
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

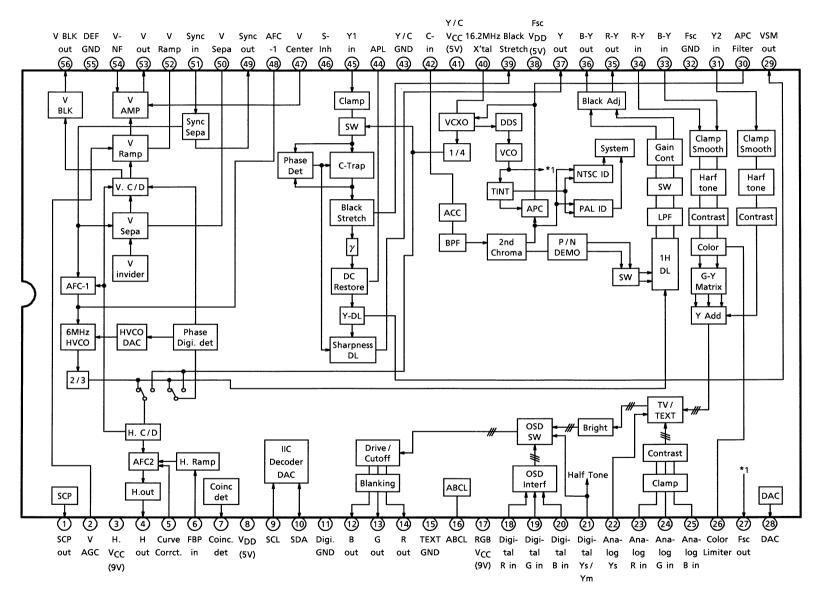
TB1230AN

VIDEO,CHROMA AND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC SYSTEM COLOR TV

TB1230AN that is a signal processing IC for the PAL / NTSC color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56-pin shrink DIP plastic package.

TB1230AN incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC discrimination circuit in the chroma section, and an automatic 50 / 60Hz discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates 4.43MHz, 3.58MHz and M / N-PAL clock signals for color demodulation, there is a horizontal PLL circuit built in the IC. The PAL demodulation circuit which is an adjustment-free circuit incorporates a 1H DL circuit inside for operating the base band signal processing system.

Also, TB1230AN makes it possible to set or control various functions through the built-in I²C bus line.


FEATURES

- Video section
 - Built-in trap filter
 - Black expansion circuit
 - Variable DC regeneration rate
 - Y delay line
 - Sharpness control by aperture control
 - y correction
 - VSM output
- Chroma section
 - Built-in 1H Delay circuit
 - PAL base band demodulation system
 - One crystal color demodulation circuit (4.43MHz, 3.58MHz, M / N-PAL)
 - Automatic system discrimination, system forced mode
 - 1H delay line also serves as comb filter in NTSC demodulation
 - Built-in band-pass filter
 - Color limiter circuit
 - Fsc output

<u>TOSHIBA</u>

- Synchronizing deflecting section
 - Built-in horizontal VCO resonator
 - Adjustment-free horizontal / vertical oscillation by count-down circuit
 - Double AFC circuit
 - Vertical frequency automatic discrimination circuit
 - Horizontal / vertical holding adjustment
 - Vertical ramp output
 - Vertical amplitude adjustment
 - Vertical linearity / S-shaped curve adjustment
 - SCP (Sand Castle Pulse) output
- Text section
 - Linear RGB input
 - OSD RGB input
 - Cut / off-drive adjustment
 - RGB primary signal output

BLOCK DIAGRAM

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	SCP OUTPUT	Output terminal of Sand Castle Pulse. (SCP) To connect drive resistor for SCP.	Choice and the second s	Horizontal blanking 7.3V 4.5V 4.5V 0.4V Vertical blanking
2	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.		_
3	H-V _{CC} (9V)	V _{CC} for the DEF block (deflecting system). Connect 9V (Typ.) to this pin.	—	—
4	Horizontal Output	Horizontal output terminal.		5.0V
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01µF capacitor between this pin and GND.		4.5V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse. The threshold of Horizontal AFC2 detection is set H.V _{CC} -2V _f (V r 0.75V) Confirming the power supply voltage, determine the high level of FBP.		H-VCC

