I _{SO}	Output Currents	5	mA
Vz	Preregulator Output Voltage	7	V
Ι _Ζ	Preregulator Output Current	5	mA
TJ	Junction Temperature	-40 to +150	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

Note: The circuit is ESD protected according to MIL-STD-883C

THERMAL DATA

Symbol	Description	Minidip	SO-8	SO20L	Unit	
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	100	200	50	°C/W
R _{th j-pins}	Thermal Resistance Junction-ambient	Max			15	°C/W
TJSD	Thermal Shutdown Junction temperature		165			°C

PIN CONNECTIONS

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_{J} = 25^{\circ}C; I_{O} = 1mA$	4.95	5	5.05	V
Vo	Output Voltage	6V < V _{IN} < 28V, 1mA < I _O < 50mA	4.90	5	5.10	V
Vo	Output Voltage	$V_{IN} = 40V; T < 1s 1mA < I_O < 50mA$	4.85		5.20	V
V _{DP}	Dropout Voltage	$I_{O} = 10mA$ $I_{O} = 50mA$ $I_{O} = 100mA$		0.1 0.2 0.3	0.25 0.4 0.5	> > >
V _{IO}	Input to Output Voltage Difference in Undervoltage Condition	$V_{IN} = 4V$, $I_O = 35mA$			0.4	V
Iouth **	Max Output Leakage	$V_{IN} = 25V, V_O = 5.5V$	20	50	80	μA
Vol	Line Regulation	$6V < V_{IN} < 28V; I_0 = 1mA$			20	mV
Volo	Load Regulation	1mA < I _O < 100mA			30	mV
I _{LIM}	Current Limit	$V_{O} = 4.5V$ $V_{O} = 0V$ (note 1)	105	200 100	400	mA mA
I _{QSE}	Quiescent Current	I _O = 0.3mA; T _J < 100°C		200	300	μA
lq	Quiescent Current	I _O = 100mA			5	mA

ELECTRICAL CHARACTERISTICS (V_S = 14V; -40°C < T_j < 125°C unless otherwise specified)

** With this test we guarantee that with no output current the output voltage will not exceed 5.5V

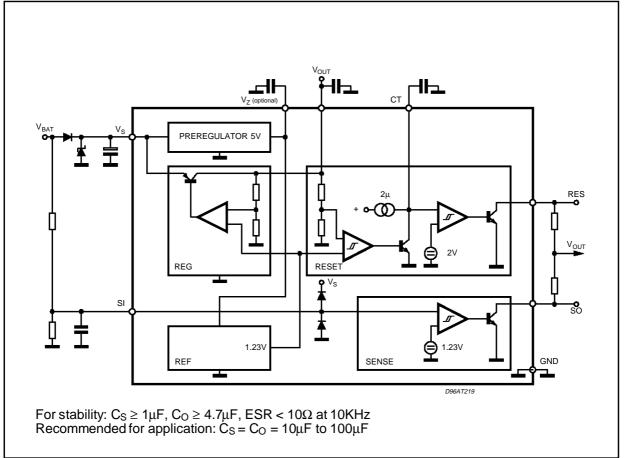
RESET

V _{RT}	Reset Thereshold Voltage			V _O -0.5V		V
V _{RTH}	Reset Thereshold Hysteresis		50	100	200	mV
t _{RD}	Reset Pulse Delay	C _T = 100nF; T _R ≥100µs	55	100	180	ms
t _{RR}	Reset Reaction Time	C _T = 100nF		5	30	μs
V _{RL}	Reset Output Low Voltage	$R_{RES} = 10 K\Omega$ to V_0 $V_S \ge 1.5 V$			0.4	V
I _{RH}	Reset Output High Leakage Current	$V_{RES} = 5V$			1	μΑ
V _{CTth}	Delay Comparator Thereshold			2		V
V _{CTth} , hy	Delay Comparator Thereshold Hysteresis			100		mV

SENSE

V _{st}	Sense Low Thereshold		1.16	1.23	1.35	V
V _{sth}	Sense Thereshold Hysteresis		20	100	200	mV
V _{SL}	Sense Output Low Voltage	$V_{SI} \le 1.16V; V_S \ge 3V$ $R_{SO} = 10K\Omega$ to V_O			0.4	V
I _{SH}	Sense Output Leakage	$V_{SO} = 5V; V_{SI} \ge 1.5V$			1	μA
I _{SI}	Sense Input Current	V _{SI} = 0	-20	-8	-3	μA

