TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX08FT,TC74VCX08FK

Low-Voltage Quad 2-Input AND Gate with 3.6-V Tolerant Inputs and Outputs

The TC74VCX08FT/FK is a high-performance CMOS 2-input AND gate which is guaranteed to operate from 1.2-V to 3.6-V. Designed for use in 1.5V, 1.8V, 2.5V or 3.3V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V.$

All inputs are equipped with protection circuits against static discharge.

Features (Note)

- Low-voltage operation: VCC = 1.2~3.6 V
- High-speed operation: $t_{pd} = 2.8 \text{ ns (max) (V}_{CC} = 3.0 \sim 3.6 \text{ V})$

 $t_{pd} = 3.7 \text{ ns (max) (VCC} = 2.3 \sim 2.7 \text{ V)}$

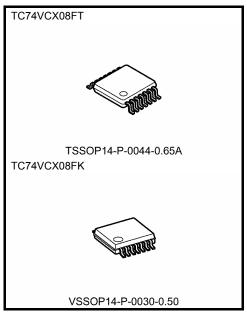
 $t_{pd} = 7.4 \text{ ns (max) (VCC} = 1.65 \sim 1.95 \text{ V})$

 $t_{pd} = 14.8 \text{ ns (max) (VCC} = 1.4 \sim 1.6 \text{ V})$

 $t_{pd} = 37.0 \text{ ns (max) (VCC} = 1.2 \text{ V)}$

• Output current: I_{OH}/I_{OL} = ±24 mA (min) (V_{CC} = 3.0 V)

 $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$

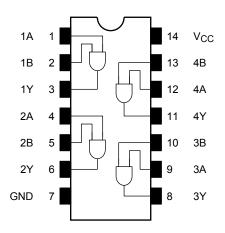

 $: I_{OH}/I_{OL} = \pm 6 \text{ mA (min) (V}_{CC} = 1.65 \text{ V)}$

: $I_{OH}/I_{OL} = \pm 2$ mA (min) ($V_{CC} = 1.4$ V)

- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model $\geq \pm 2000 \text{ V}$

- Package: TSSOP and VSSOP (US)
- Power-down protection provided on all inputs and outputs


Weight

TSSOP14-P-0044-0.65A : 0.06 g (typ.) VSSOP14-P-0030-0.50 : 0.02 g (typ.)

Note: Electrical Characteristics of Vcc=1.5±0.1V and 1.2V apply only to products whose Lot Code is over "3 12".

2007-10-19

Pin Assignment (top view)

IEC Logic Symbol

1A -	1	&	_
1B ·	2	ω	31Y
	4		_
2A ·	5		6 2Y
2B -	9		
3A ·	10		83Y
3B -	12		
4A ·	13		11 4Y
4B -	13		• •

Truth Table

Inp	uts	Outputs
Α	В	Υ
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5~4.6	V	
DC input voltage	V _{IN}	-0.5~4.6	V	
DC output voltage	Vour	-0.5~4.6 (Note 2)	V	
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5(Note 3)		
Input diode current	I _{IK}	-50	mA	
Output diode current	lok	±50 (Note 4)	mA	
DC output current	lout	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	−65~150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: $V_{CC} = 0 V$

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

TOSHIBA

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.2~3.6	V	
Input voltage	V _{IN}	-0.3~3.6	V	
Output voltage	Vout	0~3.6 (Note 2)	V	
Output voltage	VOU1	0~V _{CC} (Note 3)]	
		±24 (Note 4)		
Output current	I _{OH} /I _{OI}	±18 (Note 5)	mA	
Output current	IOH/IOL	±6 (Note 6)	IIIA	
		±2 (Note 7)		
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~10 (Note 8)	ns/V	

- Note 1: The operating ranges must be maintained to ensure the normal operation of the device.

 Unused inputs must be tied to either VCC or GND.
- Note 2: $V_{CC} = 0 V$
- Note 3: High or low state
- Note 4: $V_{CC} = 3.0 \sim 3.6 \text{ V}$
- Note 5: $V_{CC} = 2.3 \sim 2.7 \text{ V}$
- Note 6: $V_{CC} = 1.65 \sim 1.95 \text{ V}$
- Note 7: $V_{CC} = 1.4 \sim 1.6 \text{ V}$
- Note 8: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

3

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{CC} \le 3.6$ V)