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H. synchronizing signal or V. synchronizing signal.		_
8	V _{DD} (5V)	V _{DD} terminal of the LOGIC block. Connect 5V (Typ.) to this pin.	_	_
9	SCL	SCL terminal of I ² C bus.		-
10	SDA	SDA terminal of I ² C bus.		_
11	Digital GND	Grounding terminal of LOGIC block.		_
12 13 14	B Output G Output R Output	R, G, B output terminals.		J_7
15	TEXT GND	Grounding terminal of TEXT block.	—	_
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.		6.4V at Open
17	RGB-V _{CC} (9V)	V _{CC} terminal of TEXT block. Connect 9V (Typ.) to this pin.	_	_

TB1230AN

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
18 19 20	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.		OSD
21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).		OSD —3.1V TEXT —2.0V H. T. —1.0V TV GND
22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).		Analog RGB ——0.5V TV ——GND
23 24 25	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5V _{p-p} (100 IRE).		100IRE = 0.5V _{p-p} 4.6V GND
26	Color Limiter	To connect filter for detecting color limit.	26 π m limiter 26 π m limiter π	_
27	FSC Output	Output terminal of FSC.	2000 400 HA 2000	3.58MHz AMARINA Other 500mVp-p

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
28	1Bit DAC Output Terminal	Enable to change slave address to 8Ah by a connecting V_{CC} with this terminal.		4.5V (Date : (1)) 2.0V (Date : (0))
29	VSM Output Terminal	Power output the signal that is primary differentiated Y signal. Enable to change output amplifier and phase by the Bus.		
30	APC Filter	To connect APC filter for chroma demodulation.		DC 3.2V
31	Y ₂ Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7V _{p-p}	(3) (3) (3) (3) (3) (3) (4) (4) (7) (2) (2) (2) (2) (2) (2) (2) (2	0.7V _{p-p} 2.0V GND
32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc V_{DD}) at the shortest distance from both.	_	_
33 34	B-Y Input R-Y Input	Input terminal of B-Y or R-Y signal. Input signal through a clamping capacitor.	$\begin{array}{c} 33\\ 34\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} DC\\ 2.5V\\ AC\\ B-Y:650mV_{p-p}\\ R-Y:510mV_{p-p}\\ (with input of\\ PAL-75\% \ color\\ bar \ signal) \end{array}$

TB1230AN

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
35 36	R-Y Output B-Y Output	Output terminal of demodulated R-Y or B-Y signal. There is an LPF for removing carrier built in this pin.		$\begin{array}{c} DC\\ 1.9V\\ AC\\ B-Y:650mV_{p-p}\\ R-Y:510mV_{p-p}\\ (with input of\\ PAL-75\% \ color\\ bar \ signal) \end{array}$
37	Y Output	Output terminal of processed Y signal. Standard output level : 0.7V _{p-p}		0.7V _{p-p}
38	Fsc V _{DD}	V_{DD} terminal of V_{DDS} block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.	_	_
39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.		DC 1.6V
40	16.2MHz X'tal	To connect 16.2MHz crystal clock for generating sub-carrier. Lowest resonance frequency (f_0) of the crystal oscillation can be varied by changing DC capacity. Adjust f_0 of the oscillation frequency with the board pattern.		DC 4.1V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	Y / C V _{CC} (5V)	V _{CC} terminal of Y / C signal processing block.	_	—
42	Chroma Input	Chroma signal input terminal. Input negative $1.0V_{p-p}$ sync composite video signal to this pin through a coupling capacitor.		DC 2.4V AC : 300mV _{p-p} burst
43	Y / C GND	Grounding terminal of Y / C signal processing block.	_	_
44	APL	To connect filter for DC regeneration compensation. Y signal after black expansion can be monitored by opening this pin.		DC 2.2V
45	Y ₁ Input	Input terminal of Y signal. Input negative 1.0V _{p-p} sync composite video signal to this pin through a clamping capacitor.		1.0V _{P-P}
47	DC Output Terminal For V Centering	Enable to control output DC voltage by the bus.		DC 2.7~6.3V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.		DC 5.0V
49	Sync Output	Output terminal of synchronizing signal separated by sync separator circuit. Connect a pull-up resistor to this pin because it is an open-collector output type.	49 ★ 50Ω ★ 7 π	
50	V-Sepa.	To connect filter for vertical synchronizing separation.		DC 5.9V
51	Sync Input	Input terminal of synchronizing separator circuit. Input signal through a clamping capacitor to this pin. Negative 1.0V _{p-p} sync.		
52	V-Ramp	To connect filter for generating V-ramp waveform.		1.9V _{p-p}

