

±15KV ESD PROTECTED, LOW POWER RS-485/RS-422 TRANSCEIVER

- LOW QUIESCENT CURRENT: 300µA
- DESIGNED FOR RS-485 INTERFACE APPLICATIONS
- -7V TO 12V COMMON MODE INPUT VOLTAGE RANGE
- DRIVER MAINTAINS HIGH IMPEDANCE IN 3-STATE OR WITH THE POWER OFF
- 70mV TYPICAL INPUT HYSTERESIS
- 30ns PROPAGATION DELAYS, 5ns SKEW
- OPERATE FROM A SINGLE 5V SUPPLY
- CURRENT LIMITING AND THERMAL SHUTDOWN FOR DRIVER OVERLOAD PROTECTION
- ESD PROTECTION: ±15KV (H.B.M.) ±8KV (IEC-1000-4-2 CONTACT DISCHARGE)
- ALLOWS UP TO 256 TRANSCEIVERS ON THE BUS

DESCRIPTION

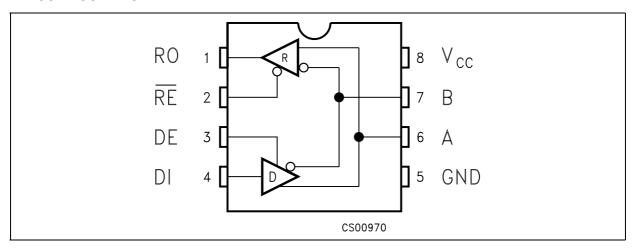
The ST485E is al low power transceiver for RS-485 and RS-422 communication. Each driver output and receiver input is protected against $\pm 15 \text{KV}$ electrostatic discharge (H.B.M.) $\pm 8 \text{KV}$ (IEC-1000-4-2 contact discharge) shocks, without

latchup. These parts contain one driver and one receiver.

This transceiver draws $300\mu A$ (typ.) of supply current when unloaded or fully loaded with disabled drivers.

It operates from a single 5V supply.

Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state.


The ST485E is designed for bi-directional data communications on multipoint bus transmission line (half-duplex applications).

ORDERING CODES

Туре	Temperature Range	Package	Comments
ST485ERCN	0 to 70 °C	DIP-8	50parts per tube / 40tube per box
ST485ERBN	-40 to 85 °C	DIP-8	50parts per tube / 40tube per box
ST485ERCD	0 to 70 °C	SO-8 (Tube)	100parts per tube / 20tube per box
ST485ERBD	-40 to 85 °C	SO-8 (Tube)	100parts per tube / 20tube per box
ST485ERCDR	0 to 70 °C	SO-8 (Tape & Reel)	2500 parts per reel
ST485ERBDR	-40 to 85 °C	SO-8 (Tape & Reel)	2500 parts per reel

January 2003 1/12

PIN CONFIGURATION

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1	RO	Receiver Output
2	RE	Receiver Output Enable
3	DE	Driver Output Enable
4	DI	Driver Input
5	GND	Ground
6	A	Non-inverting Receiver Input and Non-inverting Driver Output
7	В	Inverting Receiver Input and Inverting Driver Output
8	V _{CC}	Supply Voltage

TRUTH TABLE (DRIVER)

	INPUTS	OUTPUTS		
RE	DE	В	Α	
Х	Н	Н	L	Н
Х	Н	L	Н	L
Х	L	Х	Z	Z

X= Don't Care; Z=High Impedance

TRUTH TABLE (RECEIVER)

	INPUTS		OUTPUT
RE	DE	A-B	RO
L	L	≥ +0.2V	Н
L	L	≤-0.2V	L
L	L	INPUTS OPEN	Н
Н	L	X	Z

X= Don't Care; Z=High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	7	V
V _I	Control Input Voltage (RE, DE)	-0.5 to (V _{CC} + 0.5)	V
V _{DI}	Driver Input Voltage (DI)	-0.5 to (V _{CC} + 0.5)	V
V _{DO}	Driver Output Voltage (A, B)	± 12.5	V
V _{RI}	Receiver Input Voltage (A, B)	± 12.5	V
V _{RO}	Receiver Output Voltage (RO)	-0.5 to (V _{CC} + 0.5)	V

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

ESD PERFORMANCE: TRANSMITTER OUTPUTS, RECEIVER INPUTS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ESD	ESD Protection Voltage	Human Body Model	±15			ΚV
ESD	ESD Protection Voltage	IEC-1000-4-2 (Contact Discharge)	±8			ΚV

