

CD74FCT153T, CD74FCT253T, CD74FCT2153T, CD74FCT2253T

December 1996

High-Speed CMOS Dual 4-Input Multiplexer

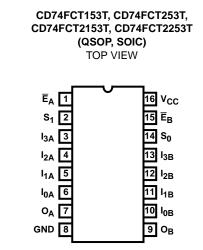
Features

- Advanced 0.8 micron CMOS Technology
- These Devices are Pin Compatible with Bipolar FAST[™] Series at a Higher Speed and Lower Power Consumption
- 25Ω Series Resistor On All Outputs (FCT2XXX Only)
- TTL Input and Output Levels
- Low Ground Bounce Outputs (25 Ω Series Only)
- Extremely Low Static Power
- Hysteresis on All Inputs

Ordering Information

	TEMP.		PKG.
PART NUMBER	RANGE (^o C)	PACKAGE	NO.
CD74FCT153TM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT153ATM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT153CTM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT153TNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT153ATNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT153CTNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT153TQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT153ATQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT153CTQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT253TM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT253ATM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT253CTM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT253TNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT253ATNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT253CTNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT253TQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT253ATQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT253CTQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2153TM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2153ATM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2153CTM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2153TNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2153ATNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2153CTNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2153TQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2153ATQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2153CTQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2253TM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2253ATM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2253CTM	-40 to 85	16 Ld SOIC	M16.3-P
CD74FCT2253TNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2253ATNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2253CTNM	-40 to 85	16 Ld SOIC	M16.15-P
CD74FCT2253TQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2253ATQM	-40 to 85	16 Ld QSOP	M16.15A-P
CD74FCT2253CTQM	-40 to 85	16 Ld QSOP	M16.15A-P
NOTE: When ordering,	use the entire p	art number. Add	d the suffix 96

NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.


chnology The CD74FCT153T, CD74FCT253T, CD74FCT2153T and CD74FCT2253T are high-speed dual 4-input multiplexers.

Description

The CD74FCT153T and CD74FCT2153T have TTL outputs, while the CD74FCT253T and CD74FCT2253T have threestate outputs. The output buffers are designed with a poweroff disable allowing 'live insertion' of boards when used as backplane drivers.

The CD74FCT2153T and CD74FCT2253T devices have a built-in 25 Ω series resistor on all outputs to reduce noise due to reflections, thus eliminating the need for an external terminating resistor.


Pinout

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

FAST[™] is a trademark of Fairchild Semiconductor.

Functional Block Diagram

TRUTH TABLE (NOTE 1)

				OUTPUTS			
INPUTS			CD74FCT153, CD74FCT2153 CD74FCT253, CD74F			CD74FCT2253	
ĒA	ĒB	S ₁	S ₀	O _A	OB	O _A	OB
Н	Х	Х	Х	L	Х	Z	Х
Х	Н	Х	Х	Х	L	Х	Z
L	L	L	L	I _{0A}	I _{0B}	I _{0A}	I _{0B}
L	L	L	Н	I _{1A}	I _{1B}	I _{1A}	I _{1B}
L	L	Н	L	I _{2A}	I _{2B}	I _{2A}	I _{2B}
L	L	Н	Н	I _{3A}	I _{3B}	I _{3A}	I _{3B}

NOTE:

1. H = High Voltage Level

L = Low Voltage Level

X = Don't Care

Z = High Impedance

Pin Description

PIN NAME	DESCRIPTION
I _{0A} -I _{3A} , I _{0B} -I _{3B}	Data Inputs
S ₀ , S ₁	Select Inputs
$\overline{E}_{A}, \overline{E}_{B}$	Enable Input
O _A , O _B	Data Outputs
GND	Ground
V _{CC}	Power

Absolute Maximum Ratings

DC Input Voltage0.5V to	7.0V
DC Output Current	0mA

Operating Conditions

Operating Temperature Range40°C to 85°C
Supply Voltage to Ground Potential
Inputs and V _{CC} Only0.5V to 7.0V
Supply Voltage to Ground Potential
Outputs and D/O Only0.5V to 7.0V