TB1230AN

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
53	Vertical Output	Output terminal of vertical ramp signal.		J
54	V-NF	Input terminal of vertical NF signal.		\sum
55	DEF GND	Grounding terminal of DEF (deflection) block.	_	_
56	V BLK Output	Output terminal of V blanking	SB C C C C C C C C C C C C C C C C C C C	5V V blanking • V • 0V

BUS CONTROL MAP WRITE DATA Slave address : 88H (Pin28-High : 8AH)

BLOCK	SUB ADDR	MSB 7	6	5	4	3	2	1	LSB 0	PRE	SET
	00	Uni-Color								1 0 0 0	0 0 0 0
	01	BRIGHT								1 0 0 0	0 0 0 0
	02	COLOR							1 0 0 0	0 0 0 0	
VIDEO / TEXT	03	*				TINT				0 1 0 0	0 0 0 0
	04	P / N KIL	ND SW			SHARI	PNESS			0 0 1 0	0 0 0 0
	05	DTrp-SW	R-Mon	B-Mon		Y	SUB CONTRAS	T		1 0 0 1	0 0 0 0
	06					ONTRAST				1 0 0 0	0 0 0 0
_	07	*	*	*	*	*	*	*	*	1 0 0 0	0 0 0 0
	08	Υγ	WPL SW	0		CK MODE		Y-DL SW		0 0 0 0	0 1 0 0
VIDEO / TEXT	09				G DRI\	/E GAIN				1 0 0 0	0 0 0 0
	0A		B DRIVE GAIN						1 0 0 0	0 0 0 0	
DEF	0B		HOF	RIZONTAL POSI	-		AFC I	NODE	H-CK SW	1 0 0 0	0 0 0 1
	0C	R CUT OFF							0 0 0 0	0 0 0 0	
TEXT (P / N)	0D	G CUT OFF							0 0 0 0	0 0 0 0	
	0E				B CUT OFF				0 0 0 0	0 0 0 0	
	0F	B. S. OFF	C-TRAP	OFST SW	C-TOF	P / N GP	CLL SW	WBLK SW	WMUT SW	0 0 0 0	0 0 0 0
SYSTEM	10	1	358 Trap	F-B / W		X'tal MODE	COLOR SYSTEM		0 0 0 0	0 0 0 0	
	11			K OFFSET			B-Y BLACK OFFSET			1 0 0 0	1 0 0 0
P / N	12		EVEL		D ATT		F Q TOF-FO			1 0 0 1	1 0 1 0
Vi / C	13	V-MODE	VSM PHASE		GAIN		AP Q	C-TR/		1 0 1 1	1 0 1 0
VIDEO (DEF)	14	BLA	CK STRETCH P	OINT		DC TRAN RATE		APA-CON		1 0 0 0	0 0 1 0
	15		ABL POINT			ABL GAIN		HALF T	ONE SW	0 0 0 0	0 0 0 0
	16		H BLK PHASE			REQ		V OUT PHASE		0 0 0 0	0 0 0 0
	17				V-AMPLITUDE				*	1 0 0 0	0 0 0 0
GEOMETRY	18				TERING			COINCID	ENT DET	1 0 0 0	0 0 1 0
	19			N	S-CORRECTIC	N			DRG SW	1 0 0 0	0 0 0 0
	1A			V LINEARITY			V-CD MD	DRV CNT	VAGC SP	0 0 0 0	0 0 0 1
	1B	-	MODE			WIDE V-BLK S				0 1 1 1	1 1 1 1
DEF-V	1C	BLK SW			WIDE	E V-BLK STOP PI	-			0 0 0 0	0 0 0 0
	1D	NOISE DI	ET LEVEL			WIDE P-MUTE	-			1 0 1 1	1 1 1 1
	1E	N COMB			WIDE	P-MUTE STOP F	PHASE			0 0 0 0	0 0 0 0

Note: * Data is ignored.

