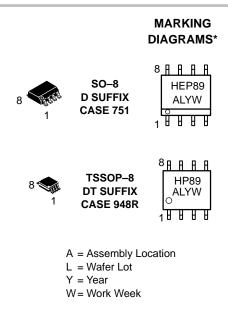
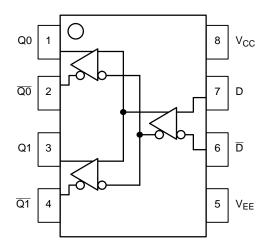
3.3V / 5V ECL Coaxial Cable Driver


The MC10EP89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digital video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V (5 V) and 1.4 V (3.3 V) swing allow for termination at both ends of the cable, while maintaining a 800 mV (5 V) and 700 mV (3.3 V) swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard V_{CC}–2.0 V. All of the DC parameters are tested with a 50 Ω to V_{CC}–3.0 V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard –5.0 V supply.

- 310 ps Typical Propagation Delay
- Maximum Frequency > 3 Ghz Typical
- 1.6 V (5 V) and 1.4 V (3.3 V) Swing
- PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC}=0$ V with $V_{EE}=-3.0$ V to -5.5 V
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on \overline{D}
- Q Output will default LOW with inputs open or at V_{EE}
- ESD Protection: >4 KV HBM, >200 V MM, >2 KV CDM
- New Differential Input Common Mode Range
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 152 devices

ON Semiconductor[™]


http://onsemi.com

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC10EP89D	SO–8	98 Units/Rail
MC10EP89DR2	SO–8	2500 Tape & Reel
MC10EP89DT	TSSOP-8	98 Units/Rail
MC10EP89DTR2	TSSOP-8	2500 Tape & Reel

PIN DESCRIPTION								
PIN	FUNCTION							
D, D	ECL Data Inputs							
Q0, Q1, <u>Q0</u> , <u>Q1</u>	ECL Data Outputs							
V _{CC}	Positive Supply							
V _{EE}	Negative Supply							

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \! \leq \! V_{CC} \\ V_{I} \! \geq \! V_{EE} \end{array}$	6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

MAXIMUM RATINGS (Note 1.)

1. Maximum Ratings are those values beyond which device damage may occur.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	22	28	34	24	32	38	28	34	40	mA
V _{OH}	Output HIGH Voltage (Note 3.)	2080	2180	2280	2150	2250	2350	2225	2325	2425	mV
V _{OL}	Output LOW Voltage (Note 3.)	620	720	820	630	730	830	670	770	870	mV
VIH	Input HIGH Voltage (Single Ended)	2070		2410	2170		2490	2240		2580	mV
V _{IL}	Input LOW Voltage (Single Ended)	1350		1800	1350		1820	1350		1855	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 4.)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

2. Input and output parameters vary 1:1 with V_{CC}.

3. All loading with 50 ohms to V_{CC}-3.0 volts.

V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}, V_{EE} = 0 \text{ V}$ (Note 5.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	Unit
IEE	Power Supply Current	27	34	41	30	37	44	32	39	46	mA
V _{OH}	Output HIGH Voltage (Note 6.)	3780	3880	3980	3850	3950	4050	3925	4025	4125	mV
V _{OL}	Output LOW Voltage (Note 6.)	2075	2225	2375	2060	2210	2360	2090	2240	2390	mV
V _{IH}	Input HIGH Voltage (Single Ended)	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage (Single Ended)	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 7.)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

5. Input and output parameters vary 1:1 with V_{CC}.

6. All loading with 50 ohms to V_{CC} -3.0 volts. 7. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

		–40°C				25°C					
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	22	28	34	24	32	38	28	34	40	mA
V _{OH}	Output HIGH Voltage (Note 9.)	-1220	-1120	-1020	-1150	-1050	-950	-1075	-975	-875	mV
V _{OL}	Output LOW Voltage (Note 9.)	-2680	-2580	-2480	-2670	-2570	-2470	-2630	-2530	-2430	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 10.)	-	1.3	0.0	-1	.3	0.0	-1	.3	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

8. Input and output parameters vary 1:1 with V_{CC} .

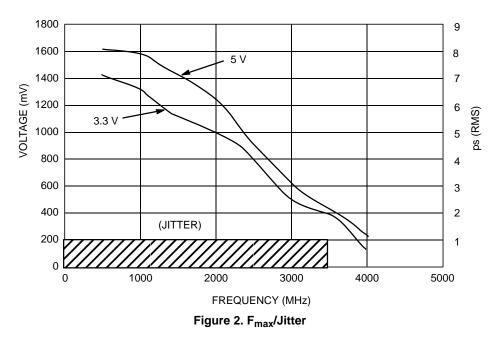
9. All loading with 50 ohms to V_{CC} -3.0 volts.