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (^o C/W)
16 Lead SOIC (150 mil) Package	110
16 Lead SOIC (300 mil) Package	97
16 Lead QSOP Package	140
Maximum Junction Temperature	150 ⁰ C
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300 ⁰ C
(Lead Tips Offiy)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETERS	SYMBOL	(NOTE 3) TEST CONDITIONS		MIN	(NOTE 4) TYP	МАХ	UNITS
DC ELECTRICAL SPE	CIFICATIO	NS Over the Operating Range, T _A	= -40°C to 85°C, V _{CC}	$= 5.0V \pm 5$	5%		
Output HIGH Voltage	V _{OH}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OH} = -15.0mA	2.4	3.0	-	V
Output LOW Voltage	V _{OL}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	I _{OL} = 48mA	-	0.3	0.50	V
Output LOW Voltage	V _{OL}	V_{CC} = Min, V_{IN} = V_{IH} or V_{IL}	l _{OL} = 12mA (25Ω series)	-	0.3	0.50	V
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH Level		2.0	-	-	V
Input LOW Voltage	VIL	Guaranteed Logic LOW Level		-	-	0.8	V
Input HIGH Current	Ι _{ΙΗ}	V _{CC} = Max	$V_{IN} = V_{CC}$	-	-	1	μΑ
Input LOW Current	۱ _{IL}	V _{CC} = Max	V _{IN} = GND	-	-	-1	μΑ
High Impedance	I _{OZH} ,	V _{CC} = Max	V _{OUT} = 2.7V			1	μΑ
Output Current	I _{OZL}		V _{OUT} = 0.5V			-1	μA
Clamp Diode Voltage	VIK	V _{CC} = Min, I _{IN} = -18mA		-	-0.7	-1.2	V
Short Circuit Current	I _{OS}	V _{CC} = Max (Note 5), V _{OUT} = GND		-60	-120	-	mA
Power Down Disable	I _{OFF}	$V_{CC} = GND, V_{OUT} = 4.5V$		-	-	100	μΑ
Input Hysteresis	V _H			-	200	-	mV
CAPACITANCE T _A = 2	25 ⁰ C, f = 1M	Hz					
Input Capacitance (Note 6)	C _{IN}	$V_{IN} = 0V$		-	6	10	pF
Output Capacitance (Note 6)	C _{OUT}	V _{OUT} = 0V		-	8	12	pF
POWER SUPPLY SPE	CIFICATIO	NS					•
Quiescent Power Supply Current	ICC	V _{CC} = Max	V_{IN} = GND or V_{CC}	-	0.1	500	μΑ
Supply Current per Input at TTL HIGH	ΔI _{CC}	V _{CC} = Max	V _{IN} = 3.4V (Note 7)	-	0.5	2.0	mA
Supply Current per Input per MHz (Note 8)	ICCD	V _{CC} = Max, Outputs Open Other Inputs at GND One Bit Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$	-	0.15	0.25	mA/ MHz
Total Power Supply Current (Note 10)	۱ _С	V_{CC} = Max, Outputs Open f _I = 10MHz, 50% Duty Cycle Other Inputs at GND	$V_{IN} = V_{CC}$ $V_{IN} = GND$	-	3.2	6.5 (Note 9)	mA
			V _{IN} = 3.4V V _{IN} = GND	-	3.5	7.5 (Note 9)	mA