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, \, T_A = T_{MIN} \, \text{ to } T_{MAX} \,, \, \text{unless otherwise specified. Typical values are referred to } T_A = 25^{\circ}C)$ (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{OD1}	Differential Driver Output (No Load)				5	V
V_{OD2}	Differential Driver Output (With Load)	$R_L = 27\Omega \text{ (RS-485) (See Fig. 1)}$ $R_L = 50\Omega \text{ (RS-422) (See Fig. 1)}$	1.5		5 5	V
ΔV _{OD}	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R_L = 27\Omega$ or 50Ω (See Fig. 1)			0.2	V
V _{oc}	Driver Common-Mode Output Voltage	$R_L = 27\Omega$ or 50Ω (See Fig. 1)			3	V
ΔV _{OC}	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$R_L = 27\Omega$ or 50Ω (See Fig. 1)			0.2	V
V_{IH}	Input High Voltage	RE, DE, DI	2.0			V
V _{IL}	Input Low Voltage	RE, DE, DI			0.8	V
I _{IN1}	Input Current	RE, DE, DI			± 2	μΑ
I _{IN2}	Input Current (A, B)	$V_{CM} = 0V \text{ or } 5.25V$ $V_{DE} = 0V$ $V_{IN} = 12V$ $V_{IN} = -7V$			1 -0.8	mA mA
V_{TH}	Receiver Differential Threshold Voltage	V _{CM} = -7 to 12V	-0.2		0.2	V
ΔV_{TH}	Receiver Input Hysteresis	V _{CM} = 0V		70		mV
V _{OH}	Receiver Output High Voltage	$I_O = -4mA$ $V_{ID} = 200mV$	3.5			V
V _{OL}	Receiver Output Low Voltage	$I_O = 4mA$ $V_{ID} = -200mV$			0.4	V
I _{OZR}	3-State (High Impedance) Output Current at Receiver	$V_{O} = 0.4 \text{ to } 2.4 \text{V}$			± 1	μА
R _{IN}	Receiver Input Resistance	V _{CM} = -7 to 12V	96	110		ΚΩ
I _{CC}	No Load Supply Current (Note 2)	$V_{RE} = 0V \text{ or } V_{CC}$ $V_{DE} = V_{CC}$ $V_{DE} = 0V$		400 300	900 500	μA μA
I _{OSD1}	Driver Short-Circuit Current, V _O =High	$V_O = -7 \text{ to } 12V \text{ (Note 3)}$	35		250	mA
I _{OSD2}	Driver Short-Circuit Current, V _O =Low	$V_O = -7 \text{ to } 12V \text{ (Note 3)}$	35		250	mA
I _{OSR}	Receiver Short-Circuit Current	$V_O = 0V$ to V_{CC}	7		95	mA

Note 1: All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground

Note 2: Supply current specification is valid for loaded transmitters when $V_{\text{DE}} = 0V$ Note 3: Applies to peak current. See typical Operating Characteristics.

DRIVER SWITCHING CHARACTERISTICS

(V_{CC} = 5V ± 5%, T_A = T_{MIN} to T_{MAX} , unless otherwise specified. Typical values are referred to T_A = 25°C) (See Note 1)

Symbol	Parameter	Test 0	Conditions	Min.	Тур.	Max.	Unit
t _{PLH}	Propagation Delay Input to	$R_{DIFF} = 54\Omega$	$C_{L1} = C_{L2} = 100pF$	10	30	60	ns
t_{PHL}	Output	(See Fig. 3 and 5)					
t _{SK}	Output Skew to Output	$R_{DIFF} = 54\Omega$	$C_{L1} = C_{L2} = 100pF$		5	10	ns
		(See Fig. 3 and 5)					
t _{TLH}	Rise or Fall Time	$R_{DIFF} = 54\Omega$	$C_{L1} = C_{L2} = 100pF$	3	15	40	ns
t_{THL}		(See Fig. 3 and 5)					
t _{PZH}	Output Enable Time	C _L = 100pF	S2 = Closed		70	90	ns
		(See Fig. 4 and 6)					
t_{PZL}	Output Enable Time	C _L = 100pF	S1 = Closed		70	90	ns
		(See Fig. 4 and 6)					
t _{PLZ}	Output Disable Time	C _L = 15pF	S1 = Closed		70	90	ns
		(See Fig. 4 and 6)					
t _{PHZ}	Output Disable Time	C _L = 15pF	S2 = Closed		70	90	ns
		(See Fig. 4 and 6)					
C _{AB}	Output AB Capacitance				43		pF

Note 1: All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground unless specified.

