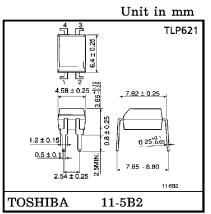
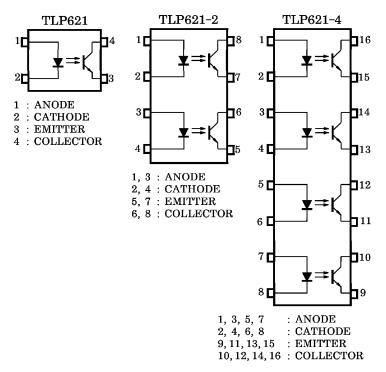
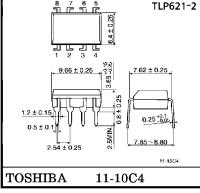
TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR

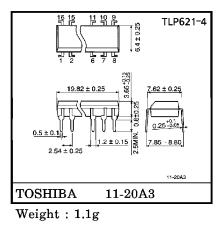

TLP621, TLP621-2, TLP621-4

PROGRAMMABLE CONTROLLER AC/DC-INPUT MODULE SOLID STATE RELAY

The TOSHIBA TLP621, -2, and -4 consists of a photo-transistor optically coupled to a gallium arsenide infrared emitting diode. The TLP621-2 offers two isolated channels in an eight lead plastic DIP, which the TLP621-4 provides four isolated channels in a sixteen plastic DIP.


- Collector-Emitter Voltage : 55V (Min.)
- Current Transfer Ratio : 50% (Min.)


Rank GB : 100% (Min.)


Weight : 0.26g

PIN CONFIGURATIONS (TOP VIEW)

Weight : 0.54g

961001EBC2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

1998-03-04 1/9

Current Transfer Ratio

TYPE	CLASSI- FICATION	CURRENT TRA (%) (I		MARKING OF
	*1	$I_F = 5mA, V_{CE} = 5V, Ta = 25^{\circ}C$		CLASSIFICATION
		MIN.	MAX.	
	(None)	50	600	BLANK, Y, Y [■] , G, G [■] , B, B [■] , GB
	Rank Y	50	150	Y, Y■
TLP621	Rank GR	100	300	G, G ■
	Rank BL	200	600	B, B■
	Rank GB	100	600	G, G [■] , B, B [■] , GB
TLP621-2	(None)	50	600	BLANK, GR, BL, GB
TLP621-4	Rank GB	100	600	GR, BL, GB

*1 : Ex. Rank GB : TLP621 (GB)

(Note) Application type name for certification test, please use standard product type name, 1.e.

TLP621 (GB) : TLP621 TLP621-2 (GB) : TLP621-2

	MADE IN J.	APAN	MADE IN THA	AILAND
UL Recognized	E67349	*2	E152349	*2
BSI Approved	6508, 7445	*3	6505, 7445	*3
SEMKO Approved	9735090/01	*4	—	

*2 UL1577

*3 BS EN60065 : 1994, BS EN60950 : 1992

*4 EN60950 (Approved is TLP621 only)

961001EBC2'

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

1998-03-04 2/9

Option (D4) type
VDE Approved : DIN VDE0884/06.92, Certificate No. 68384
Maximum Operating Insulation Voltage : 890VPK
Highest Permissible Over Voltage : 8000VPK

(Note) When a VIDE0884 approved type is needed, please disignate the "Option (D4)"

			10.16mm pich
		standard type	(LF2) type
٠	Creepage Distance	: 6.4mm (Min.)	8.0mm (Min)
	Clearance	: 6.4mm (Min.)	8.0mm (Min)
	Insulation Thickness	: 0.4mm (Min.)	0.4mm (Min)

MAXIMUM RATINGS (Ta = 25°C)

			RAT	ING	
	CHARACTERISTIC	SYMBOL	TLP621	TLP621-2 TLP621-4	UNIT
	Forward Current	$I_{\mathbf{F}}$	60	50	mA
	Forward Current Derating	⊿I _F /°C	-0.7 (Ta>39°C)	-0.5 (Ta $= 25^{\circ}$ C)	mA/°C
Q	Pulse Forward Current	IFP	1 (100µs pu	lse, 100pps)	Α
LEJ	Power Dissipation	PD	100	70	mW
Г	Power Dissipation Derating	$\Delta P_{D} / C$	-1.0	-0.7	mW/°C
	Reverse Voltage	VR		5	v
	Junction Temperature	T_{j}	12	°C	
	Collector-Emitter Voltage	VCEO	Į	v	
Я	Emitter-Collector Voltage	VECO		v	
ΤO	Collector Current	IC	50		mA
TEC'	Collector Power Dissipation (1 Circuit)	PC	150	100	mW
DE	Collector Power Dissipation Derating (1 Circuit, $Ta \ge 25^{\circ}C$)	⊿PC/°C	-1.5	-1.0	mW/°C
	Junction Temperature	Tj	125		°C
Stor	rage Temperature Range	T _{stg}	-55~125		°C
Ope	Operating Temperature Range		-55~100		°C
Lead Soldering Temperature		T _{sol}	260 (10s)		°C
Total Package Power Dissipation		PT	250	150	mW
Total Package Power Dissipation Derating $(Ta \ge 25^{\circ}C)$		⊿P _T /°C	-2.5	-1.5	mW/°C
Isol	ation Voltage (Note 1)	BVS	5000 (AC, 1mi)	n., R.H.≦60%)	V _{rms}

