Triple 1.1 mA 200 MHz Current Feedback Op Amp with Enable Feature

NCS2530 is a triple 1.1 mA 200 MHz current feedback monolithic operational amplifier featuring high slew rate and low differential gain and phase error. The current feedback architecture allows for a superior bandwidth and low power consumption. This device features an enable pin.

Features

- -3.0 dB Small Signal BW $\left(A_{V}=+2.0, V_{O}=0.5 V_{p-p}\right) 200 \mathrm{MHz}$ Typ
- Slew Rate $450 \mathrm{~V} / \mu \mathrm{s}$
- Supply Current 1.1 mA per amplifier
- Input Referred Voltage Noise $4.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- THD -55 dB (f = 5.0 MHz, $\left.\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$
- Output Current 100 mA
- Enable Pin Available
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Portable Video
- Line Drivers
- Radar/Communication Receivers
- Set Top Box
- NTSC/PAL/HDTV

Figure 1. Frequency Response:
Gain (dB) vs. Frequency $A v=+2.0, R_{L}=100 \Omega$

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SOIC-14 PINOUT (NCS2530A ONLY)

TSSOP-16 PINOUT (NCS2530 ONLY)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

PIN FUNCTION DESCRIPTION

SOIC-14 (NCS2530A Only)	TSSOP-16 (NCS2530 Only)	Symbol	Function	Equivalent Circuit
7, 8, 14	10, 12, 15	OUTx	Output	
11	3, 6	V_{EE}	Negative Power Supply	
5, 10, 12	2, 5, 7	+INx	Non-inverted Input	
6, 9, 13	1, 4, 8	-INx	Inverted Input	See Above
4	11, 14	V_{CC}	Positive Power Supply	
N/A	9, 13, 16	EN	Enable	

ENABLE PIN TRUTH TABLE (NCS2530 Only)

	High *	Low
Enable	Enabled	Disabled

*Default open state

Figure 2. Simplified Device Schematic

ATTRIBUTES

Characteristics	Value
ESD \quad Human Body Model	
Machine Model	2.0 kV (Note 1)
Charged Device Model	200 V
	1.0 kV
Moisture Sensitivity (Note 2)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL $94 \mathrm{~V}-0$ @ 0.125 in

1. 0.8 kV between the input pairs +IN and -IN pins only. All other pins are 2.0 kV .
2. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V_{S}	11	$\mathrm{~V}_{\mathrm{DC}}$
Input Voltage Range	V_{I}	$\leq \mathrm{V}_{\mathrm{S}}$	V_{DC}
Input Differential Voltage Range	V_{ID}	$\leq \mathrm{V}_{\mathrm{S}}$	V_{DC}
Output Current	I_{O}	100	mA
Maximum Junction Temperature (Note 3)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	$($ See Graph$)$	mW
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\text {OJA }}$	178	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is $150^{\circ} \mathrm{C}$. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device damage.

Figure 3. Power Dissipation vs. Temperature

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{F}}=1.2 \mathrm{k} \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

FREQUENCY DOMAIN PERFORMANCE

BW	Bandwidth 3.0 dB Small Signal 3.0 dB Large Signal	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		200	
$\mathrm{AF}_{0.1 \mathrm{~dB}}$	0.1 dB Gain Flatness Bandwidth	$\mathrm{A}_{\mathrm{V}}=+2.0$		30	MHz
dG	Differential Gain	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$		0.02	MHz
dP	Differential Phase	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$		0.1	$\%$

TIME DOMAIN RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V}$	450	V/us
$\mathrm{t}_{\text {s }}$	Settling Time 0.01\% 0.1\%	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 35 \\ & 18 \end{aligned}$	ns
$t_{r} t_{f}$	Rise and Fall Time	$(10 \%-90 \%) A_{V}=+2.0, V_{\text {step }}=2.0 \mathrm{~V}$	5	ns
ton	Turn-on Time (Note 4)		900	ns
toff	Turn-off Time (Note 4)		500	ns

HARMONIC/NOISE PERFORMANCE

THD	Total Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=150 \Omega$		-55	
HD2	2nd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-67	dBc
HD3	3rd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-57	dBc
IP3	Third-Order Intercept	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		35	dBc
SFDR	Spurious-Free Dynamic Range	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		58	dBm
e_{N}	Input Referred Voltage Noise	$\mathrm{f}=1.0 \mathrm{MHz}$		4	dBc
i_{N}	Input Referred Current Noise	$\mathrm{f}=1.0 \mathrm{MHz}$, Inverting			
		$\mathrm{f}=1.0 \mathrm{MHz}$, Non-Inverting		15	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