READ-IN DATA Slave address : 89H (Pin28-High : 8BH)

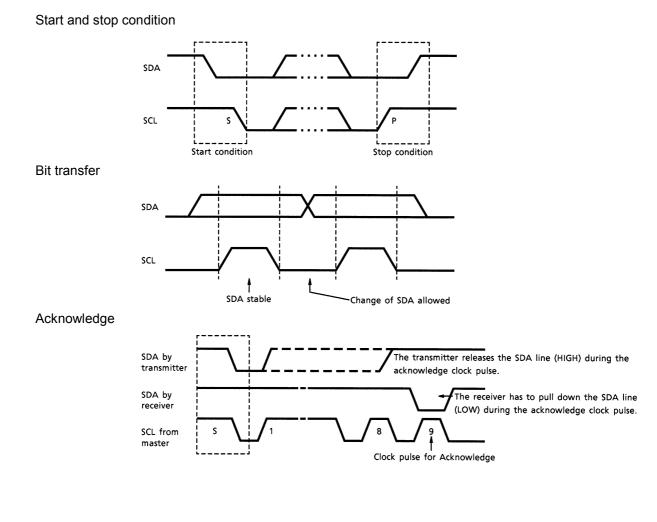
ſ		MSB							LSB
		7	6	5	4	3	2	1	0
	00	PORES	COLOR	SYSTEM	X'	tal	V-FREQ	V-STD	N-DET
	01	LOCK	RGBOUT	Y ₁ -IN	UV-IN	Y ₂ -IN	Н	V	V-GUARD

BUS CONTROL FUNCTION WRITE FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	—	8bit	-18dB~0dB	80h MAX - 5.0dB
BRIGHT	_	8bit	-1V~1V	80h 0V
COLOR	_	8bit	~0dB	80h -6dB
TINT	_	7bit	-45°~45°	40h 0°
P / N KIL	P / N KILLER sensitivity control	1bit	Normal / Low	00h NORMAL
SHARPNESS	_	6bit	-6dB~12dB	20h +3dB
DTrp-SW	Trap ON / OFF	1bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1bit	Normal / Monitor	00h Normal
B-Mon	(Pin 35 : Bo, Pin 36 : Ro)	1bit	Normal / Monitor	00h Normal
Y SUB CONTRAST	_	5bit	-3dB~+3dB	10h 0dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8bit	-18dB~0dB	80h MAX – 5.0dB
Υγ	γ ON / OFF	1bit	OFF / 95 IRE	00h ON
WPL SW	White peak limit level	1bit	130 IRE / OFF	00h 130 IRE
BLUE BACK MODE	Luminance selector switch	2bit	IRE ; OFF, 40, 50, 50	00H OFF
Y-DL SW	Y-DL TIME (28, 33, 38, 43, 48)	3bit	280~480ns after Y IN	04h 480ns
G DRIVE GAIN	—	8bit	-5dB~3dB	80h 0dB
B DRIVE GAIN	—	8bit	-5dB~3dB	80h 0dB
HORIZONTAL POSITION	Horizontal position adjustment	5bit	−3µs~+3µs	10h 0µs

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
AFC MODE	AFC1 detection sensitivity selector	2bit	dB ; AUTO, 0, −10, −10	00h AUTO
H-CK SW	HOUT generation clock selector	1bit	384fh-VCO, FSC-VCXO	01h FSC-VCXO
R CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
G CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
B CUT OFF	-	8bit	-0.5~0.5V	00h -0.5V
B. S. OFF	Black expansion ON / OFF	1bit	ON / OFF	00h ON
C-TRAP	Chroma Trap ON / OFF SW	1bit	ON / OFF	00h ON
FST SW	Adjustment of Black level of color difference	1bit	OFF / ON	00h OFF
C-TOF	P / N TOF ON / OFF SW	1bit	ON / OFF	00h ON
P / N GP	PAL GATE position	1bit	Standard / 0.5µs delay	00h Standard
CL-L SW	COLOR LIMIT ON / OFF	1bit	ON / OFF	00h ON
WBLK SW	WIDE V-BLK ON / OFF	1bit	OFF / ON	00h OFF
WMUT SW	WIDE Picture-MUTE ON / OFF	1bit	OFF / ON	00h OFF
3.58 Trap	C Trap-f ₀ , force	1bit	AUTO / Forced 3.58MHz	00h AUTO
5.50 Hap	3.58MHz switch			
F-B / W	Force B / W switch	1bit	AUTO / Forced B / W	00h AUTO
			000 ; European system AUTO 001 ; 3N 010 ; 4P	
X'tal MODE	APC oscillation frequency selector switch	3bit	011 ; 4P (N inhibited) 100 ; S.American system AUTO 101 ; 3N 110 ; MP 111 ; NP	European 00h system AUTO
COLOR SYSTEM	Chroma system selection	2bit	AUTO, PAL, NTSC	00h AUTO
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4bit	-24~21mV STEP 3mV	08h 0mV
CLL LEVEL	Color limit level adjustment	2bit	91, 100, 108, 116%	02h 108%

