# **Quad 2-Input Multiplexer** with 3-State Outputs

The LSTTL/MSI SN74LS257B and the SN74LS258B are Quad 2-Input Multiplexers with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ( $E_O$ ) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Schottky Process For High Speed
- Multiplexer Expansion By Tying Outputs Together
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

# **GUARANTEED OPERATING RANGES**

| Symbol          | Parameter                              | Min  | Тур | Мах  | Unit |
|-----------------|----------------------------------------|------|-----|------|------|
| V <sub>CC</sub> | Supply Voltage                         | 4.75 | 5.0 | 5.25 | V    |
| T <sub>A</sub>  | Operating Ambient<br>Temperature Range | 0    | 25  | 70   | °C   |
| I <sub>OH</sub> | Output Current – High                  |      |     | -2.6 | mA   |
| I <sub>OL</sub> | Output Current – Low                   |      |     | 24   | mA   |

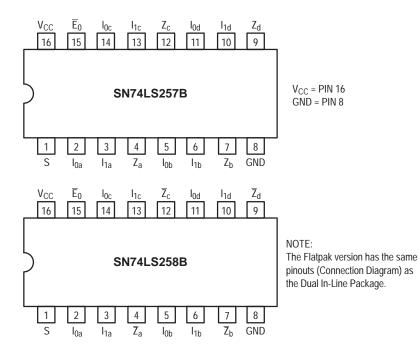


# ON Semiconductor Formerly a Division of Motorola

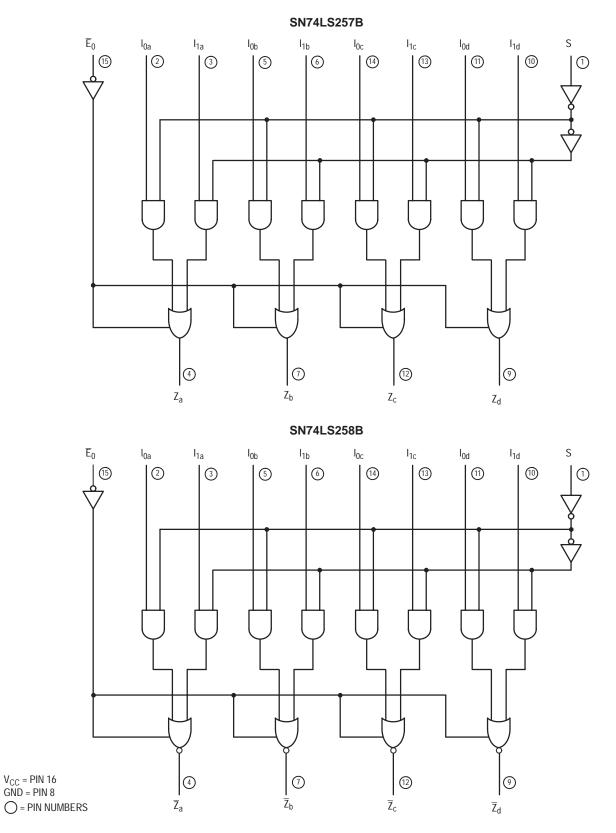
http://onsemi.com

LOW POWER SCHOTTKY




N SUFFIX CASE 648




## **ORDERING INFORMATION**

| Device      | Package    | Shipping         |
|-------------|------------|------------------|
| SN74LS257BN | 16 Pin DIP | 2000 Units/Box   |
| SN74LS257BD | 16 Pin     | 2500/Tape & Reel |
| SN74LS258BN | 16 Pin DIP | 2000 Units/Box   |
| SN74LS258BD | 16 Pin     | 2500/Tape & Reel |

# CONNECTION DIAGRAM DIP (TOP VIEW)



# LOGIC DIAGRAMS



### FUNCTIONAL DESCRIPTION

The LS257B and LS258B are Quad 2-Input Multiplexers with 3-state outputs. They select four bits of data from two sources each under control of a Common Data Select Input. When the Select Input is LOW, the I<sub>0</sub> inputs are selected and when Select is HIGH, the I<sub>1</sub> inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form for the LS257B and in the inverted form for the LS258B.