4. Applies to NCS2530 device only.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{GND} \mathrm{R}_{\mathrm{F}}=1.2 \mathrm{k} \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

DC PERFORMANCE

V_{10}	Input Offset Voltage		-4.0	± 0.7	+4.0	mV
$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta$	Input Offset Voltage Temperature Coefficient			6.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IIB	Input Bias Current	+Input (Non-Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ -Input (Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 5)	$\begin{aligned} & \hline-5.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & +5.0 \\ & +5.0 \end{aligned}$	$\mu \mathrm{A}$
$\Delta l_{1 B} / \Delta T$	Input Bias Current Temperature Coefficient	+ Input (Non-Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ -Input (Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		$\begin{aligned} & \pm 40 \\ & \pm 10 \end{aligned}$		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
V_{IH}	Input High Voltage (Enable) (Note 5 and 6)		$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			V
V_{IL}	Input Low Voltage (Enable) (Note 5 and 6)				$\mathrm{V}_{\mathrm{CC}}-3.5 \mathrm{~V}$	V

INPUT CHARACTERISTICS

V_{CM}	Input Common Mode Voltage Range (Note 5)	± 3.0	± 4.0		V	
CMRR	Common Mode Rejection Ratio	(See Graph)	50	55		dB
R_{IN}	Input Resistance	+Input (Non-Inverting) -Input (Inverting)		4.0		$\mathrm{M} \Omega$
Ω						
C_{IN}	Differential Input Capacitance			1.0	pF	

OUTPUT CHARACTERISTICS

$R_{\text {OUT }}$	Output Resistance	Closed Loop Open Loop		0.02 12		Ω
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Swing		± 3.0	± 3.5		V
I_{O}	Output Current		± 60	± 100		mA

POWER SUPPLY

V_{S}	Operating Voltage Supply		10		V	
$\mathrm{I}_{\mathrm{S}, \mathrm{ON}}$	Power Supply Current - Enabled (per amplifier)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	0.6	1.1	2.0	mA
$\mathrm{I}_{\mathrm{S}, \mathrm{OFF}}$	Power Supply Current - Disabled (per amplifier) (Note 6)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	0.35	0.5	mA	
	Crosstalk	Channel to Channel, $\mathrm{f}=5.0 \mathrm{MHz}$		60		dB
PSRR	Power Supply Rejection Ratio	(See Graph)	50	60		dB

5. Guaranteed by design and/or characterization.
6. Applies to NCS2530 device only.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{F}}=1.2 \mathrm{k} \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

FREQUENCY DOMAIN PERFORMANCE

BW	Bandwidth 3.0 dB Small Signal 3.0 dB Large Signal	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		180 130		MHz
$\mathrm{GF}_{0.1 \mathrm{~dB}}$	0.1 dB Gain Flatness Bandwidth	$\mathrm{A}_{\mathrm{V}}=+2.0$		15		MHz
dG	Differential Gain	$\mathrm{A}_{V}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$		0.02	$\%$	
dP	Differential Phase	$\mathrm{A}_{V}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$		0.1		\circ

TIME DOMAIN RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V}$	350	V/us
$\mathrm{t}_{\text {s }}$	$\begin{aligned} & \text { Settling Time } \\ & 0.01 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 40 \\ & 18 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	$(10 \%-90 \%) A_{V}=+2.0, V_{\text {step }}=1.0 \mathrm{~V}$	8.0	ns
ton	Turn-on Time (Note 7)		900	ns
toff	Turn-off Time (Note 7)		500	ns

HARMONIC/NOISE PERFORMANCE

THD	Total Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=150 \Omega$		-55	dBc
HD 2	2nd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-67	dBc
HD 3	3rd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-57	dBc
IP3	Third-Order Intercept	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		35	dBm
SFDR	Spurious-Free Dynamic Range	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		58	dBc
e_{N}	Input Referred Voltage Noise	$\mathrm{f}=1.0 \mathrm{MHz}$		4.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{N}	Input Referred Current Noise	$\mathrm{f}=1.0 \mathrm{MHz}$, Inverting			
	$\mathrm{f}=1.0 \mathrm{MHz}$, Non-Inverting		15	15	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

7. Applies to NCS2530 device only.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{F}}=1.2 \mathrm{k} \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