PREREGULATOR


Vz	Preregulator Output Voltage	Iz = 10μA	4.5	5	6	V
Iz	Preregulator Output Current				10	μA

Note 1: Foldback characteristic

L4949E

APPLICATION CIRCUIT

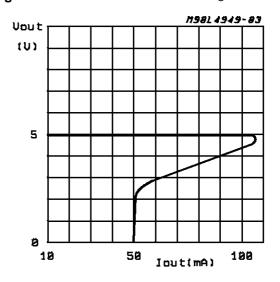
APPLICATION INFORMATION Supply Voltage Transient

High supply voltage transients can cause a reset output signal disturbation.

For supply voltages greater than 8V the circuit shows a high immunity of the reset output against supply transients of more than $100V/\mu s$.

For supply voltages less than 8V supply transients of more than $0.4V/\mu s$ can cause a reset signal disturbation.

To improve the transient behaviour for supply voltages less than 8V a capacitor at pin 3 can be used.

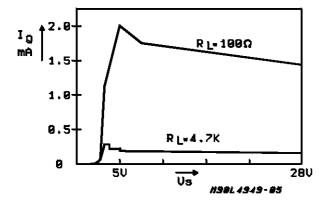

A capacitor at pin 3 (C3 \leq 1µF) reduces also the output noise.

FUNCTIONAL DESCRIPTION

The L4949E is a monolithic integrated voltage regulator, based on the STM modular voltage regulator approch. Several outstanding features and auxiliary functions are implemented to meet the requirements of supplying microprocessor systems in automotive applications. Nevertheless, it is suitable also in other applications where the present functions are required. The modular approach of this device allows to get easily also other features and functions when required.

Voltage Regulator

The voltage regulator uses an Isolated Collector Vertical PNP transistor as a regulating element. Figure 1: Foldback Characteristic of V_O


With this structure very low dropout voltage at currents up to 100mA is obtained. The dropout operation of the standby regulator is maintained down to 3V input supply voltage. The output voltage is regulated up to the transient input supply voltage of 40V. With this feature no functional interruption due to overvoltage pulses is generated. The typical curve showing the standby output voltage as a function of the input supply voltage is shown in Fig. 2. The current consumption of the device (quiescent current) is less than 300µA.

To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region, the dropout voltage is controlled, the quiescent current as a function of the supply input voltage is shown in Fig. 3.

Figure 2: Output Voltage vs. Input Voltage

Figure 3: Quiescent Current vs. Supply Voltage

Preregulator

To improve the transient immunity a preregulator stabilized the internal supply voltage to 5V. This internal voltage is present at Pin 3 (V_z). This voltage should not be used as an output because the output capability is very small ($\leq 10\mu A$).

This output may be used as an option when a better transient behaviour for supply voltages less than 8V is required (see also application note).

In this case a capacitor (100nF - $1\mu F)$ must be connected between Pin 3 and GND. If this feature is not used Pin 3 must be left open.

Reset Circuit

The block circuit diagram of the reset circuit is shown in Fig. 4. The reset circuit supervises the output voltage.

The reset thereshold of 4.5V is defined with the internal reference voltage and standby output drivider.

The reset pulse delay time t_{RD} , is defined with the charge time of an external capacitor C_T :

$$t_{\rm RD} = \frac{C_{\rm T} \bullet 2V}{2\mu A}$$

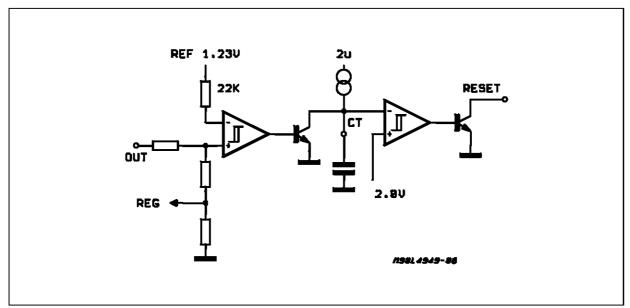
The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor C_T and is proportional to the value of C_T .

The reaction time of the reset circuit increases the noise immunity. Standby output voltage drops below the reset threshold only a bit longer than the reaction time results in a shorter reset delay time.