Characteri	stics	Symbol	Test C	ondition	V _{CC} (V)	Min	Max	Unit
lanut valtara	H-level	V _{IH}	_		2.7~3.6	2.0	_	V
Input voltage Output voltage Input leakage curren	L-level	V _{IL}	_		2.7~3.6	_	0.8	V
Output voltage				I _{OH} = -100 μA	2.7~3.6	V _{CC} - 0.2	_	
	H-level	VoH	V _{IN} = V _{IH}	I _{OH} = -12 mA	2.7	2.2	_	
		9		I _{OH} = -18 mA	3.0	2.4	_	V
				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
	L-level Voi		$I_{OL} = 100 \mu A$	2.7~3.6	_	0.2		
		V _{OL}	$V_{IN} = V_{IH} \ or \ V_{IL}$	I _{OL} = 12 mA	2.7		0.4	
	L-level	VOL		I _{OL} = 18 mA	3.0		0.4	
				I _{OL} = 24 mA	3.0		0.55	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.7~3.6	_	±5.0	μΑ
Power-off leakage of	current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0		10.0	μΑ
O de constitución de la constitu		loo	V _{IN} = V _{CC} or GND		2.7~3.6		20.0	
Quiescent supply co	<u></u>	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.7~3.6		±20.0	μΑ
Increase in I _{CC} per	input	Δlcc	$V_{IH} = V_{CC} - 0.6 \text{ V}$		2.7~3.6		750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteri	etice	Symbol	Test (Condition	_	Min	Max	Unit
Onaracteri	31103	Oymbor	1031	Soriation	V _{CC} (V)	IVIIII	IVIGA	Offic
Input voltage	H-level	V _{IH}	<u> </u>		2.3~2.7	1.6	_	V
input voitage	L-level	V _{IL}		_			0.7	V
				I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2		
	H-level V _{OH}	Voh	$V_{IN} = V_{IH}$	I _{OH} = -6 mA	2.3	2.0	_	V
				I _{OH} = -12 mA	2.3	1.8	_	
Output voltage				$I_{OH} = -18 \text{ mA}$	2.3	1.7	_	
			$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.3~2.7	_	0.2	
	L-level	V _{OL}		$I_{OL} = 12 \text{ mA}$	2.3	_	0.4	
				$I_{OL} = 18 \text{ mA}$	2.3	_	0.6	
Input leakage curre	Input leakage current		V _{IN} = 0 to 3.6 V		2.3~2.7		±5.0	μΑ
Power off leakage current I _C		I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μΑ
Quiescent supply co	ırrent	Icc	V _{IN} = V _{CC} or GND		2.3~2.7		20.0	μА
Quiescent supply co	arrent	100	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.3~2.7		±20.0	μΑ

DC Characteristics (Ta = -40 to 85°C, 1.65 V \leq V_CC < 2.3 V)

Characteri	etice	Symbol	Test Co	andition		Min	Max	Unit
Characteris	51105	Symbol Test Condition		V _{CC} (V)	IVIIII	IVIAX	Offic	
Input voltage	H-level	V _{IH}	_	_		0.65 × V _{CC}		V
mput voltage	L-level	V _{IL}	_		1.65~2.3		0.2 × V _{CC}	•
	H-level	H-level V _{OH}	VOH VIN = VIH	I _{OH} = -100 μA	1.65~2.3	V _{CC} - 0.2	_	V
Output voltage				$I_{OH} = -6 \text{ mA}$	1.65	1.25	_	
	L-level	L level V-	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.65~2.3	_	0.2	
	L-level	V _{OL}		I _{OL} = 6 mA	1.65	_	0.3	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.65~2.3	_	±5.0	μΑ
Power-off leakage current		loff	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μΑ
Quiescent supply cu	ırront	loo	$V_{IN} = V_{CC}$ or GND	CC or GND		_	20.0	
Quiescent supply co	an ent	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.65~2.3	_	±20.0	μА

DC Characteristics (Ta = -40 to 85°C, 1.4 V \leq V_{CC} < 1.65 V)

Characteri	Characteristics Symbol Test Condition		V _{CC} (V)	Min	Max	Unit		
Input voltago	H-level	V _{IH}		_	1.4~1.65	0.65 × V _{CC}	_	V
Input voltage	L-level	V _{IL}			1.4~1.65	_	0.05 × V _{CC}	V
	H-level	V _{OH}	$V_{IN} = V_{IH}$	$I_{OH} = -100 \mu A$	1.4~1.65	V _{CC} - 0.2	١	
Output voltage				$I_{OH} = -2 \text{ mA}$	1.4	1.05	_	٧
	L-level	nucl V-	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \ \mu A$	1.4~1.65	_	0.05	
	L-IEVEI	V _{OL}		$I_{OL} = 2 \text{ mA}$	1.4	_	0.35	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		1.4~1.65	_	±5.0	μΑ
Power-off leakage of	current	loff	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μΑ
Quiescent supply current		loo	V _{IN} = V _{CC} or GND	D		_	20.0	μА
Quiescent supply co	an ent	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.4~1.65	_	±20.0	μΑ

DC Characteristics (Ta = -40 to 85° C, $1.2 \text{ V} \leq \text{V}_{CC} < 1.4 \text{ V})$

Characteristics Sy		Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Input voltage	H-level	V _{IH}	_		1.2~1.4	0.8 × V _{CC}	_	V
Input voltage	L-level	V _{IL}	_		1.2~1.4	ı	0.05 × V _{CC}	V
Output voltage	H-level	V _{OH}	$V_{IN} = V_{IH}$ $I_{OH} = -100 \mu A$		1.2	V _{CC} - 0.1	_	٧
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.2		0.05	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.2		±5.0	μΑ
Power-off leakage c	urrent	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0		10.0	μΑ
Quiescent supply current		loo	V _{IN} = V _{CC} or GND		1.2		20.0	μА
Quiescent supply co	ment	Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.2	_	±20.0	μΑ