Switching Specifications Over Operating Range

PARAMETER SYMB			Т	Т		AT		Т	
	SYMBOL		(NOTE 12) MIN	МАХ	(NOTE 12) MIN	MAX	(NOTE 12) MIN	MAX	
CD74FCT153T, CD7	4FCT21531	Г							
Propagation Delay Sn to O	t _{PLH} , t _{PHL}	$C_L = 50 pF$ $R_L = 500 \Omega$	1.5	9.0	1.5	6.6	1.5	5.6	ns
Propagation Delay In to O	t _{PLH} , t _{PHL}	1	1.5	7.0	1.5	5.2	1.5	4.5	ns
Propagation Delay \overline{E} to O	t _{PLH} , t _{PHL}		1.5	7.0	1.5	5.2	1.5	4.8	ns
CD74FCT253T, CD7	4FCT22531	Г							
Propagation Delay Sn to O	t _{PLH} , t _{PHL}	$C_L = 50 pF$ $R_L = 500 \Omega$	1.5	9.0	1.5	6.6	1.5	5.6	ns
Propagation Delay In to O	t _{PLH} , t _{PHL}		1.5	7.0	1.5	5.2	1.5	4.5	ns
Output Enable Time E to O	t _{PZH} , t _{PZL}]	1.5	9.0	1.5	6.0	1.5	5.0	ns
Output Enable Time \overline{E} to O (Note 13)	t _{PHZ} , t _{PLZ}		1.5	7.0	1.5	6.0	1.5	5.0	ns

NOTES:

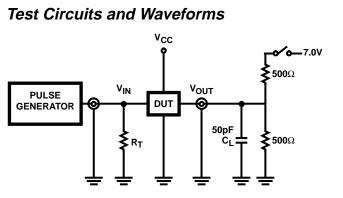
3. For conditions shown as Max or Min, use appropriate value specified under Electrical Characteristics for the applicable device type.

4. Typical values are at V_{CC} = 5.0V, 25^oC ambient and maximum loading.

5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

6. This parameter is determined by device characterization but is not production tested.

7. Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CC} or GND.


8. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

9. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.

10. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$

$$\begin{split} &|_{C} = |_{CC} + \Delta |_{CC} D_{H}N_{T} + |_{CCD} (f_{CP}/2 + f_{I}N_{I}) \\ &|_{CC} = \text{Quiescent Current} \\ &\Delta |_{CC} = \text{Power Supply Current for a TTL High Input (Vin = 3.4V)} \\ &D_{H} = \text{Duty Cycle for TTL Inputs High} \\ &N_{T} = \text{Number of TTL Inputs at } D_{H} \\ &|_{CCD} = \text{Dynamic Current Caused by an Input Transition Pair (HLH or LHL)} \\ &f_{CP} = \text{Clock Frequency for Register Devices (Zero for Non-Register Devices)} \\ &f_{I} = \text{Input Frequency} \\ &N_{I} = \text{Number of Inputs at } f_{I} \\ &\text{All currents are in milliamps and all frequencies are in megahertz.} \end{split}$$

- 11. See test circuit and wave forms.
- 12. Minimum limits are guaranteed but not tested on Propagation Delays.
- 13. This parameter is guaranteed but not production tested.

NOTE:

14. Pulse Generator for All Pulses: Rate \leq 1.0MHz; Z_{OUT} \leq 50 $\Omega;$ $t_{f},$ t_{r} \leq 2.5ns.

FIGURE 1. TEST CIRCUIT

SWITCH POSITION				
TEST	SWITCH			
tPLZ, tPZL	Closed			
^t PHZ, ^t PZH, ^t PLH, ^t PHL	Open			

DEFINITIONS:

 C_L = Load capacitance, includes jig and probe capacitance. R_T = Termination resistance, should be equal to Z_{OUT} of the

Pulse Generator.