Note: 3N ; 3.58-NTSC, 4P ; 4.43-PAL, MP ; M-PAL, NP ; N-PAL European system auto ; 4.43-PAL, 4.43-NTSC, 3.58-NTSC S. American system auto ; 3.58-NTSC, M-PAL, N-PAL

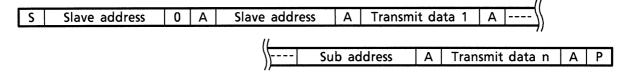

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
PN CD ATT	P / N color difference amplitude adjustment	2bit	+1~-2dB STEP 1dB	01h 0dB
TOF Q	TOF Q adjustment	2bit	1.0, 1.5, 2.0, 2.5	02h 2.0
TOF F0	TOF f ₀ adjustment	2bit	kHz ; 0, 500, 600, 700	02h 600kHz
VSM PHASE	VSM output phase	2bit	+20ns, +20ns, 0ns, 0ns	02h Ons
VSM GAIN	VSM output gain	2bit	0dB, 0dB, -6dB, OFF	03h OFF
C-TRAP Q	Chroma trap Q control	2bit	1.0, 1.5, 2.0, 2.5	02h 2.0
C-TRAP F ₀	Chroma trap f ₀ control	2bit	kHz ; −100, −50, 0, +50	02h 0kHz
BLACK STRETCH POI	Black expansion start point setting	3bit	28~70% IRE×0.4	05h 56% IRE
DC TRAN RATE	Direct transmission compensation degree selection	3bit	100~130% APL	00h 100%
APA-CON PEAK F ₀	Sharpness peak frequency selection	2bit	kHz ; 2.5, 3.1, 4.2, OFF	02h 4.2kHz
ABL POINT	ABL detection voltage	3bit	ABL point ; 6.5V~5.9V	00h 6.5V
ABL GAIN	ABL sensitivity	3bit	Brightness ; 0~-2V	00h 0V
HALF TONE SW	Halftone gain selection	2bit	-3dB, -6dB, OFF, OFF	00h -3dB
H BLK PHASE	Horizontal blanking end position	3bit	0~3.5µs step 0.5µs	00h 0µs
V FREQ	Vertical frequency	2bit	AUTO, 60Hz Forced 60, 50, 60	00h AUTO
V OUT PHASE	Vertical position adjustment	3bit	0~7H STEP 1H	00h 0H
V-AMPLITUDE	Vertical amplitude selection	7bit	-50~50%	40h 0%
1bit DAC	1bit DAC output	1bit	LOW, HIGH	00h LOW
V CENTERING	V Centering	6bit	1~4V	20h 2.5V
COINCIDENT MODE	Discriminator output signal selection	2bit	00 ; DSYNC 01 ; DSYNC×AFC 10 ; Field counting 11 ; VP is present.	02h Field counting
V S-CORRECTION	Vertical S-curve correction	7bit	Reverse S-curve, S-curve	40h —
V-MODE	Force Sync Mode Selection	1bit	TELETEXT / Normal	01h Normal
DRG SW	Drive reference axis selection	1bit	R/G	00h R
V LINEARITY	Vertical linearity correction	5bit	(one side)	00h —
ND SW	Noise Det SW	1bit	Normal, Low	00h Normal
V-CD MD	Vertical count-down mode selection	1bit	AUTO / Force synchronization	00h AUTO

