5 V Differential PECL to TTL Translator

The MC10ELT/100ELT21 is a differential PECL to TTL translator. Because PECL (Positive ECL) levels are used, only +5 V and ground are required. The small outline 8-lead package and the single gate of the ELT21 makes it ideal for those applications where space, performance and low power are at a premium.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- 3.5 ns Typical Propagation Delay
- 24 mA TTL Output
- Flow Through Pinouts
- ESD Protection: Human Body Model; > 2 KV
- Operating Range: $V_{CC} = 4.75 \text{ V}$ to 5.25 V with GND = 0 V
- Q Output Will Default LOW with Inputs Left Open or < 1.3 V
- Internal Input 50 KΩ Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 81 devices

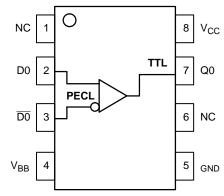


Figure 1. 8-Lead Pinout and Logic Diagram (Top View)

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

CASE 751

TSSOP-8 DT SUFFIX CASE 948R

H = MC10 L = Wafer Lot K = MC100 Y = Year A = Assembly Location W = Work Week

PIN DESCRIPTION

PIN	FUNCTION
Q0 D0, D0 VBB VCC GND NC	TTL Output PECL Differential Inputs Reference Voltage Output Positive Supply Ground No Connect

ORDERING INFORMATION

Package	Shipping [†]
SOIC-8	98 Units/Rail
SOIC-8	2500 Tape & Reel
SOIC-8	98 Units/Rail
SOIC-8	2500 Tape & Reel
TSSOP-8	98 Units/Rail
TSSOP-8	2500 Tape & Reel
TSSOP-8	98 Units/Rail
TSSOP-8	2500 Tape & Reel
	SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSSOP-8 TSSOP-8 TSSOP-8

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional marking information, refer to Application Note AND8002/D.

MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Power Supply	GND = 0 V		7	V
V _{IN}	PECL Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 6	V
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θЈА	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. Functional operation should be restricted to the Recommended Operating Conditions.

10ELT SERIES PECL INPUT DC CHARACTERISTICS V_{CC}= 5.0 V; GND= 0.0 V (Note 1)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3930		4265	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
V _{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 2)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	Input HIGH Current			255			175			175	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.25 V.
- 2. V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}.

100ELT SERIES PECL INPUT DC CHARACTERISTICS V_{CC}= 5.0 V; GND= 0.0 V (Note 3)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.745	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	Input HIGH Current			255			175			175	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 3. Input parameters vary 1:1 with V $_{CC}$. V $_{CC}$ can vary \pm 0.25 V. 4. V $_{IHCMR}$ min varies 1:1 with GND, V $_{IHCMR}$ max varies 1:1 with V $_{CC}$.

TTL OUTPUT DC CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; T_A = -40°C to 85°C)

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -3.0 \text{ mA}$	2.4		(Note 5)	V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current			20	29	mA
I _{CCL}	Power Supply Current			22	32	mA
I _{OS}	Output Short Circuit Current		-150		-60	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Maximum level is V_{CC} – 0.7 by design.

AC CHARACTERISTICS V_{CC}= 4.75 V to 5.25 V; GND= 0.0 V (Note 6)

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					100					MHz
t _{JITTER}	Random Clock Jitter (RMS)					35					ps
t _{PLH}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
t _{PHL}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
V _{PP}	Input Swing (Note 7)	200		1000	200		1000	200		1000	mV
t _r /t _f	Output Rise/Fall Time (10–90%)					750					ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. $R_L = 500 \Omega$ to GND and $C_L = 20 \text{ pF}$ to GND. Refer to Figure 2.
- 7. V_{PP}(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40.

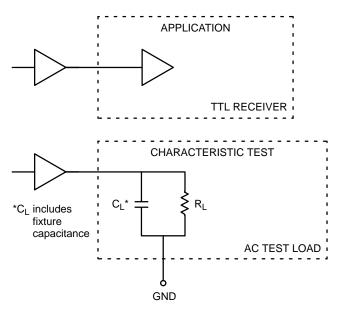


Figure 2. TTL Output Loading Used for Device Evaluation

Resource Reference of Application Notes

AN1404 - ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 – ECLinPS I/O SPICE Modeling Kit

AN1504 - Metastability and the ECLinPS Family

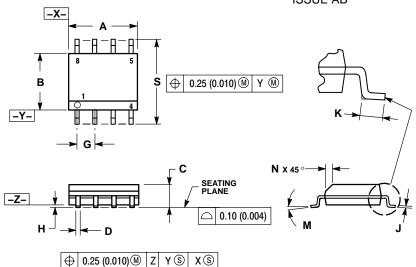
AN1560 - Low Voltage ECLinPS SPICE Modeling Kit

AN1568 - Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 - Using Wire-OR Ties in ECLinPS Designs

AN1672 - The ECL Translator Guide


AND8001 - Odd Number Counters Design

AND8002 - Marking and Date Codes

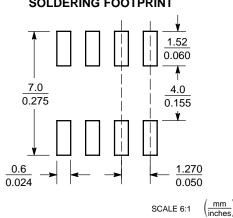
AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SOIC-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07 **ISSUE AB**

NOTES:

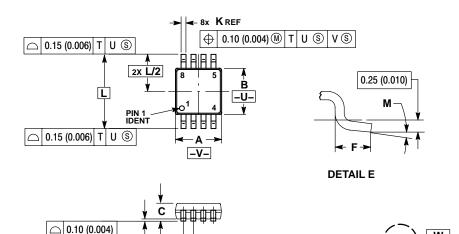
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.


- 2. CONTROLLING DIMENSION. MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	METERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	4.80	5.00	0.189	0.197			
В	3.80	4.00	0.150	0.157			
C	1.35	1.75	0.053	0.069			
D	0.33	0.51	0.013	0.020			
G	1.27	7 BSC	0.050 BSC				
Η	0.10	0.25	0.004	0.010			
7	0.19	0.25	0.007	0.010			
K	0.40	1.27	0.016	0.050			
М	0 °	8 °	0 °	8 °			
Ν	0.25	0.50	0.010	0.020			
S	5.80	6.20	0.228	0.244			


SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

DETAIL E

NOTES:

-W-

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH
 OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2.90	3.10	0.114	0.122		
В	2.90	3.10	0.114	0.122		
С	0.80	1.10	0.031	0.043		
D	0.05	0.15 0.00		0.006		
F	0.40	0.70	0.016	0.028		
G	0.65	BSC	0.026	BSC		
K	0.25	0.40	0.010	0.016		
L	4.90	4.90 BSC		BSC		
M	0°	6 °	0°	6°		

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

-T- SEATING

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative