Preferred Device

Triacs

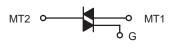
Silicon Bidirectional Thyristors

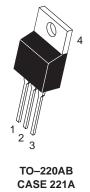
Designed primarily for full-wave ac control applications, such as motor controls, heating controls or dimmers; or wherever full-wave, silicon gate–controlled devices are needed.

- High Commutating di/dt and High Immunity to dv/dt @ 125°C
- Uniform Gate Trigger Currents in Three Quadrants, Q1, Q2, and Q3
- Blocking Voltage to 800 Volts
- On-State Current Rating of 16 Amperes RMS at 80°C
- High Surge Current Capability 150 Amperes
- Industry Standard TO-220AB Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- Device Marking: Logo, Device Type, e.g., MAC16HCD, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage ⁽¹⁾ (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MAC16HCD MAC16HCM	Vdrm, Vrrm	400 600	Volts
MAC16HCN		800	
On–State RMS Current (Full Cycle Sine Wave 50 to 60 Hz; $T_{C} = 80^{\circ}C$)	^I T(RMS)	16	A
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _J = 125°C)	ITSM	150	A
Circuit Fusing Consideration ⁽²⁾ (t = 8.33 ms)	l ² t	93	A ² sec
Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 80°C)	PGM	20	Watts
Average Gate Power (t = 8.3 ms, T _C = 80°C)	PG(AV)	0.5	Watts
Operating Junction Temperature Range	ТJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C


(1) V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com

TRIACS 16 AMPERES RMS 400 thru 800 VOLTS

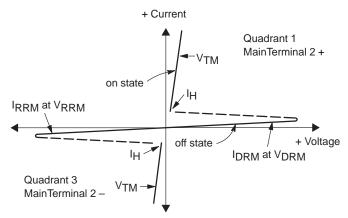
STYLE 4

PIN ASSIGNMENT		
1	Main Terminal 1	
2	Main Terminal 2	
3	Gate	
4	Main Terminal 2	

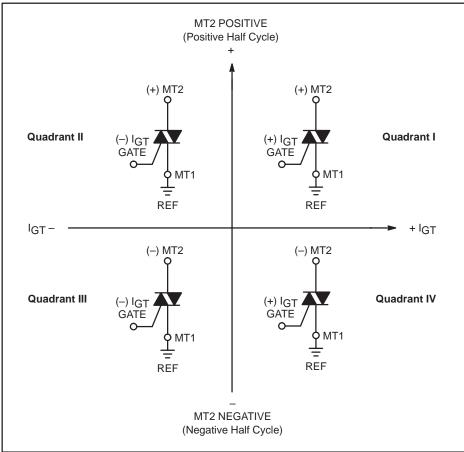
ORDERING INFORMATION

Device	Package	Shipping
MAC16HCD	TO220AB	50 Units/Rail
MAC16HCM	TO220AB	50 Units/Rail
MAC16HCN	TO220AB	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