RECEIVER SWITCHING CHARACTERISTICS

(V_{CC} = 5V ± 5%, T_A = T_{MIN} to T_{MAX} , unless otherwise specified. Typical values are referred to T_A = 25°C) (See Note 1)

Symbol	Parameter	Test C	Test Conditions			Max.	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	$R_{DIFF} = 54\Omega$ (See Fig. 3 and 7)	$C_{L1} = C_{L2} = 100pF$	20	130	210	ns
t _{SKD}	Differential Receiver Skew	$R_{DIFF} = 54\Omega$ (See Fig. 3 and 7)	$C_{L1} = C_{L2} = 100pF$		13		ns
t _{PZH}	Output Enable Time	C _{RL} = 15pF (See Fig. 2 and 8)	S1 = Closed		20	50	ns
t _{PZL}	Output Enable Time	C _{RL} = 15pF (See Fig. 2 and 8)	S2 = Closed		20	50	ns
t _{PLZ}	Output Disable Time	C _{RL} = 15pF (See Fig. 2 and 8)	S1 = Closed		20	50	ns
t _{PHZ}	Output Disable Time	C _{RL} = 15pF (See Fig. 2 and 8)	S2 = Closed		20	50	ns
f _{MAX}	Maximum Data Rate			2.5			Mbps

Note 1: All currents into device pins are positive; all cuttents out of device pins are negative; all voltages are referenced to device ground unless specified.

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

Figure 1 : Driver DC Test Load



Figure 2: Receiver Timing Test Load

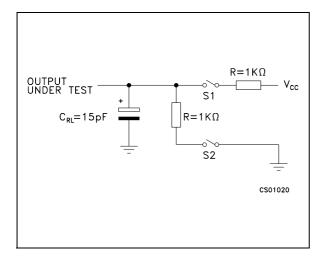


Figure 3 : Drive/Receiver Timing Test Circuit

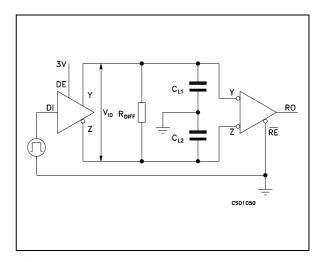


Figure 4 : Driver Timing Test Load

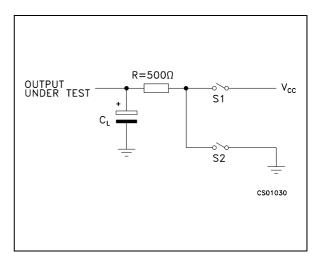


Figure 5 : Driver Propagation Delay

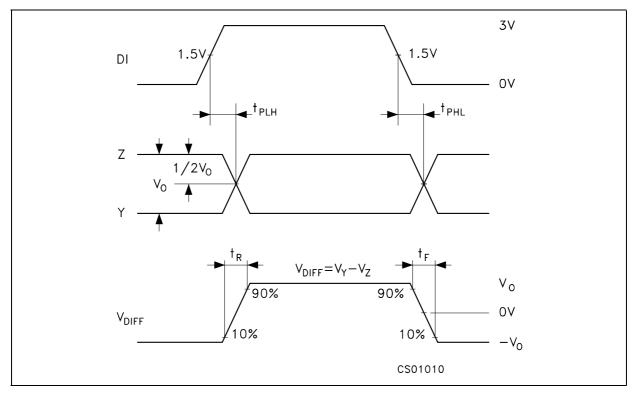


Figure 6: Driver Enable and Disable Time

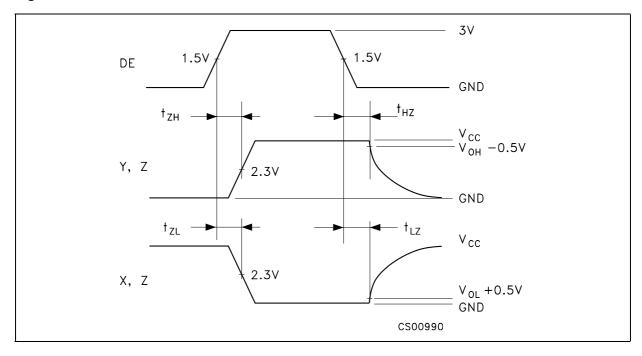


Figure 7: Receiver Propagation Delay

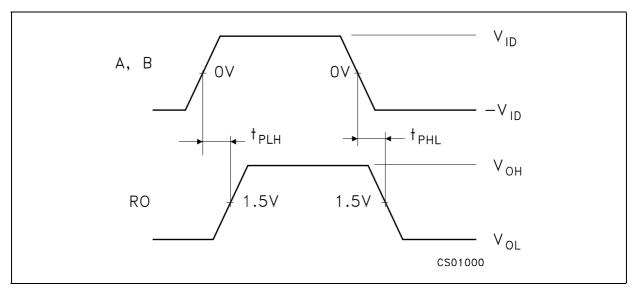
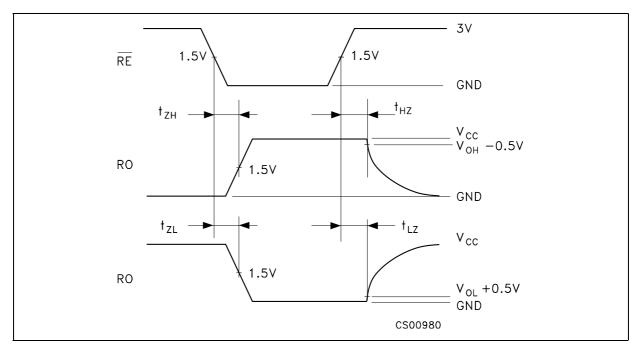