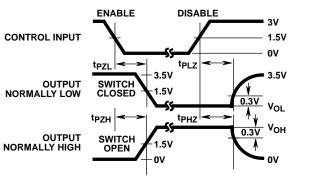


FIGURE 2. ENABLE AND DISABLE TIMING

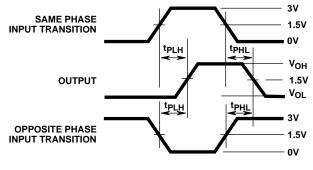
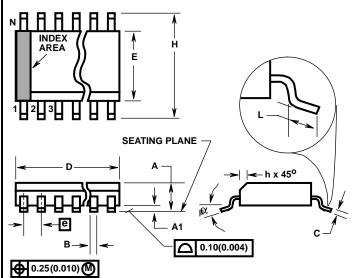
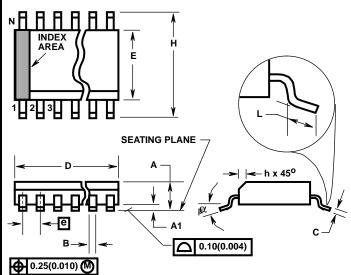



FIGURE 3. PROPAGATION DELAY

Small Outline Plastic Packages (SOIC)

M16.15-P

16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE


	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.053	0.069	1.35	1.75	-
A1	0.0040	0.0098	0.102	0.249	-
В	0.013	0.020	0.330	0.508	-
С	0.007	0.010	0.178	0.254	-
D	0.385	0.394	9.78	10.01	1
E	0.149	0.157	3.78	3.99	2
е	0.050	0.050 BSC		BSC	-
Н	0.231	0.241	5.86	6.12	-
h	0.0099	0.0196	0.25	0.50	-
L	0.016	0.050	0.41	1.27	3
Ν	1	6	16		4
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

NOTES:

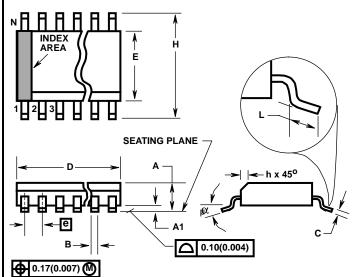
- 1. Dimension "D" does not include mold flash, protrusions or gate burrs.
- 2. Dimension "E" does not include interlead flash or protrusions.
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. "N" is the number of terminal positions.
- 5. Terminal numbers are shown for reference only.
- 6. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

Rev. 0 6/96

Small Outline Plastic Packages (SOIC)

M16.3-P

16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE


	INCHES		MILLIM	ETERS				
SYMBOL	MIN	MAX	MIN MAX		NOTES			
A	0.092	0.105	2.34	2.67	-			
A1	0.004	0.012	0.102	0.302	-			
В	0.013	0.020	0.330	0.508	-			
С	0.009	0.011	0.229	0.279	-			
D	0.397	0.413	10.08	10.49	1			
E	0.291	0.299	7.39	7.59	2			
е	0.050	0.050 BSC		BSC	-			
Н	0.401	0.411	10.18	10.44	-			
h	0.010	0.029	0.254	0.737	-			
L	0.016	0.050	0.41	1.27	3			
Ν	1	6	16		4			
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-			

NOTES:

- 1. Dimension "D" does not include mold flash, protrusions or gate burrs.
- 2. Dimension "E" does not include interlead flash or protrusions.
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. "N" is the number of terminal positions.
- 5. Terminal numbers are shown for reference only.
- 6. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

Rev. 0 5/96

Shrink Small Outline Plastic Packages (SSOP/QSOP)

M16.15A-P

16 LEAD SHRINK NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.053	0.069	1.35	1.75	-
A1	0.007	0.011	0.178	0.279	-
В	0.008	0.012	0.203	0.305	-
С	0.007	0.010	0.178	0.254	-
D	0.189	0.197	4.80	5.00	1
E	0.149	0.157	3.78	3.99	2
е	0.025	0.025 BSC		BSC	-
Н	0.228	0.244	5.79	6.20	-
h	0.0	0.015		38	-
L	0.016	0.050	0.41	1.27	3
Ν	1	6	16		4
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

NOTES:

- 1. Dimension "D" does not include mold flash, protrusions or gate burrs.
- 2. Dimension "E" does not include interlead flash or protrusions.
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. "N" is the number of terminal positions.
- 5. Terminal numbers are shown for reference only.
- 6. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

Rev. 2 7/96

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747 (407) 729-4984 FAX: (407) 729-5321

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400