(Note 1) Device considered a two terminal : LED side pins shorted together, and DETECTOR side pins shorted together.

RECOMMENDED OPERATING CONDITIONS

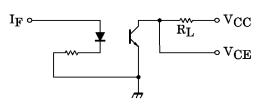
CHARACTERICTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{CC}		5	24	v
Forward Current	$I_{\mathbf{F}}$		16	20	mA
Collector Current	IC	_	1	10	mA
Operating Temperature	T_{opr}	-25		85	°C

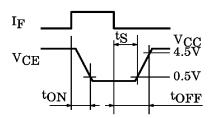
	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
A	Forward Voltage	VF	$I_F = 10 mA$	1.0	1.15	1.3	V
田	Reverse Current	IR	$V_R = 5V$		_	10	μA
Г	Capacitance	CT	V=0, f=1MHz		30	_	pF
ч	Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{C}\!=\!0.5mA$	55	_	_	v
СТО	Emitter-Collector Breakdown Voltage	V (BR) ECO	$I_{\hbox{\bf E}}\!=\!0.1 m A$	7			v
ΤE	Collector Dark Current	ICEO	$V_{CE} = 24V$		10	100	nA
臣	Conector Dark Current	-CEU	$V_{CE} = 24V, Ta = 85^{\circ}C$	—	2	50	μA
	Capacitance (Collector to Emitter)	C _{CE}	V=0, f=1MHz	_	10	_	\mathbf{pF}

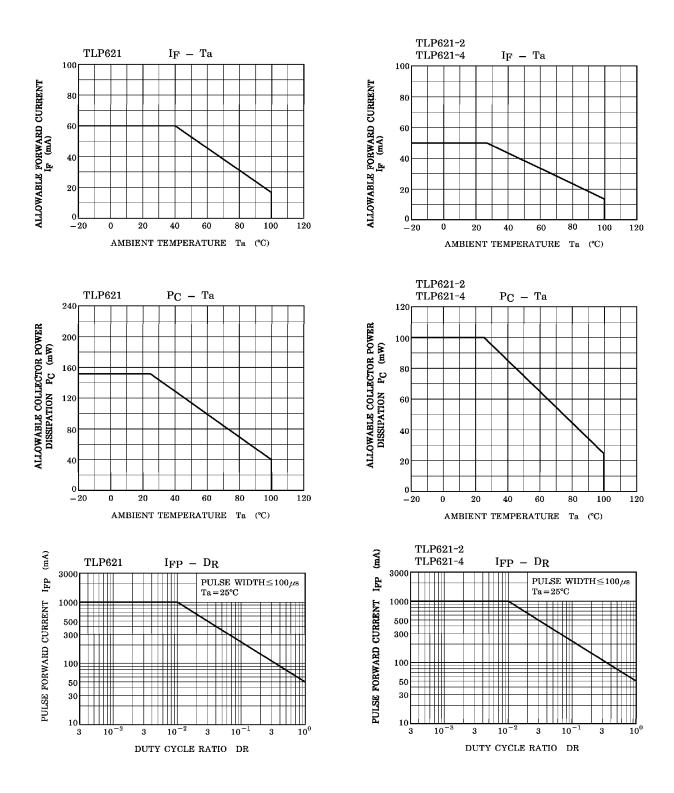
INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Current Transfer Ratio	I_C/I_F	$I_F = 5 m A, V_{CE} = 5 V$	50	_	600	%
ourrent transfer flatto	1C / 1F	Rank GB	100	_	600	10
Saturated CTR	I _C /I _{F(sat)}	$I_F = 1mA$, $V_{CE} = 0.4V$	_	60		%
Saturated CTK	$^{1}C^{7}$ ^{1}F (sat)	Rank GB	30	_		70
		I_{C} =2.4mA, I_{F} =8mA	_	_	0.4	
Collector-Emitter Saturation Voltage	V _{CE (sat)}	$I_{C}=0.2mA$, $I_{F}=1mA$	_	0.2		v
		Rank GB	-	_	0.4	