Figure 8: Receiver Enable and Disable Time

Figure 9 : Receiver Output Current vs Output Low Voltage

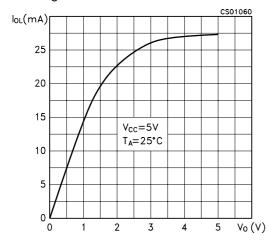
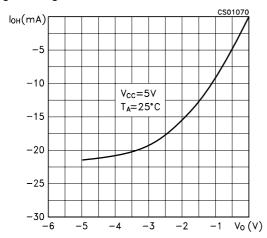
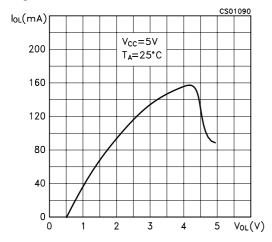
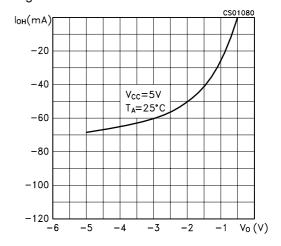
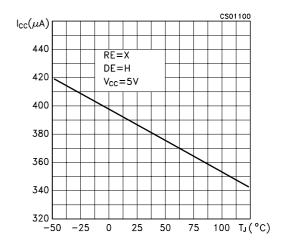
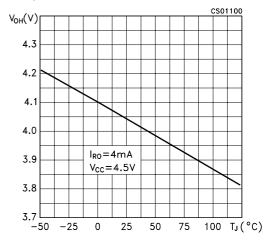
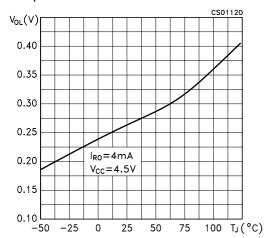




Figure 10 : Receiver Output Current vs Output High Voltage

Figure 11 : Driver Output Current vs Output Low Voltage

Figure 12 : Driver Output Current vs Output High Voltage


Figure 13 : Supply Current vs Temperature

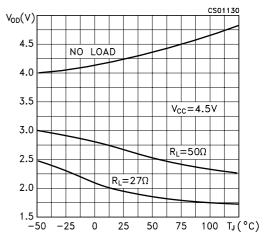

Figure 14 : Receiver High Level Output Voltage vs Temperature

Figure 15 : Receiver Low Level Output Voltage vs Temperature

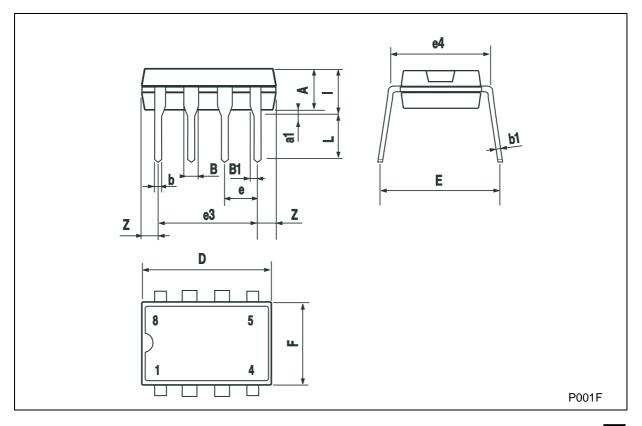
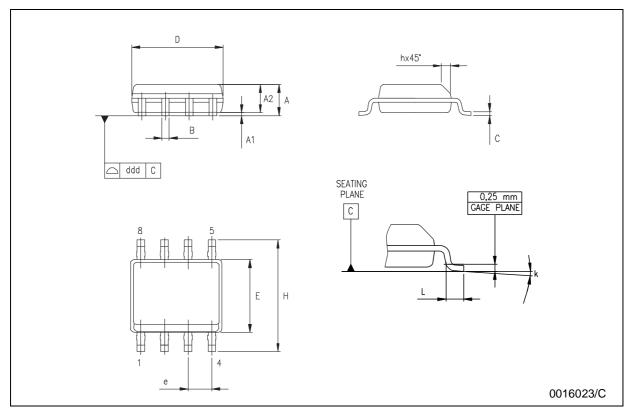


Figure 16: Differential Driver Output Voltage vs Temperature


Plastic DIP-8 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
Е		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
1			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

SO-8 MECHANICAL DATA

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
Е	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k			8° (r	nax.)	<u>'</u>	
ddd			0.1			0.04

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com