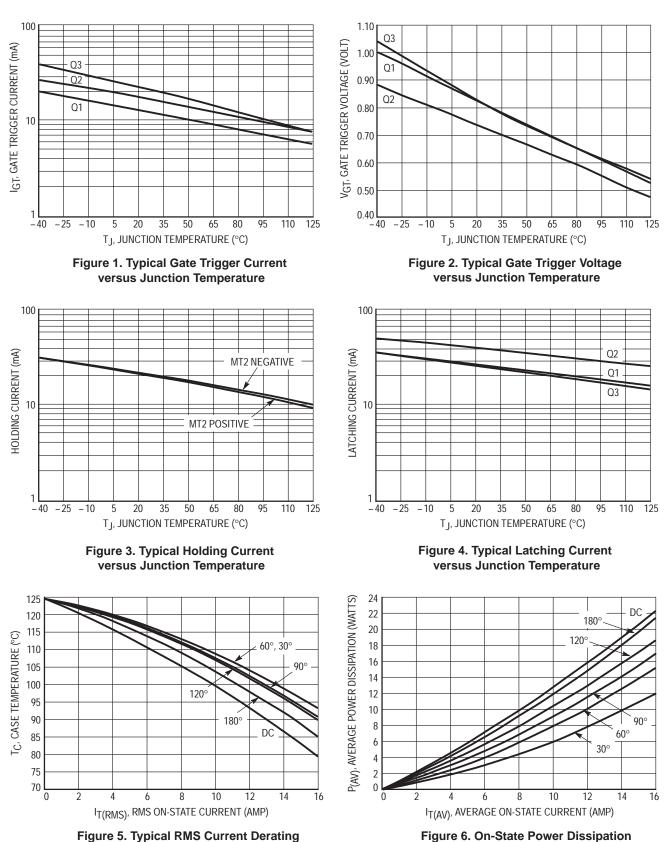

THERMAL CHARACTERISTICS

Characteristic		nbol	Value	Unit °C/W
Thermal Resistance — Junction to Case — Junction to Ambient			2.2 62.5	
Seconds	Т	Ľ	260	°C
; Electricals apply i	n both direc	tions)		
Symbol	Min	Тур	Max	Unit
IDRM [,] IRRM			0.01 2.0	mA
Vтм	—	_	1.6	Volts
I _{GT}	10 10 10	16 18 22	50 50 50	mA
Ч		20	50	mA
ιL		33 36 33	60 80 60	mA
V _{GT}	0.5 0.5 0.5	0.80 0.73 0.82	1.5 1.5 1.5	Volts
(di/dt)c	15		_	A/ms
dv/dt	750		-	V/µs
di/dt	-	-	10	A/μs
	Symbol IDRM, IRRM VTM IGT IH IL VGT (di/dt)c dv/dt	Reg Seconds T Seconds T Symbol Min IDRM, — IGT 10 IGT 10 IDR — VTM — VGT 0.5 VGT 0.5 (di/dt)c 15 dv/dt 750	Symbol Min Typ IDRM; — — IDRM; — — IRRM — — VTM — — IGT 10 16 10 18 10 22 IH — 20 1 IL — 33 36 — 33 36 33 VGT 0.5 0.80 0.73 0.5 0.82 0.5 0.82 (di/dt)c 15 — — dv/dt 750 — —	R $_{\theta,JC}$ 2.2 62.5 Seconds TL 260 Symbol Min Typ Max IDRM, IRRM — — — 0.01 2.0 VTM — — 0.01 2.0 VTM — — 1.6 IGT 10 10 16 50 10 50 22 50 IH — 20 50 IL 33 60 60 80 33 80 30 VGT 0.5 0.5 0.80 0.73 0.5 1.5 1.5 (di/dt)c 15 — — dv/dt 750 — — —


(1) Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
VDRM	Peak Repetitive Forward Off State Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
VTM	Maximum On State Voltage
Ι _Η	Holding Current



Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

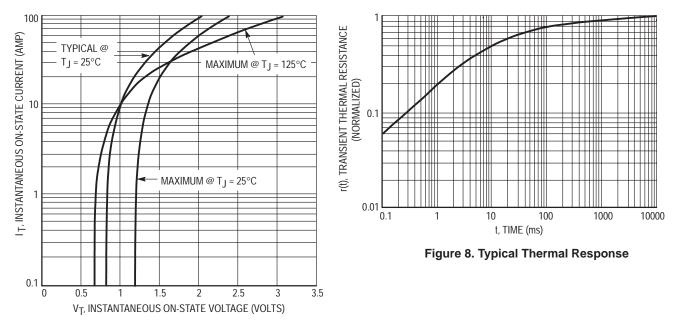
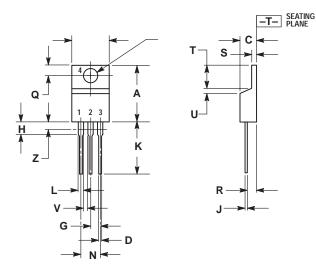



Figure 7. Typical On-State Characteristics

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE Z**

NOTES:

IDIES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
К	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

STYLE 4: PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2 3. GATE 4. MAIN TERMINAL 2

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.