AC Characteristics (Ta = -40 to 85° C, input: $t_r = t_f = 2.0$ ns) (Note 1)

Characteristics	Symbol	Test	Test Condition			Max	Unit
_			$C_{\parallel} = 15 \text{ pF}, R_{\parallel} = 2 \text{ k}\Omega$	1.2	1.5	37.0	
	+		OL = 13 μι , NL = 2 κΩ	1.5 ± 0.1	1.0	14.8	
Propagation delay time	t _{pLH} t _{pHL}	Figure 1, Figure 2		1.8 ± 0.15	1.5	7.4	ns
	φпι		$C_L = 30$ pF, $R_L = 500$ Ω	2.5 ± 0.2	8.0	3.7	
				3.3 ± 0.3	0.6	2.8	
			C _L = 15 pF, R _L = 2 kΩ	1.2		1.5	
	.			1.5 ± 0.1	_	1.5	
Output to output skew	t _{osHL}	(Note 2)	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	1.8 ± 0.15	_	0.5	ns
	USHL			2.5 ± 0.2	_	0.5	
				3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

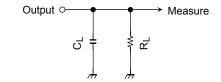
 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note) 1.8	0.25	
	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note) 2.5	0.6	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	3.3	0.8	
	V _{OLV}	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	1.8	-0.25	
Quiet output minimum dynamic $V_{\mbox{OL}}$		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	2.5	-0.6	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	3.3	-0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	1.8	1.5	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note) 2.5	1.9	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note) 3.3	2.2	

Note: Parameter guaranteed by design.

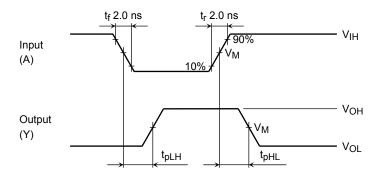
Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Power dissipation capacitance	C_{PD}	f _{IN} = 10 MHz	(Note)	1.8, 2.5, 3.3	20	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per gate)}$


AC Test Circuit

Symbol	V _{CC}		
	$\begin{array}{c} 3.3 \pm 0.3 \text{ V} \\ 2.5 \pm 0.2 \text{ V} \\ 1.8 \pm 0.15 \text{ V} \end{array}$	1.5 ± 0.1 V 1.2V	
R_L	500 Ω	2 kΩ	
CL	30 pF	15 pF	

Figure 1

AC Waveform

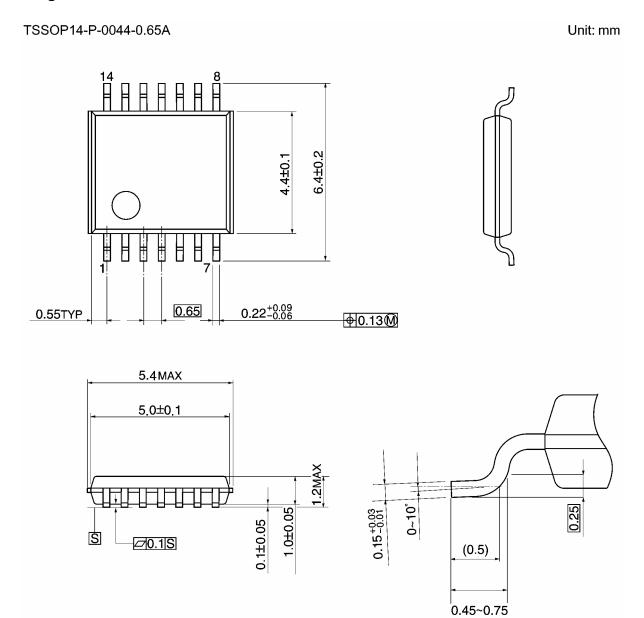
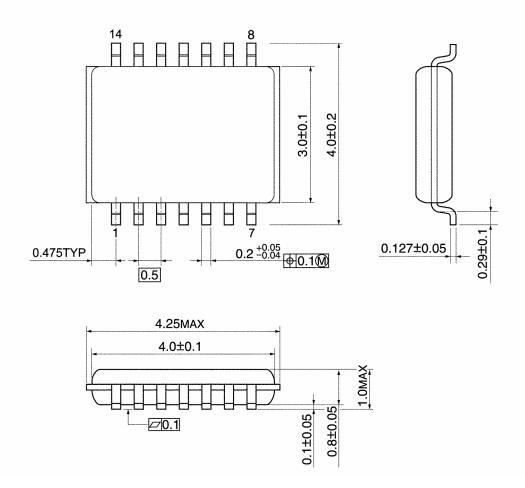

Symbol	V _{CC}				
	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 ± 0.15 V	1.5 ± 0.1 V	1.2 V
V_{IH}	2.7 V	V _{CC}	V _{CC}	V _{CC}	V_{CC}
V _M	1.5 V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2

Figure 2 t_{pLH}, t_{pHL}

8

Package Dimensions



Weight: 0.06 g (typ.)

Package Dimensions

TOSHIBA

VSSOP14-P-0030-0.50 Unit: mm

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.