NCP4421, NCP4422

9.0 A High-Speed MOSFET Drivers

The NCP4421/4422 are high current buffer/drivers capable of driving large MOSFETs and IGBTs.

They are essentially immune to any form of upset except direct overvoltage or over-dissipation - they cannot be latched under any conditions within their power and voltage ratings; they are not subject to damage or improper operation when up to 5.0 V of ground bounce is present on their ground terminals; they can accept, without either damage or logic upset, more than 1.0 A inductive current of either polarity being forced back into their outputs. In addition, all terminals are fully protected against up to 4.0 kV of electrostatic discharge.

The inputs may be driven directly from either TTL or CMOS (3.0 V to 18 V). In addition, 300 mV of hysteresis is built into the input, providing noise immunity and allowing the device to be driven from slowly rising or falling waveforms.

Features

- Tough CMOS ${ }^{\text {TM }}$ Construction
- High Peak Output Current (9.0 A)
- High Continuous Output Current (2.0 A Max)
- Fast Rise and Fall Times:
-30 ns with $4,700 \mathrm{pF}$ Load
- 180 ns with $47,000 \mathrm{pF}$ Load
- Short Internal Delays (30 nsec Typ)
- Low Output Impedance (1.4 Ω Typ)

Applications

- Line Drivers for Extra-Heavily-Loaded Lines
- Pulse Generators
- Driving the Largest MOSFETs and IGBTs
- Local Power ON/OFF Switch
- Motor and Solenoid Driver

ON Semiconductor
http://onsemi.com

PIN CONNECTIONS

5-Pin TO-220

NOTE: Duplicate pins must both be connected for proper operation. NC = No connection

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet

See general marking information in the device marking section on page 8 of this data sheet.

ABSOLUTE MAXIMUM RATINGS*

Rating	Symbol	Value	Unit
Power Dissipation ($\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$) PDIP 5-Pin TO-220	-	$\begin{gathered} 730 \\ 1.6 \end{gathered}$	W
Power Dissipation ($\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$) 5-Pin TO-220 (With Heat Sink)	-	12.5	W
Derating Factors (To Ambient) PDIP 5-Pin TO-220	-	$\begin{aligned} & 8.0 \\ & 12 \end{aligned}$	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Thermal Impedance (To Case) 5-Pin TO-220 R 日Jc	-	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature (Chip)	-	150	${ }^{\circ} \mathrm{C}$
Operating Temperature (Ambient) TO-220 Version PDIP Version	-	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Lead Temperature (10 Seconds)	-	300	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	20	V
Input Voltage	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}+3.0 \text { to } \\ & \mathrm{GND}-5.0 \end{aligned}$	V
Input Current ($\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{DD}}$)	-	50	mA

*Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$ unless otherwise specified.)

| Characteristics | Test Conditions | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | | | | | | |
| Logic 1 Input Voltage | - | $V_{I H}$ | 2.4 | 1.8 | - | V |
| Logic 0 Input Voltage | - | V_{IL} | - | 1.3 | 0.8 | V |
| Input Current | $0 \vee \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{DD}}$ | I_{IN} | -10 | - | 10 | $\mu \mathrm{~A}$ |

Output

High Output Voltage	See Figure 1	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
Low Output Voltage	See Figure 1	$\mathrm{~V}_{\mathrm{OL}}$	-	-	0.025	V
Output Resistance, High	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	R_{O}	-	1.4	-	Ω
Output Resistance, Low	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	R_{O}	-	0.9	1.7	Ω
Peak Output Current	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$	I_{PK}	-	9.0	-	A
Continuous Output Current	$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ}$ $(\mathrm{TC4421/22CAT} \mathrm{nly})$	I_{DC}	2.0	-	-	A
Latch-Up Protection	Duty Cycle $\leq 2 \%$ Withstand Reverse Current	$\mathrm{I}_{\mathrm{REV}}$	>1500 $\mathrm{t} \leq 300 \mu \mathrm{~s}$	-	-	mA

Switching Time (Note 1.)

Rise Time	Figure $1, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	t_{R}	-	60	75	nsec
Fall Time	Figure $1, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	t_{F}	-	60	75	nsec
Delay Time	Figure 1	$\mathrm{t}_{\mathrm{D} 1}$	-	30	60	nsec
Delay Time	Figure 1	$\mathrm{t}_{\mathrm{D} 2}$	-	33	60	nsec

1. Switching times guaranteed by design.

NCP4421, NCP4422

ELECTRICAL CHARACTERISTICS (continued) $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 18 \mathrm{~V}$ unless otherwise specified.)

