Preferred Device

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR12DCM MCR12DCN	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 90°C)	I _{T(RMS)}	12	Α
Average On–State Current (180° Conduction Angles; T _C = 90°C)	I _{T(AV)}	7.8	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C)	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	41	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _C = 90°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, T _C = 90°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec, T_C = 90°C)	I _{GM}	2.0	А
Operating Junction Temperature Range	T_J	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

ON Semiconductor®

http://onsemi.com

SCRs 12 AMPERES RMS 600 – 800 VOLTS

DPAK CASE 369C STYLE 4

MARKING DIAGRAM

PIN ASSIGNMENT			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

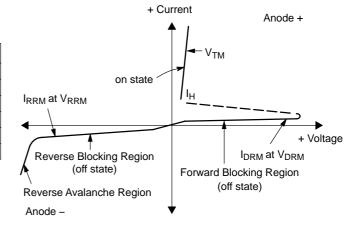
THERMAL CHARACTERISTICS

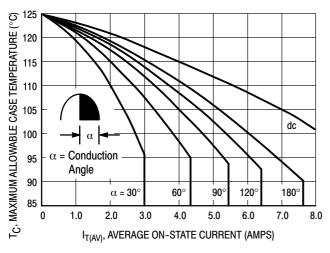
Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction-to-Case – Junction-to-Ambient – Junction-to-Ambient (Note 2)	$egin{array}{l} R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA} \end{array}$	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	T _L	260	°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•		
Peak Repetitive Forward or Reverse Blocking Current (V_{AK} = Rated V_{DRM} or V_{RRM} , Gate Open)	T _J = 25°C T _J = 125°C	I _{DRM,} I _{RRM}	- -	_ _	0.01 5.0	mA
ON CHARACTERISTICS						
Peak Forward On–State Voltage (Note 4) (I _{TM} = 20 A)		V_{TM}	-	1.3	1.9	V
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	I _{GT}	2.0	7.0 –	20 40	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	V _{GT}	0.5 -	0.65 -	1.0 2.0	V
Gate Non–Trigger Voltage $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	T _J = 125°C	$V_{\sf GD}$	0.2	-	_	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open)	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	Ιн	4.0 -	22 -	40 80	mA
Latching Current $(V_D = 12 \text{ V}, I_G = 20 \text{ mA}, T_J = 25^{\circ}\text{C})$ $(V_D = 12 \text{ V}, I_G = 40 \text{ mA}, T_J = -40^{\circ}\text{C})$		lι	4.0 -	22 -	40 80	mA
DYNAMIC CHARACTERISTICS			_			
Critical Rate of Rise of Off–State Voltage (V _D = Rated V _{DRM} , Exponential Waveform, Gate Open	en, T _J = 125°C)	dv/dt	50	200	_	V/μs

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ORDERING INFORMATION

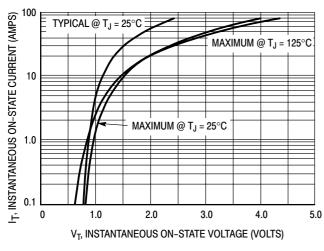

Device	Package	Shipping [†]
MCR12DCMT4	DPAK	2500 / Tape and Reel
MCR12DCMT4G	DPAK (Pb-Free)	2500 / Tape and Reel
MCR12DCNT4	DPAK	2500 / Tape and Reel
MCR12DCNT4G	DPAK (Pb-Free)	2500 / Tape and Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 ^{1/8&}quot; from case for 10 seconds.
 Pulse Test: Pulse Width ≤ 2.0 msec, Duty Cycle ≤ 2%.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Off-State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off-State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On-State Voltage
I _H	Holding Current



P(AV), AVERAGE POWER DISSIPATION (WATTS) 180° 120° 90° 12 60° dc α = Conduction 10 Angle 8.0 $\alpha = 30^{\circ}$ 6.0 4.0 2.0 1.0 7.0 8.0 $I_{T(AV)}$, AVERAGE ON-STATE CURRENT (AMPS)

Figure 1. Average Current Derating

Figure 2. On-State Power Dissipation

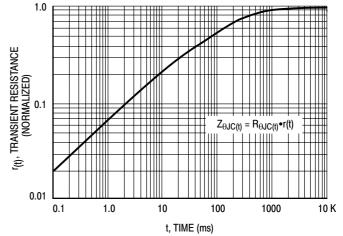


Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

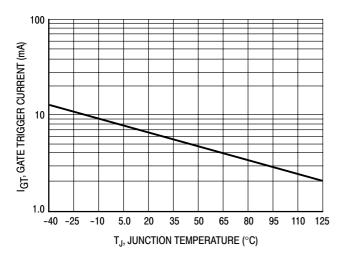


Figure 5. Typical Gate Trigger Current versus Junction Temperature

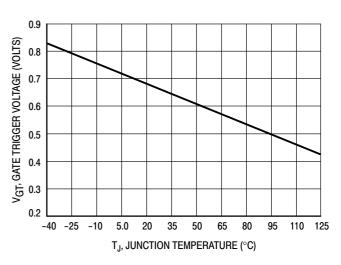


Figure 6. Typical Gate Trigger Voltage versus
Junction Temperature

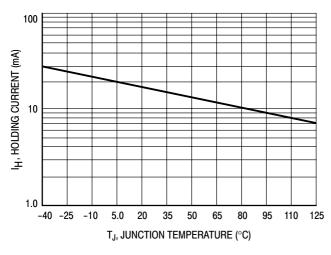


Figure 7. Typical Holding Current versus Junction Temperature

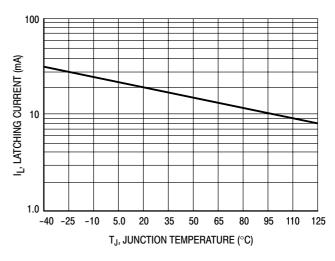


Figure 8. Typical Latching Current versus Junction Temperature

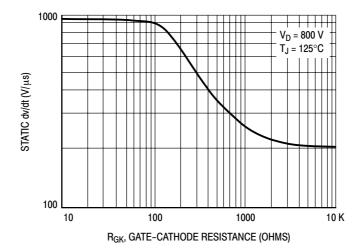
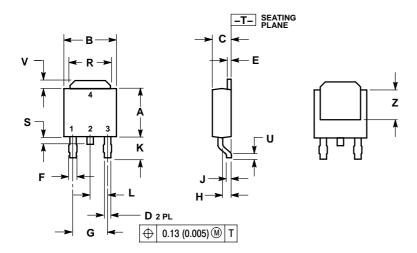



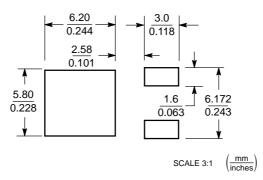
Figure 9. Exponential Static dv/dt versus Gate-Cathode Resistance

PACKAGE DIMENSIONS

DPAK CASE 369C ISSUE O

NOTES:

- DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.


	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3 93	

STYLE 4:

PIN 1. CATHODE 2. ANODE

- 3. GATE
- 4. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.