ISOLATION CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance (Input to Output)	C_S	$V_{S}=0$, f=1MHz	_	0.8		pF
Isolation Resistance	RS	$V_S = 500V$	1×10^{12}	1014		Ω
Isolation Voltage	BV_{S}	AC, 1 minute	5000		_	37
		AC, 1 second, in oil	_	10000		V _{rms}
		DC, 1 minute, in oil		10000		V _{dc}


SWITCHING CHARACTERISTICS (Ta = 25°C)

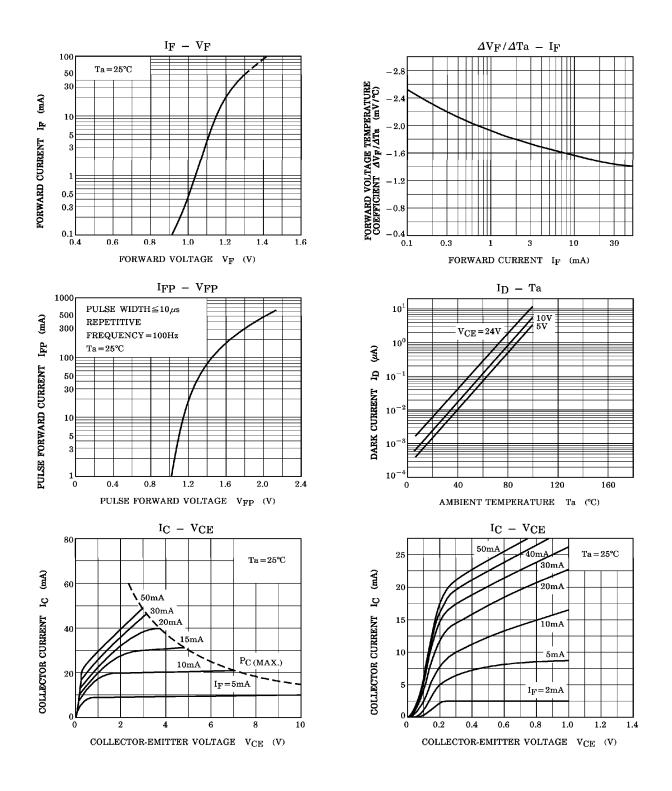
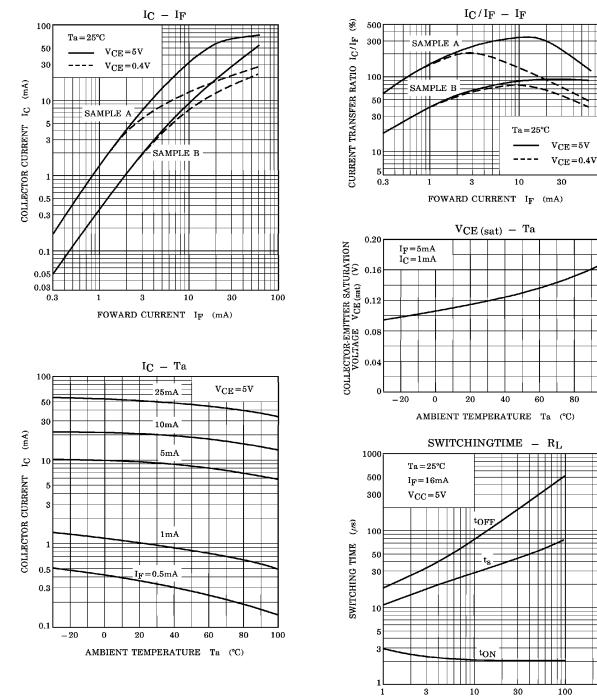

CHARACTERICTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Rise Time	tr		_	2	_	
Fall Time	tf	$V_{CC}=10V, I_{C}=2mA$ $R_{L}=100\Omega$	_	3	_	
Turn-on Time	ton		_	3	_	$\mu {f s}$
Turn-off Time	t _{off}			3	_	
Turn-on Time	ton	D = 1.0 - 0.075 + 1		2	_	
Storage Time	tS	$\begin{array}{l} R_L = 1.9 k\Omega ~(Fig.1) \\ V_{CC} = 5 V, ~I_F = 16 mA \end{array}$	_	15	_	$\mu \mathbf{s}$
Turn-off Time	tOFF		_	25		

Fig.1 SWITCHING TIME TEST CIRCUIT



1998-03-04 8/9

100

100

LOAD RESISTANCE R_L (k Ω)

300