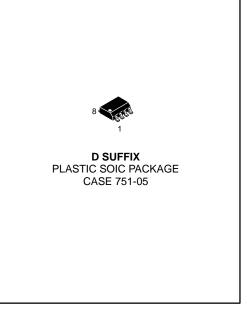

# +4 Divider

The MC10EL/100EL33 is an integrated  $\div 4$  divider. The differential clock inputs and the V<sub>BB</sub> allow a differential, single-ended or AC coupled interface to the device. If used, the V<sub>BB</sub> output should be bypassed to ground with a 0.01 $\mu$ F capacitor. Also note that the V<sub>BB</sub> is designed to be used as an input bias on the EL33 only, the V<sub>BB</sub> output has limited current sink and source capability.


The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple EL33's in a system.

- 650ps Propagation Delay
- 4.0GHz Toggle Frequency
- High Bandwidth Output Transitions
- 75kΩ Internal Input Pulldown Resistors
- >1000V ESD Protection

### LOGIC DIAGRAM AND PINOUT ASSIGNMENT



# MC10EL33 MC100EL33



# **PIN DESCRIPTION**

| PIN   | FUNCTION           |
|-------|--------------------|
| CLK   | Clock Inputs       |
| Reset | Asynch Reset       |
| VBB   | Ref Voltage Output |
| Q     | Data Ouputs        |



5/95

REV 3

# **DC CHARACTERISTICS** (VEE = VEE(min) to VEE(max); VCC = GND)

|                 |                    |               | –40°C          |              |                | 0°C            |              |                | 25°C           |              |                | 85°C           |              |                |      |
|-----------------|--------------------|---------------|----------------|--------------|----------------|----------------|--------------|----------------|----------------|--------------|----------------|----------------|--------------|----------------|------|
| Symbol          | Characteristic     | ;             | Min            | Тур          | Max            | Unit |
| IEE             |                    | 10EL<br>100EL |                | 27<br>27     | 33<br>33       |                | 27<br>27     | 33<br>33       |                | 27<br>27     | 33<br>33       |                | 27<br>31     | 33<br>37       | mA   |
| VEE             |                    | 10EL<br>100EL |                | -5.2<br>-4.5 |                | -4.75<br>-4.20 | -5.2<br>-4.5 | -5.5<br>-5.5   | -4.75<br>-4.20 | -5.2<br>-4.5 | -5.5<br>-5.5   | -4.75<br>-4.20 | -5.2<br>-4.5 | -5.5<br>-5.5   | V    |
| V <sub>BB</sub> |                    | 10EL<br>100EL | -1.43<br>-1.38 |              | -1.30<br>-1.26 | -1.38<br>-1.38 |              | -1.27<br>-1.26 | -1.35<br>-1.38 |              | -1.25<br>-1.26 | -1.31<br>-1.38 |              | -1.19<br>-1.26 | V    |
| lн              | Input HIGH Current |               |                |              | 150            |                |              | 150            |                |              | 150            |                |              | 150            | μΑ   |

# **AC CHARACTERISTICS** ( $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$ ; $V_{CC} = GND$ )

|                                      |                                             | –40°C      |            |            | 0°C        |            |            | 25°C       |            |            | 85°C       |            |            |      |
|--------------------------------------|---------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| Symbol                               | Characteristic                              | Min        | Тур        | Max        | Unit |
| fMAX                                 | Maximum Toggle<br>Frequency                 | 3.4        | 4.2        |            | 3.8        | 4.2        |            | 3.8        | 4.2        |            | 3.8        | 4.2        |            | GHz  |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | Propagation Delay<br>CLK to Q<br>Reset to Q | 490<br>310 | 630<br>460 | 770<br>610 | 540<br>360 | 630<br>460 | 720<br>560 | 550<br>360 | 640<br>460 | 730<br>560 | 590<br>380 | 670<br>480 | 760<br>580 | ps   |
| VPP                                  | Minimum Input Swing <sup>1</sup>            | 150        |            |            | 150        |            |            | 150        |            |            | 150        |            |            | mV   |
| t <sub>r</sub><br>t <sub>f</sub>     | Output Rise/Fall Times Q (20% – 80%)        | 100        | 225        | 350        | 100        | 225        | 350        | 100        | 225        | 350        | 100        | 225        | 350        | ps   |

<sup>1.</sup> Minimum input swing for which AC parameters are guaranteed.

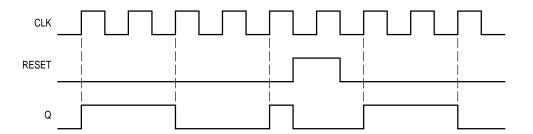



Figure 1. Timing Diagram

MOTOROLA 3–2

# **OUTLINE DIMENSIONS**

# D SUFFIX PLASTIC SOIC PACKAGE CASE 751–05 ISSUE P B B CASE 751–05 ISSUE P SEATING PLANE D SUFFIX PLASTIC SOIC PACKAGE CASE 751–05 ISSUE P

### NOTES:

- DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 3. DIMENSIONS ARE IN MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 6. DIMENSION D DOES NOT INCLUDE MOLD
- DIMENSION D DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |          |  |  |  |  |  |  |
|-----|-------------|----------|--|--|--|--|--|--|
| DIM | MIN         | MAX      |  |  |  |  |  |  |
| Α   | 4.80        | 5.00     |  |  |  |  |  |  |
| В   | 3.80        | 4.00     |  |  |  |  |  |  |
| С   | 1.35        | 1.75     |  |  |  |  |  |  |
| D   | 0.35        | 0.49     |  |  |  |  |  |  |
| F   | 0.40        | 1.25     |  |  |  |  |  |  |
| G   | 1.27        | 1.27 BSC |  |  |  |  |  |  |
| J   | 0.18        | 0.25     |  |  |  |  |  |  |
| K   | 0.10        | 0.25     |  |  |  |  |  |  |
| М   | 0 °         | 7 °      |  |  |  |  |  |  |
| Р   | 5.80        | 6.20     |  |  |  |  |  |  |
| R   | 0.25        | 0.50     |  |  |  |  |  |  |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and in a re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

### How to reach us:

**USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

**MFAX**: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 **INTERNET**: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298