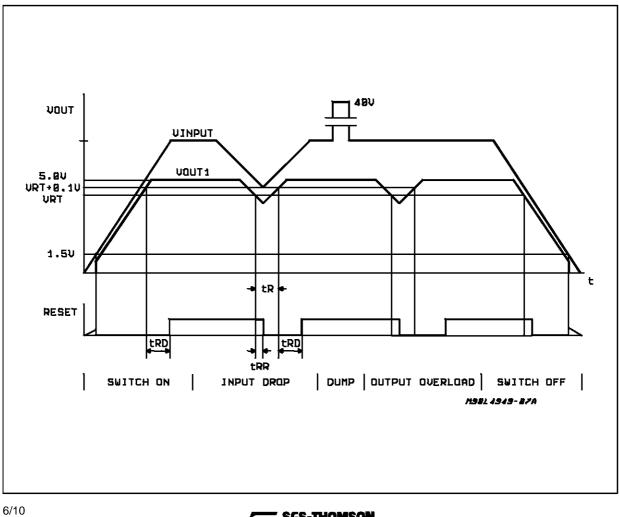
The nominal reset delay time will be generated for standby output voltage drops longer than approximately $50\mu s$.

The typical reset output waveforms are shown in Fig. 5.

Sense Comparator


The sense comparator compares an input signal with an internal voltage reference of typical 1.23V. The use of an external voltage divider makes this comparator very flexible in the application.

It can be used to supervise the input voltage either before or after the protection diode and to give additional informations to the microprocessor like low voltage warnings.



L4949E

Figure 4

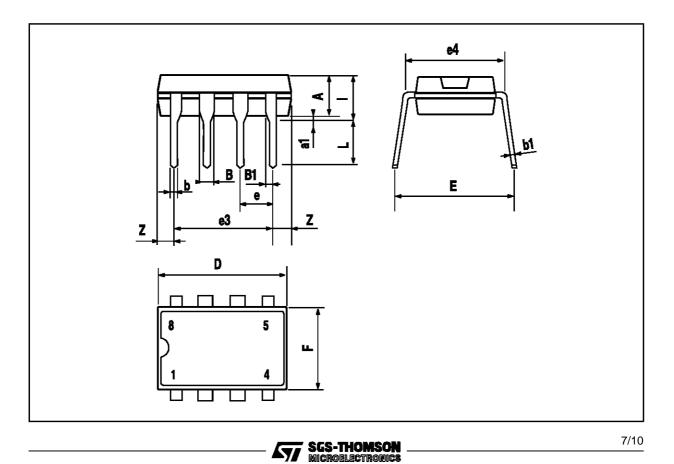
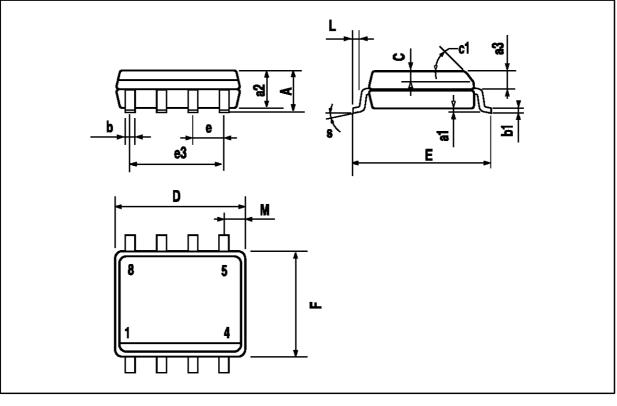


Figure 5

SGS-THOMSON MICROELECTRONICS


DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
Е		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

L4949E

SO8 PACKAGE MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN	ТҮР	MAX	MIN	ТҮР	MAX
А			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
c1		45			1.772	
D		1	4.8		0.039	0.189
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F		1	3.8		0.039	0.150
G						
L	0.4		1.27	0.016		0.050
М			0.6			0.024
S			8			0.315

SGS-THOMSON MICROELECTRONICS

8/10

DIM.		mm			inch	
Diwi.	MIN	ТҮР	MAX	MIN	ТҮР	MAX
А			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
С		0.5			0.020	
c1		45			1.772	
D		1	12.6		0.039	0.496
E	10		10.65	0.394		0.419
е		1.27			0.050	
e3		11.43			0.450	
F		1	7.4		0.039	0.291
G	8.8		9.15	0.346		0.360
L	0.5		1.27	0.020		0.050
М			0.75			0.030
S			8			0.315

SO20L PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

