MCR72-3, MCR72-6, MCR72-8

Preferred Device

Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Designed for industrial and consumer applications such as temperature, light and speed control; process and remote controls; warning systems; capacitive discharge circuits and MPU interface.

Features

- Center Gate Geometry for Uniform Current Density
- All Diffused and Glass-Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Low Trigger Currents, 200 µA Maximum for Direct Driving from Integrated Circuits
- Pb–Free Packages are Available*

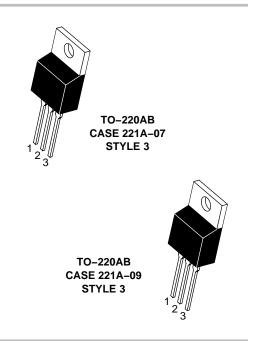
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{array}{l} \mbox{Peak Repetitive Off-State Voltage (Note 1)} \\ (T_J = -40 \ to \ 110^\circ C, \ Sine \ Wave, \\ 50 \ to \ 60 \ Hz, \ Gate \ Open) & MCR72-3 \\ MCR72-6 \\ MCR72-8 \end{array}$	V _{DRM,} V _{RRM}	100 400 600	V
On-State RMS Current (180° Conduction Angles; T _C = 83°C)	I _{T(RMS)}	8.0	A
Peak Non-Repetitive Surge Current (1/2 Cycle, 60 Hz, T _J = 110°C)	I _{TSM}	100	A
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	40	A ² s
Forward Peak Gate Voltage (t \leq 10 μ s, T _C = 83°C)	V _{GM}	±5.0	V
Forward Peak Gate Current (t \leq 10 μ s, T _C = 83°C)	I _{GM}	1.0	A
Forward Peak Gate Power (t \leq 10 μ s, T _C = 83°C)	P _{GM}	5.0	W
Average Gate Power (t = 8.3 ms, $T_C = 83^{\circ}C$)	P _{G(AV)}	0.75	W
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque	-	8.0	in. Ib.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®

http://onsemi.com

SCRs 8 AMPERES RMS 100 thru 600 VOLTS

PIN ASSIGNMENT				
1	Cathode			
2	Anode			
3	Gate			
4	Anode			

MARKING AND ORDERING INFORMATION

See detailed marking, ordering, and shipping information in the package dimensions section on page 4 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

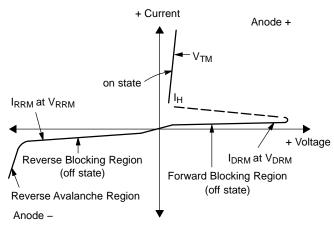
MCR72-3, MCR72-6, MCR72-8

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	2.2	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Secs	ΤL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (Note 2) $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}; R_{GK} = 1 k\Omega)$	T _J = 25°C T _J = 110°C	I _{DRM} , I _{RRM}			10 500	μA μA
High Logic Level Supply Current from V _{CC}		I _{CCH}	4	4	μΑ	μA
ON CHARACTERISTICS						
Peak Forward On-State Voltage (I_{TM} = 16 A Peak, Pulse Width \leq 1 ms, Duty Cycle \leq 2%)		V _{TM}	-	1.7	2.0	V
Gate Trigger Current (Continuous dc) (Note 3) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$		I _{GT}	-	30	200	μΑ
Gate Trigger Voltage (Continuous dc) (Note 3) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$		V _{GT}	-	0.5	1.5	V
Gate Non–Trigger Voltage ($V_D = 12 \text{ Vdc}, R_L = 100 \Omega, T_J = 110^{\circ}\text{C}$)		V _{GD}	0.1	-	-	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open)		I _H	-	-	6.0	mA
Gate Controlled Turn-On Time $(V_D = Rated V_{DRM}, I_{TM} = 16 \text{ A}, I_G = 2 \text{ mA})$		t _{gt}	-	1.0	-	μs
YNAMIC CHARACTERISTICS						
Critical Rate-of-Rise of Off-State Voltage		dv/dt	-	10	_	V/µs


Critical Rate-of-Rise of Off-State Voltage	dv/dt	-	10	-	V/μs
(V _D = Rated V _{DRM} , R _{GK} = 1 k Ω , T _J = 110°C, Exponential Waveform)					

Ratings apply for negative gate voltage or R_{GK} = 1 kΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.
R_{GK} current not included in measurement.

