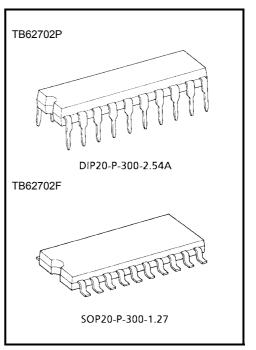
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

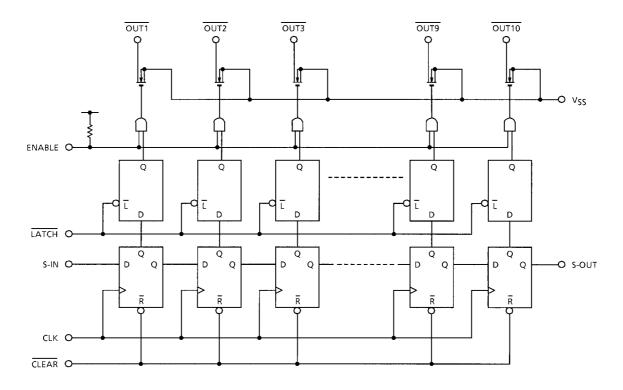
TB62702P,TB62702F

10BIT SERIAL-IN PARALLEL-OUT SHIFT REGISTER / LATCH / 10SEGMENT LED DRIVERS


The TB62702P, TB62702F are specifically designed for 10–Segment LED Drivers and LED display. And these are monolithic integrated circuits designed to be used together with Bi–CMOS (DMOS) integrated circuit. The devices consist of a 10bit shift Register and 10bit Latches, and 10bit DMOS structures.

FEATURES

- 10bit serial-in parallel-out shift register / latch / 10segment LED driver (Bi-CMOS process)
- CMOS compatible inputs
- Open-drain DMOS outputs
- Low steady-state power consumption
- Serial data output for cascade operation
- Packge ; P-type DIP-20-P-300A F-type SOP-20-P-300


PIN CONNECTION (TOP VIEW)

	20] v _{dd}
2	19	CLEAR
3	18] сгоск
4	17] s-in
5	16	P-GND
6	15] <u>OUT1</u>
7	14] <u>OUT2</u>
8	13] оптз
9	12] OUT4
10	11] <u>outs</u>
	3 4 5 6 7 8 9	2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12

Weight DIP20-P-300-2.54A : 2.25 g (typ.) SOP20-P-300-1.27 : 0.48 g (typ.)

BLOCK DIAGRAM

MAXIMUM RATINGS (Ta = 25° C, V_{SS} = 0 V)

CHARACTERISTIC		SYMBOL	RATING	UNIT
Supply Voltage		V _{DD}	-0.3~7.0	V
Input Voltage		V _{IN}	-0.3~V _{DD} +0.3	V
Output Drain-Source Voltage		V _{OUT}	-0.4~30	V
Output Current		IOUT	30	mA / bit
Power Dissipation	Р	P _D (Note 1)	1.47	W
	F		0.96 (Note 2)	vv
Operating Temperature		T _{opr}	-40~85	°C
Storage Temperature		T _{stg}	-55~150	°C

Note 1: Delated above 25°C in the proportion of 11.7 mW / °C(P–type), 7.7 mW / °C(F–type).

Note 2: On Glass Epoxy (50 × 50 × 1.6mm Cu 40%)

RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C, V_{SS} = 0 V)

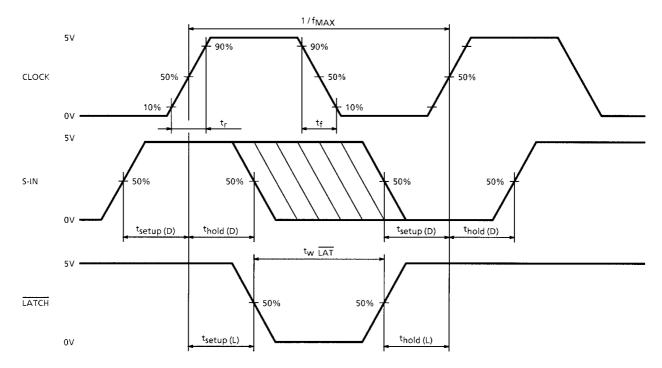
CHARACTERI	STIC	SYMBOL	CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage		V _{DD}	—	4.5	5	5.5	V
Input Voltage	"H" Level	V _{IH}	_	0.7 V _{DD}	_	V _{DD}	V
input voitage	"L" Level	VIL	_	0	_	0.3 V _{DD}	v
Output Drain-Source Vo	oltage	V _{OUT}	—	-	_	30	V
Output Current		IOUT	Duty = 100%, All output on	_	_	24	mA / ch
Power Dissipation	Р	PD	—		—	760	mW
Power Dissipation	F	۲D	(Note 1)	_	—	470	11100