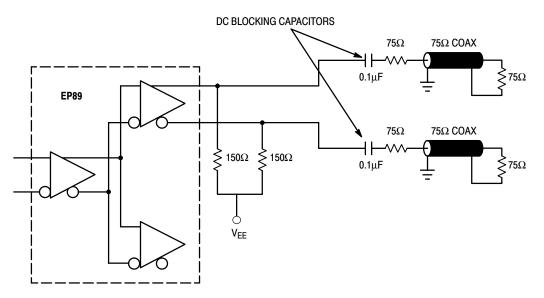
10. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

DC CHARACTERISTICS, NECL $V_{CC} = 0V$; $V_{EE} = -5.2$ (Note 11.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	25	32	39	28	35	42	31	38	45	mA
V _{OH}	Output HIGH Voltage (Note 12.)	-1220	-1120	-1020	-1150	-1050	-950	-1075	-975	-875	mV
V _{OL}	Output LOW Voltage (Note 12.)	-2950	-2800	-2650	-2950	-2850	-2650	-2950	-2800	-2650	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 13.)	-3	3.2	0.0	-3	3.2	0.0	-3	3.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

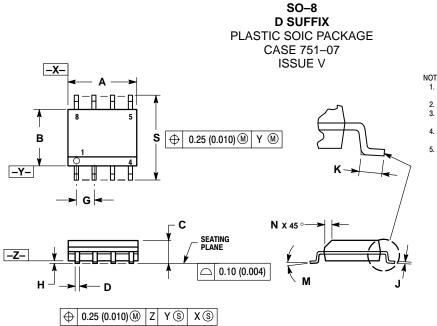

11. Input and output parameters vary 1:1 with V_{CC} .


12. All loading with 50 ohms to V_{CC} -3.0 volts.

13. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle (See Figure 2. F _{max} /JITTER)			> 3			> 3			> 3	GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	220	280	340	250	310	370	270	330	390	ps
t _{SKEW}	Within Device Skew Q, Q Device to Device Skew (Note 15.)		5.0	20 120		5.0	20 120		5.0	20 120	ps
t _{JITTER}	Cycle–to–Cycle Jitter (See Figure 2. F _{max} /JITTER)		.5	< 1		.5	< 1		.5	< 1	ps
V _{PP}	Input Voltage Swing (Differential)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q, \overline{Q} (20% – 80%)	175	250	325	200	275	350	225	295	375	ps

14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC} -2.0 V. 15. Skew is measured between outputs under identical transitions.

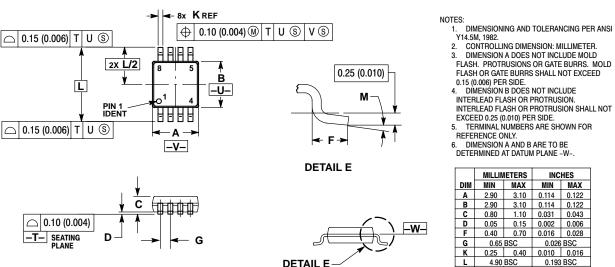


Resource Reference of Application Notes

AN1404	- ECLinPS Circuit Performance at Non–Standard V _{IH} Levels
AN1405	 ECL Clock Distribution Techniques
AN1406	 Designing with PECL (ECL at +5.0 V)
AN1504	 Metastability and the ECLinPS Family
AN1568	 Interfacing Between LVDS and ECL
AN1650	 Using Wire–OR Ties in ECLinPS Designs
AN1672	 The ECL Translator Guide
AND8001	 Odd Number Counters Design
AND8002	 Marking and Date Codes
AND8009	 ECLinPS Plus Spice I/O Model Kit
AND8020	 Termination of ECL Logic Devices

PACKAGE DIMENSIONS

NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD

- PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR
- 5. PROTRUSION D DUES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
Μ	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

TSSOP-8 DT SUFFIX CASE 948R-02 **ISSUE A**

DETAIL E

М 0° 6

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT

INCHES

0.193 BSC

0°

MIN MAX

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
- Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.