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
DRV CNT	All drive gains forced centering switch	1bit	OFF / Force centering	00h OFF
VAGC SP	Vertical ramp time constant selection	1bit	Normal / High speed	01h High speed
MUTE MODE	OFF, RGB mute, Y mute, transverse	2bit	OFF, RGB, Y, Transverse	01h RGB
WIDE V-BLK START PH	Vertical pre-position selection	6bit	-64~-1H STEP 1H	3Fh −1H
BLK SW	Blanking ON / OFF	1bit	ON / OFF	00h ON
WIDE V-BLK STOP PH	Vertical post-position selection	7bit	0~128H STEP 1H	00h 0H
NOISE DET LEVEL	Noise detection level selection	2bit	ND SW Normal : 0.15, 0.125, 0.1, 0.075 Low : 0.5, 0.475, 0.45, 0.425	02h 0.1
WIDE P-MUTE START PH	Video mute pre-position selection	6bit	-64~-1H STEP 1H	3Fh −1H
N COMB	1H addition selection	1bit	OFF / ADD	00h OFF
WIDE P-MUTE STOP PH	Video mute post-position selection	7bit	0~128H STEP 1H	00h 0H

READ-IN FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	
PONRES	0 : POR cancel, 1 : POR ON	1bit	
COLOR SYSTEM	00 : B / W, 01 : PAL	2bit	
COLOR STSTEM	10 : NTSC, 11 :	2011	
	00 : 4.433619MHz		
X'tal	01 : 3.579545MHz	2bit	
A ldi	10 : 3.575611MHz (M-PAL)	ZDI	
	11 : 3.582056MHz (N-PAL)		
V-FREQ	0 : 50Hz, 1 : 60Hz	1bit	
V-STD	0 : NON-STD, 1 : STD	1bit	
N-DET	0 : Low, 1 : High	1bit	
LOCK	0 : UN-LOCK, 1 : LOCK	1bit	
RGBOUT, Y ₁ -IN	Self-diagnosis	1bit each	
UV-IN, Y ₂ -IN, H, V	0 : NG, 1 : OK	rbit each	
V-GUARD	Detection of breaking neck	1 hit	
V-GUARD	0 : Abnormal, 1 : Normal	1bit	

DATA TRANSFER FORMAT VIA I²C BUS



Data transmit format 1

S	Slave address	0	Α	Sub address	Α	Transmit data	Α	Ρ	
1	† 7bit MSB			† 8bit MSB		† 8bit MSB		1	
Ś	: Start Condition		Å	: Acknowledge				Ρ:	Stop Condition

Data transmit format 2

Data receive format

S	Slave address	1	Α	Received data 01	Α	Received data 02	Α	Р
r	† 7bit MSB			f 8bit MSB				

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

Optional data transmit format : Automatic increment mode

S	Slave address	1	Α	Received data 01	Α	Received data 02	Α	Ρ
	† 7bit MSB			f 8bit MSB				

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CCMAX}	12	V
Permissible Loss	P _{DMAX}	2190 (Note)	mW
Power Consumption Declining Degree	1 / Q _{ja}	17.52	mW / °C
Input Terminal Voltage	V _{in}	GND-0.3~V _{CC} +0.3	V
Input Signal Voltage	e _{in}	7	V _{p-p}
Operating Temperature	T _{opr}	-20~65	°C
Conserving Temperature	T _{stg}	-55~150	°C

Note: In the condition that IC is actually mounted. See the diagram below.

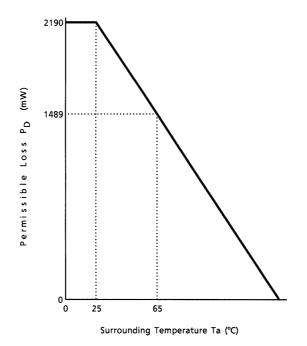


Fig. Power consumption declining curve relative to temperature change

RECOMMENDED CONDITION IN USE

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.25	V
Supply Vollage	Pin 8, pin 38, pin 41	4.75	5.0	5.25	v
Video Input Level		0.9	1.0	1.1	
Chroma Input Level	100% White, negative sync	0.9	1.0	1.1	V _{p-p}
Sync Input Level		0.9	1.0	2.2	
FBP Width	_	11	12	13	μs
Incoming FBP Current (Note)	_	_	_	1.5	mA
H. Output Current	_	_	1.0	2.0	ШA
RGB Output Current	_	_	1.0	2.0	
Analog RGB Input Level	_	_	0.7	0.8	v
OCD DCD Input Lavel	In TEXT input	0.7	1.0	1.3	v
OSD RGB Input Level	In OSD input	_	4.2	5.0	
Incoming Current to Pin 49	Sync-out	—	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $H.V_{CC}-2V_f$ ($V_f \approx 0.75V$). Confirming the power supply voltage, determine the high level of FBP.