MCR72-3, MCR72-6, MCR72-8

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak On State Voltage
I _H	Holding Current

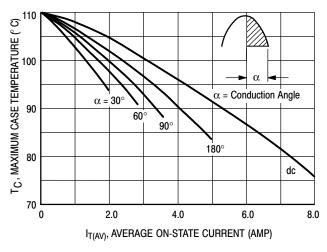


Figure 1. Average Current Derating

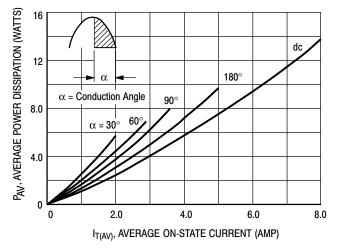
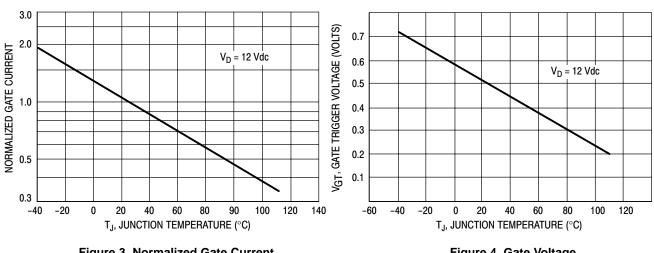



Figure 2. On-State Power Dissipation

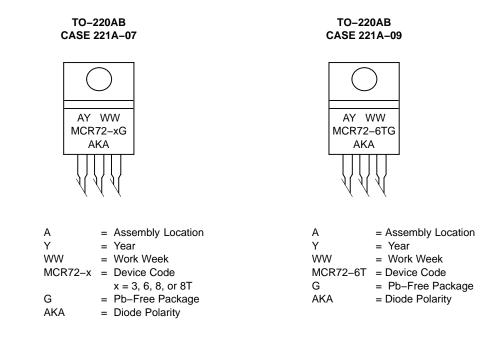
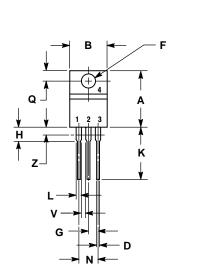


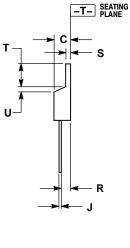
Figure 3. Normalized Gate Current

Figure 4. Gate Voltage

MCR72-3, MCR72-6, MCR72-8

MARKING DIAGRAMS

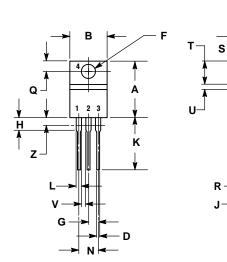



ORDERING INFORMATION

Device	Package	Shipping
MCR72-3	TO-220AB	
MCR72–3G	TO-220AB (Pb-Free)	500 H - 10 - 10 - 10 - 10 - 10 - 10 - 10
MCR72-6	TO-220AB	500 Units / Box
MCR72–6G	TO-220AB (Pb-Free)	
MCR72-6T	TO-220AB	
MCR72-6TG	TO-220AB (Pb-Free)	50 Units / Rail
MCR72-8	TO-220AB	
MCR72–8G	TO-220AB (Pb-Free)	500 Units / Box
MCR72-8T	TO-220AB	
MCR72-8TG	TO-220AB (Pb-Free)	50 Units / Rail

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 **ISSUE AA**


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIN	IETERS
	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

TO-220AB CASE 221A-09 **ISSUE AA**

-T- SEATING PLANE

С

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
ſ	0.018	0.025	0.46	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 3: PIN 1. CATHODE 2. ANODE 3. GATE

4. ANODE

ON Semiconductor and ()) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other sylicits or other application in which the BoILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BoILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and sequence to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.