DC PERFORMANCE

V_{IO}	Input Offset Voltage		-4.0	± 0.5	+4.0	mV
$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Coefficient		6.0		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
I_{IB}	Input Bias Current	+Input (Non-Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ -Input (Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Note 8)	-5.0 -5.0	± 2.0 ± 0.4	+5.0 +5.0	$\mu \mathrm{~A}$
$\Delta \mathrm{I}_{\mathrm{IB}} / \Delta \mathrm{T}$	Input Bias Current Temperature Coefficient	+Input (Non-Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ -Input (Inverting), $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		± 40 ± 10		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
V_{IH}	Input High Voltage (Enable) (Note 8 and 9)		$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage (Enable) (Note 8 and 9)			$\mathrm{V}_{\mathrm{CC}}-3.5 \mathrm{~V}$	V	

INPUT CHARACTERISTICS

V_{CM}	Input Common Mode Voltage Range (Note 8)	± 1.3	± 1.5	V		
CMRR	Common Mode Rejection Ratio	(See Graph)	50	55		dB
R_{IN}	Input Resistance	+Input (Non-Inverting) -Input (Inverting)		4.0		
350	$\mathrm{M} \Omega$					
C_{IN}	Differential Input Capacitance			1.0	Ω	

OUTPUT CHARACTERISTICS

$R_{\text {OUT }}$	Output Resistance	Closed Loop Open Loop		0.02 12	Ω	
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Swing		± 1.0	± 1.4		V
I_{O}	Output Current		± 40	± 80		mA

POWER SUPPLY

V_{S}	Operating Voltage Supply		5.0	V		
$\mathrm{I}_{\mathrm{S}, \mathrm{ON}}$	Power Supply Current - Enabled (per amplifier)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	0.5	0.9	1.9	mA
$\mathrm{I}_{\mathrm{S}, \mathrm{OFF}}$	Power Supply Current - Disabled (per amplifier) (Note 9)	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	0.15	0.35	mA	
	Crosstalk	Channel to Channel, $\mathrm{f}=5.0 \mathrm{MHz}$		60		mA
PSRR	Power Supply Rejection Ratio	(See Graph)	50	60		dB

8. Guaranteed by design and/or characterization.
9. Applies to NCS2530 device only.

Figure 4. Typical Test Setup
$\left(A_{V}=+2.0, R_{F}=1.8 \mathrm{k} \Omega\right.$ or $1.2 \mathrm{k} \Omega$ or $\left.1.0 \mathrm{k} \Omega, R_{\mathrm{L}}=100 \Omega\right)$

Figure 5. Frequency Response:
Gain (dB) vs. Frequency
$A v=+2.0$

Figure 7. Large Signal Frequency Response Gain (dB) vs. Frequency

Figure 9. Small Signal Step Response Vertical: $\mathbf{5 0 0} \mathrm{mV} / \mathrm{div}$ Horizontal: 10 ns/div

Figure 6. Frequency Response:
Gain (dB) vs. Frequency
$A v=+1.0$

Figure 8. Small Signal Frequency Response Gain (dB) vs. Frequency

Figure 10. Large Signal Step Response Vertical: $\mathbf{5 0 0} \mathbf{~ m V / d i v}$ Horizontal: $10 \mathrm{~ns} /$ div

NCS2530, NCS2530A

Figure 11. THD, HD2, HD3 vs. Frequency

Figure 12. THD, HD2, HD3 vs. Output Voltage

Figure 13. Input Referred Noise vs. Frequency

Figure 14. CMRR vs. Frequency

Figure 15. PSRR vs. Frequency

Figure 16. Differential Gain

Figure 17. Differential Phase

Figure 19. Supply Current per Amplifier vs. Power Supply vs. Temperature (Disabled) (NCS2530 Only)

Figure 21. Output Voltage Swing vs. Load Resistance

Figure 18. Supply Current per Amplifier vs. Power Supply vs. Temperature (Enabled)

Figure 20. Output Voltage Swing vs. Supply Voltage

Figure 22. Output Impedance vs. Frequency

Figure 23. Frequency Response vs. Capacitive Load

Figure 25. Turn ON Time Delay Vertical: 10 mV/Div, Horizontal: $\mathbf{4 n s} / D i v$ (Output Signal: Square Wave, $10 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{pp}}$) (NCS2530 Only)

Figure 27. Crosstalk (dBc) vs. Frequency
(Crosstalk measured on Channel 2 with input signal on Channel 1 and 3)