Note 1: On Glass Epoxy (50 × 50 × 1.6 mm Cu 40%)

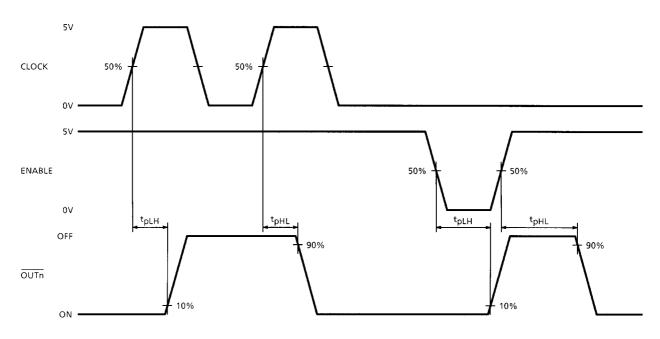
ELECTRICAL CHARACTERISTICS (Ta = -40~85°C, V_{DD} = 4.5~5.5 V, V_{SS} = 0 V)

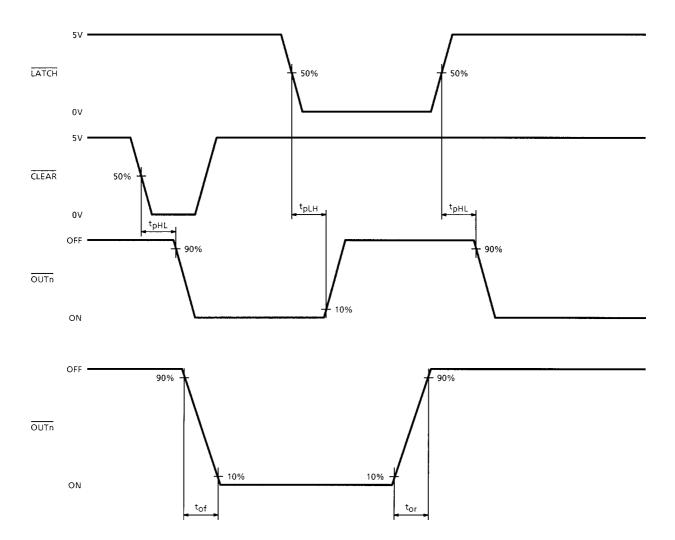
CHARACTER	RISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Output Voltage	"L" Level	V _{DS1}	-	I _{OUT} = 15 mA, Ta = 25°C	—	_	0.18	v	
	"L" Level	V _{DS1}	_	I _{OUT} = 15 mA	_	-	0.27		
	"L" Level	V _{DS2}	_	I _{OUT} = 26 mA, Ta = 25°C	_	_	0.31		
	"L" Level	V _{DS2}	—	I _{OUT} = 26 mA	_	_	0.47		
Output Resistor		R _{ON}	_	Ta = 25°C, I _{OUT} = 26 mA	_	_	12	Ω	
Output Leakage Current		I _{OZ1}	_	V _{OUT} = 30 V, EN = "L" 1 bit	_	_	10	μA	
		I _{OZ2}	_	V _{OUT} = 30 V, EN = "L" 10 bit	_	_	±1		
Input Current		I _{IN}	—	$V_{IN} = V_{DD}$ or V_{SS}	_	_	±1	μA	
		١ _{١L}	-	ENABLE, V _{IN} = V _{SS}	-27.5	-55.0	-110.0		
	"H" Level	I _{OH}	_	S-OUT V _{DS} = 4.6 V, V _{DD} = 5.0 V	-400	-600	_		
Output Current	"L" Level	I _{OL}	_	S-OUT V _{DS} = 0.4 V, V _{DD} = 5.0 V	400	600	_	μA	
Input Voltage	"H" Level	V _{IH}	_	—	0.7 V _{DD}	_	V _{DD}	v	
	"L" Level	V _{IL}	_	_	0	_	0.3 V _{DD}		
Operating Supply Current		I _{DD1}	_	f _{CLK} = 5 MHz NO loads, 1 bit	_	_	1500	μA	
Standby Supply Current		I _{DD2}	—	—	_	_	500		

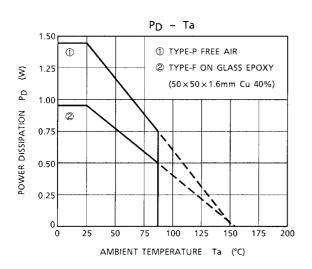
SWITCHING CHARACTERISTICS (Ta = 25°C, V_{DD} = 5 V, V_{OUT} = 30 V, R_L = 1150 Ω , C_L = 15 pF, "H" = V_{IH} , "L" = V_{IL})