The LS257B and LS258B are the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

#### LS257B

 $\begin{array}{l} Z_a = \overline{E}_0 \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S}) \ Z_b = \overline{E}_0 \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S}) \\ \overline{Z}_c = \overline{E}_0 \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S}) \ \overline{Z}_d = \overline{E}_0 \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S}) \end{array}$ 

When the Output Enable Input  $(\overline{E}_0)$  is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

#### LS258B

| Z <sub>a</sub> = | $\overline{E}_0 \bullet$ | (I <sub>1a</sub> | • 5 | ; + | $I_{0a}$ | • | S) | $\overline{Z}_{b} =$ | $\overline{E}_0$ | • | $(I_{1b}$ | • | S | + | $I_{0b}$ | • | S) |
|------------------|--------------------------|------------------|-----|-----|----------|---|----|----------------------|------------------|---|-----------|---|---|---|----------|---|----|
|                  |                          |                  |     |     |          |   |    | $\overline{Z}_d =$   |                  |   |           |   |   |   |          |   |    |

| TRUTH TABLE |  |
|-------------|--|
|-------------|--|

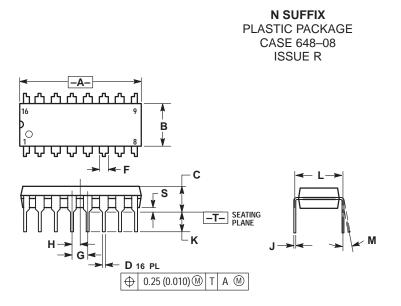
| OUTPUT<br>ENABLE | SELECT<br>INPUT | DATA<br>INPUTS |                |     |     | OUTPUTS<br>LS257B | OUTPUTS<br>LS258B |
|------------------|-----------------|----------------|----------------|-----|-----|-------------------|-------------------|
| Ēo               | S               | I <sub>0</sub> | I <sub>1</sub> | Z   | Z   |                   |                   |
| Н                | Х               | Х              | Х              | (Z) | (Z) |                   |                   |
| L                | Н               | Х              | L              | L   | н   |                   |                   |
| L                | н               | Х              | Н              | н   | L   |                   |                   |
| L                | L               | L              | Х              | L   | н   |                   |                   |
| L                | L               | Н              | Х              | Н   | L   |                   |                   |

H = HIGH Voltage Level

L = LOW Voltage Level X = Don't Care

(Z) = High Impedance (off)

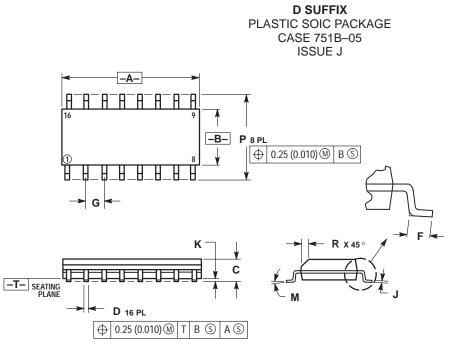
|                  |                                                                        |                  | Limits |       |            |      |                                                                            |                                                                |  |
|------------------|------------------------------------------------------------------------|------------------|--------|-------|------------|------|----------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Symbol           | Parameter                                                              |                  | Min    | Тур   | Max        | Unit | Tes                                                                        | t Conditions                                                   |  |
| V <sub>IH</sub>  | Input HIGH Voltage                                                     |                  | 2.0    |       |            | V    | Guaranteed Input HIGH Voltage for<br>All Inputs                            |                                                                |  |
| V <sub>IL</sub>  | Input LOW Voltage                                                      |                  |        |       | 0.8        | V    | Guaranteed Input LOW Voltage for<br>All Inputs                             |                                                                |  |
| V <sub>IK</sub>  | Input Clamp Diode Voltage                                              |                  |        | -0.65 | -1.5       | V    | $V_{CC} = MIN, I_{IN} =$                                                   | –18 mA                                                         |  |
| V <sub>OH</sub>  | Output HIGH Voltage                                                    |                  | 2.4    | 3.1   |            | V    | V <sub>CC</sub> = MIN, I <sub>OH</sub> =<br>or V <sub>IL</sub> per Truth T |                                                                |  |
| M                |                                                                        |                  |        | 0.25  | 0.4        | V    | I <sub>OL</sub> = 12 mA                                                    | $V_{CC} = V_{CC} MIN,$<br>$V_{IN} = V_{IL} \text{ or } V_{IH}$ |  |
| V <sub>OL</sub>  | Output LOW Voltage                                                     |                  |        | 0.35  | 0.5        | V    | I <sub>OL</sub> = 24 mA                                                    | per Truth Table                                                |  |
| I <sub>OZH</sub> | Output Off Current — HIGH                                              |                  |        |       | 20         | μΑ   | $V_{CC} = MAX, V_{OUT} = 2.7 V$                                            |                                                                |  |
| I <sub>OZL</sub> | Output Off Current — LOW                                               | /                |        |       | -20        | μΑ   | $V_{CC} = MAX, V_{OUT} = 0.4 V$                                            |                                                                |  |
| IIH              | Input HIGH Current<br>Other Inputs<br>S Inputs                         |                  |        |       | 20<br>40   | μΑ   | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 2.7 V                             |                                                                |  |
|                  | Other Inputs<br>S Inputs                                               |                  |        |       | 0.1<br>0.2 | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 7.0 V                             |                                                                |  |
| IIL              | Input LOW Current<br>All Inputs                                        |                  |        |       | -0.4       | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub> :                                   | = 0.4 V                                                        |  |
| I <sub>OS</sub>  | Short Circuit Current (Note                                            | 1)               | -30    |       | -130       | mA   | $V_{CC} = MAX$                                                             |                                                                |  |
|                  | Power Supply Current<br>Total, Output HIGH                             | LS257B<br>LS258B |        |       | 10<br>9.0  | mA   |                                                                            |                                                                |  |
| I <sub>CC</sub>  | Total, Output LOWLS257B<br>LS258BTotal, Output 3-StateLS257B<br>LS258B |                  |        |       | 16<br>14   | mA   | V <sub>CC</sub> = MAX                                                      |                                                                |  |
|                  |                                                                        |                  |        |       | 19<br>16   | mA   |                                                                            |                                                                |  |


## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

# AC CHARACTERISTICS (T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5.0 V) See SN74LS251 for Waveforms

|                                      |                                     | Limits |          |          |      |                 |                         |  |
|--------------------------------------|-------------------------------------|--------|----------|----------|------|-----------------|-------------------------|--|
| Symbol                               | Parameter                           | Min    | Тур      | Max      | Unit | Test Conditions |                         |  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay, Data to Output   |        | 10<br>12 | 13<br>15 | ns   | Figures 1 & 2   | 0 – 45 pE               |  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay, Select to Output |        | 14<br>14 | 21<br>21 | ns   | Figures 1 & 2   | C <sub>L</sub> = 45 pF  |  |
| t <sub>PZH</sub>                     | Output Enable Time to HIGH Level    |        | 20       | 25       | ns   | Figures 4 & 5   | C <sub>L</sub> = 45 pF  |  |
| t <sub>PZL</sub>                     | Output Enable Time to LOW Level     |        | 20       | 25       | ns   | Figures 3 & 5   | R <sub>L</sub> = 667 Ω  |  |
| t <sub>PLZ</sub>                     | Output Disable Time to LOW Level    |        | 16       | 25       | ns   | Figures 3 & 5   | C <sub>L</sub> = 5.0 pF |  |
| t <sub>PHZ</sub>                     | Output Disable Time from HIGH Level |        | 18       | 25       | ns   | Figures 4 & 5   | R <sub>L</sub> = 667 Ω  |  |


# PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

|     | INC   | HES   | MILLIMETERS |       |  |  |
|-----|-------|-------|-------------|-------|--|--|
| DIM | MIN   | MAX   | MIN         | MAX   |  |  |
| Α   | 0.740 | 0.770 | 18.80       | 19.55 |  |  |
| В   | 0.250 | 0.270 | 6.35        | 6.85  |  |  |
| С   | 0.145 | 0.175 | 3.69        | 4.44  |  |  |
| D   | 0.015 | 0.021 | 0.39        | 0.53  |  |  |
| F   | 0.040 | 0.70  | 1.02        | 1.77  |  |  |
| G   | 0.100 | BSC   | 2.54 BSC    |       |  |  |
| Н   | 0.050 | BSC   | 1.27 BSC    |       |  |  |
| J   | 0.008 | 0.015 | 0.21        | 0.38  |  |  |
| К   | 0.110 | 0.130 | 2.80        | 3.30  |  |  |
| L   | 0.295 | 0.305 | 7.50        | 7.74  |  |  |
| Μ   | 0 °   | 10 °  | 0 °         | 10 °  |  |  |
| S   | 0.020 | 0.040 | 0.51        | 1.01  |  |  |

# PACKAGE DIMENSIONS



NOTES:

- NOTES:
  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
  DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
  DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
  PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIN | IETERS | INCHES |       |  |  |
|-----|--------|--------|--------|-------|--|--|
| DIM | MIN    | MAX    | MIN    | MAX   |  |  |
| Α   | 9.80   | 10.00  | 0.386  | 0.393 |  |  |
| В   | 3.80   | 4.00   | 0.150  | 0.157 |  |  |
| С   | 1.35   | 1.75   | 0.054  | 0.068 |  |  |
| D   | 0.35   | 0.49   | 0.014  | 0.019 |  |  |
| F   | 0.40   | 1.25   | 0.016  | 0.049 |  |  |
| G   | 1.27   | BSC    | 0.050  | ) BSC |  |  |
| J   | 0.19   | 0.25   | 0.008  | 0.009 |  |  |
| К   | 0.10   | 0.25   | 0.004  | 0.009 |  |  |
| Μ   | 0 °    | 7°     | 0 °    | 7°    |  |  |
| Р   | 5.80   | 6.20   | 0.229  | 0.244 |  |  |
| R   | 0.25   | 0.50   | 0.010  | 0.019 |  |  |

**ON Semiconductor** and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### PUBLICATION ORDERING INFORMATION

#### North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.