Figure 24. Transimpedance (ROL) vs. Frequency

Figure 26. Turn OFF Time Delay
Vertical: 10 mV/Div, Horizontal: $\mathbf{4 n s} / D i v$ (Output Signal: Square Wave, $10 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{pp}}$) (NCS2530 Only)

Figure 28. Channel Matching Gain (dB) vs. Frequency

General Design Considerations

The current feedback amplifier is optimized for use in high performance video and data acquisition systems. For current feedback architecture, its closed-loop bandwidth depends on the value of the feedback resistor. The closed-loop bandwidth is not a strong function of gain, as is for a voltage feedback amplifier, as shown in Figure 29.

Figure 29. Frequency Response vs. \mathbf{R}_{F}
The -3.0 dB bandwidth is, to some extent, dependent on the power supply voltages. By using lower power supplies, the bandwidth is reduced, because the internal capacitance increases. Smaller values of feedback resistor can be used at lower supply voltages, to compensate for this affect.

Feedback and Gain Resistor Selection for Optimum Frequency Response

A current feedback operational amplifier's key advantage is the ability to maintain optimum frequency response independent of gain by using appropriate values for the feedback resistor. To obtain a very flat gain response, the feedback resistor tolerance should be considered as well. Resistor tolerance of 1% should be used for optimum flatness. Normally, lowering RF resistor from its recommended value will peak the frequency response and extend the bandwidth while increasing the value of RF resistor will cause the frequency response to roll off faster. Reducing the value of RF resistor too far below its recommended value will cause overshoot, ringing, and eventually oscillation.

Since each application is slightly different, it is worth some experimentation to find the optimal RF for a given circuit. A value of the feedback resistor that produces $\sim 0.1 \mathrm{~dB}$ of peaking is the best compromise between stability and maximal bandwidth. It is not recommended to use a current feedback amplifier with the output shorted directly to the inverting input.

Printed Circuit Board Layout Techniques

Proper high speed PCB design rules should be used for all wideband amplifiers as the PCB parasitics can affect the overall performance. Most important are stray capacitances at the output and inverting input nodes as it can effect peaking and bandwidth. A space ($3 / 16^{\prime \prime}$ is plenty) should be left around the signal lines to minimize coupling. Also, signal lines connecting the feedback and gain resistors should be short enough so that their associated inductance does not cause high frequency gain errors. Line lengths less than $1 / 4^{\prime \prime}$ are recommended.

Video Performance

This device designed to provide good performance with NTSC, PAL, and HDTV video signals. Best performance is obtained with back terminated loads as performance is degraded as the load is increased. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage.

Video Line Driver

NCS2530 can be used in video line driver applications. Figure 30 shows a typical schematic for a video driver. In some applications, two or more video loads have to be driven simultaneously as shown in Figure 31. Figure 32 shows the typical performance of the op amp with single and triple video load.

Figure 30. Video Driver Schematic

Figure 32. Frequency Response with Various Loads

ESD Protection

All device pins have limited ESD protection using internal diodes to power supplies as specified in the attributes table (See Figure 33). These diodes provide moderate protection to input overdrive voltages above the supplies. The ESD diodes can support high input currents with current limiting
series resistors. Keep these resistor values as low as possible since high values degrade both noise performance and frequency response. Under closed-loop operation, the ESD diodes have no effect on circuit performance. However, under certain conditions the ESD diodes will be evident. If the device is driven into a slewing condition, the ESD diodes will clamp large differential voltages until the feedback loop restores closed-loop operation. Also, if the device is powered down and a large input signal is applied, the ESD diodes will conduct.
Note: Human Body Model for + IN and -IN pins are rated at 0.8 kV while all other pins are rated at 2.0 kV .

Figure 33. Internal ESD Protection

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCS2530ADG	SOIC-14 (Pb-Free)	55 Units / Rail
NCS2530ADR2G	SOIC-14 (Pb-Free)	$2500 /$ Tape \& Reel
NCS2530DTBG	TSSOP-16*	96 Units / Rail
NCS2530DTBR2G	TSSOP-16*	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently $\mathrm{Pb}-$ Free.

NCS2530, NCS2530A

PACKAGE DIMENSIONS

SOIC-14
CASE 751A-03
ISSUE H

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F-01
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, enployees, subsidiaries, aftilates, associated with such unintended or uaims, costs, damages, and claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