CHARACTE	RISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Propagation Delay	CLK-OUTn		LAT = "H", CLR = "H", EN = "H"	—	_	250	ns	
	CLK-OUTn	4	LAT = "H", EN = "H"	-	_	250		
	LAT - OUTn	t _{pLH}	CLR = "H", EN = "H"	-	_	200		
	EN- OUTn		LAT = "H", CLR = "H"	_	_	150	Ī	
	CLK-OUTn		LAT = "H", CLR = "H", EN = "H"	_	_	250	ns	
Propagation Delay Time (High-to-Low)	LAT - OUTn	t _{pHL}	CLR = "H", EN = "H"	_	_	200		
, , , , , , , , , , , , , , , , , , ,	EN- OUTn		LAT = "H", CLR = "H"	_	_	150	Ī	
Set Up Time	CLK-LAT	t _{setup (L)}	—	_	_	50	- ns	
Set op Tille	CLK-S-IN	t _{setup (D)}	—	_	_	35		
Hold Time	CLK-LAT	t _{hold (L)}	—	_	_	105		
Hold Time	CLK-S-IN	t _{hold (D)}	—	_	_	50		
Clock Pulse Width		t _w CLK	—	_	_	100		
Latch Pulse Width		t _w TAT	—	_	_	50	ns	
Clear Pulse Width		t _w CLR	—	_	_	50		
Enable Pulse Width		t _{w EN}	—	-	_	400		
Output Rise Time		t _{or}	OUTn	-	_	1000		
		tr	S-OUT, V _{SS} = 0V	-	_	50	ns	
Output Fall Time		t _{of}	OUTn	-		150		
		t _f	S-OUT, V _{SS} = 0V	—	_	50		
Maximum Clock Frequency		f _{MAX1}	Duty = 50% Cascade connected	5	8	_	MHz	
		f _{MAX2}	Duty = 50%	6	12	_		

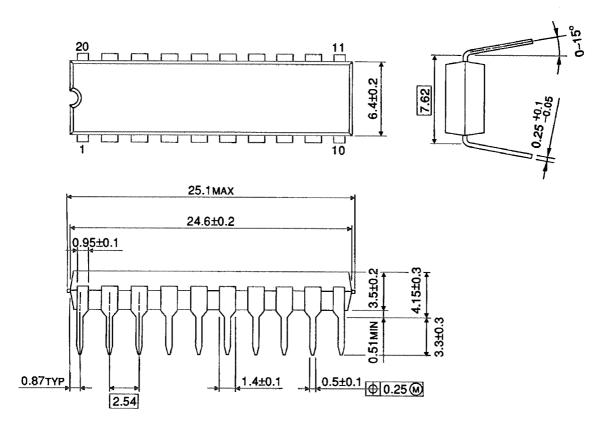
RECOMMENDED TIMING CONDITIONS (Ta = $-40 \sim 85^{\circ}$ C, V_{DD} = $4.5 \sim 5.5$ V, V_{SS} = 0)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Clock Pulse Width	t _{w CLK}	_	100	_	_	ns
Enable Pulse Width	t _{w EN}	_	400	_	_	μs
Latch Pulse Width	t _w LAT	_	100	_	-	ns
Clear Pulse Width	t _w CLR	_	100	_	_	ns
Data Set Up Time	t _{setup}	_	100	_	_	ns
Data Hold Time	t _{hold}	_	150	_	_	ns


TIMING DIAGRAM


1. Input timing diagram

2. Propagation delay time

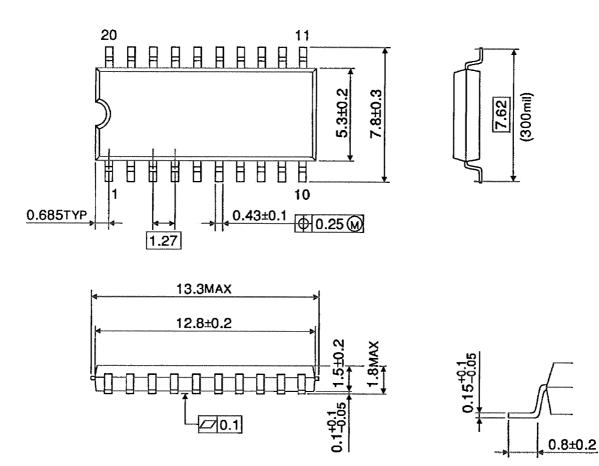

PRECUATIONS for USING

Utmost care is necessary in the design of the output line, V_{CC} (V_{DD}) and GND (L–GND, P–GND) line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

Package Dimensions

DIP20-P-300-2.54A

Unit : mm



Weight: 2.25 g (typ.)

Package Dimensions

SOP20-P-300-1.27

Unit : mm

Weight: 0.48 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.