Characteristics	Test Conditions	Symbol	Min	Typ	Max	Unit
Power Supply						
Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	Is		$\begin{aligned} & 0.2 \\ & 55 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Operating Input Voltage	-	$V_{D D}$	4.5	-	18	V

Input

Logic 1 Input Voltage	-	V_{IH}	2.4	-	-	V
Logic 0 Input Voltage	-	V_{IL}	-	-	0.8	V
Input Current	$0 \vee \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	I_{IN}	-10	-	10	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Measured over operating temperature range with $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 18 \mathrm{~V}$ unless otherwise specified.)

| Characteristics | Test Conditions | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | | | | | | |
| Logic 1 Input Voltage | - | V_{IH} | 2.4 | - | - | V |
| Logic 0 Input Voltage | - | V_{IL} | - | - | 0.8 | V |
| Input Current | $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ | I_{IN} | -10 | - | 10 | $\mu \mathrm{~A}$ |

Output

High Output Voltage	See Figure 1	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.025$	-	-	V
Low Output Voltage	See Figure 1	V_{OL}	-	-	0.025	V
Output Resistance, High	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	R_{O}	-	2.4	3.6	W
Output Resistance, Low	$\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	R_{O}	-	1.8	2.7	W

Switching Time (Note 1.)

Rise Time	Figure $1, C_{L}=10,000 \mathrm{pF}$	t_{R}	-	60	120	nsec
Fall Time	Figure $1, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$	t_{F}	-	60	120	nsec
Delay Time	Figure 1	$\mathrm{t}_{\mathrm{D} 1}$	-	50	80	nsec
Delay Time	Figure 1	$\mathrm{t}_{\mathrm{D} 2}$	-	65	80	nsec

Power Supply
$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { Power Supply Current } & \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}\end{array}\right)$

1. Switching times guaranteed by design.

NCP4421, NCP4422

Figure 1. Switching Time Test Circuit

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 2. Rise Time vs. Supply Voltage

Figure 4. Rise Time vs. Capacitive Load

Figure 6. Rise and Fall Times vs. Temperature

Figure 3. Fall Time vs. Supply Voltage

Figure 5. Fall Time vs. Capacitive Load

Figure 7. Propagation Delay vs. Supply Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 8. Supply Current vs. Capacitive Load $\left(\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}\right)$

Figure 10. Supply Current vs. Capacitive Load ($\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$)

Figure 12. Supply Current vs. Capacitive Load
$\left(\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}\right)$

Figure 9. Supply Current vs. Frequency ($\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$)

Figure 11. Supply Current vs. Frequency ($\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$)

Figure 13. Supply Current vs. Frequency
$\left(V_{D D}=6 \mathrm{~V}\right)$

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 14. Propagation Delay vs. Input Amplitude

Figure 16. Crossover Energy vs. Supply Voltage

Figure 18. High-State Output Resistance vs. Supply Voltage

Figure 15. Propagation Delay vs. Temperature

Figure 17. Quiescent Supply Current vs.
Temperature

Figure 19. Low-State Output Resistance vs. Supply Voltage

NCP4421, NCP4422

MARKING DIAGRAMS

$$
\begin{array}{ll}
\mathrm{X} & =1 \text { or } 2 \\
\mathrm{X} & =\text { Assembly ID Code } \\
\mathrm{Y} & =\text { Year } \\
\mathrm{CO} & =\text { Country of Origin }
\end{array}
$$

ORDERING INFORMATION

Device	Package	Temperature Range	Shipping
NCP4421T	5-Pin TO-220	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	50 Units/Rail
NCP4421P	8-Pin PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	50 Units/Rail
NCP4422T	5-Pin TO-220	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	50 Units/Rail
NCP4422P	8-Pin PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	50 Units/Rail

Notes

Notes

NCP4421, NCP4422

PACKAGE DIMENSIONS

PDIP
P SUFFIX
CASE 626-05
ISSUE K

NOTES:

1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI DIMENSIONIN
Y14.5M, 1982.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
B	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
H	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M	---	10°	---	10°
N	0.76	1.01	0.030	0.040

TO-220
T SUFFIX
CASE 314D-04
ISSUE E

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION D DOES NOT INCLUDE
INTERCONNECT BAR (DAMBAR) PROTRUSION.
DIMENSION D INCLUDING PROTRUSION SHALL
NOT EXCEED 10.92 (0.043) MAXIMUM.

	INCHES			MILLIMETERS	
	MIN	MAX	MIN	MAX	
A	0.572	0.613	14.529	15.570	
B	0.390	0.415	9.906	10.541	
C	0.170	0.180	4.318	4.572	
D	0.025	0.038	0.635	0.965	
E	0.048	0.055	1.219	1.397	
G	0.067	BSC	1.702	BSC	
H	0.087	0.112	2.210	2.845	
J	0.015	0.025	0.381	0.635	
K	0.990	1.045	25.146	26.543	
L	0.320	0.365	8.128	9.271	
\mathbf{Q}	0.140	0.153	3.556	3.886	
U	0.105	0.117	2.667	2.972	

NCP4421, NCP4422

$$
\begin{aligned}
& \text { ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes } \\
& \text { without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular } \\
& \text { purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, } \\
& \text { including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or } \\
& \text { specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be } \\
& \text { validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. } \\
& \text { SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications } \\
& \text { intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or } \\
& \text { death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold } \\
& \text { SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable } \\
& \text { attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim } \\
& \text { alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. }
\end{aligned}
$$

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