ELECTRICAL CHARACTERISTIC (Unless otherwise specified, H, RGB V_{CC} = 0V, V_{DD} , Fsc V_{DD} , Y / C V_{CC} = 5V, Ta = 25±3°C) CURRENT CONSUMPTION

PIN No.	CHARACTERISTIC	SYMBOL	TEST CIR-CUIT	MIN	TYP.	MAX	UNIT
3	H.V _{CC} (9V)	I _{CC1}	_	16.0	19.0	23.5	
8	V _{DD} (5V)	I _{CC2}	—	8.8	11.0	14.0	
17	RGB V _{CC} (9V)	I _{CC3}	—	25.0	31.5	39.0	mA
38	Fsc V _{CC} (5V)	I _{CC4}	—	6.8	8.5	11.0	
41	Y / C V _{CC} (9V)	I _{CC5}	-	80	100	130	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR-CUIT	MIN	TYP.	MAX	UNIT
16	ABCL	V ₁₆	_	5.9	6.4	6.9	V
18	OSD R Input	V ₁₈	_	_	0	0.3	V
19	OSD G Input	V ₁₉	_	_	0	0.3	V
20	OSD B Input	V ₂₀	_	_	0	0.3	V
21	Digital Ys	V ₂₁	_	_	0	0.3	V
22	Analog Ys	V ₂₂	_	_	0	0.3	V
23	Analog R Input	V ₂₃	_	4.2	4.6	5.0	V
24	Analog G Input	V ₂₄	_	4.2	4.6	5.0	V
25	Analog B Input	V ₂₅	_	4.2	4.6	5.0	V
28	DAC	V ₂₈	_	1.7	2.0	2.3	V
31	Y ₂ Input	V ₃₁	_	1.7	2.0	2.3	V
33	B-Y Input	V ₃₃	_	2.2	2.5	2.8	V
34	R-Y Input	V ₃₄	_	2.2	2.5	2.8	V
35	R-Y Output	V ₃₅	_	1.5	1.9	2.3	V
36	B-Y Output	V ₃₆	_	1.5	1.9	2.3	V
37	Y ₁ Output	V ₃₇	_	1.9	2.3	2.7	V
40	16.2MHz X'tal Oscillation	V ₄₀	_	3.6	4.1	4.6	V
42	Chroma Input	V ₄₂	_	2.0	2.4	2.8	V
50	V-Sepa.	V ₅₀	_	5.4	5.9	6.4	V

AC CHARACTERISTIC Video section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp	_	(Note Y ₁)	2.0	2.2	2.4	V
Chromo Trop Fraguenou	ftr3	_	(Noto Y.)	3.429	3.58	3.679	MHz
Chroma Trap Frequency	ftr4	_	(Note Y ₂)	4.203	4.43	4.633	MHZ
Chroma Trap Attenuation	Gtr3a	_	(Note Y.)	20	26	50	
(3.58MHz)	Gtr3f	_	(Note Y ₃)	20	26	52	
(4.43MHz)	Gtr4	_	(Note Y ₄)	20	26	52	dB
(D-Trap)	Gtrs	—	(Note Y ₅)	18	26	52	
Yy Correction Point	γp	—	(Note Y ₆)	90	95	99	
Yy Correction Curve	γc	_	(Note Y ₇)	2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Z044	_	(Note Y ₈)	15	20	25	kΩ
DC Transmission	Adrmax			0.11	0.13	0.15	
Compensation Amplifier Gain	Adrcnt		(Note Y ₉)	0.44	0.06	0.08	times
Maximum Gain of Black Expansion Amplifier	Ake	_	(Note Y ₁₀)	1.20	1.5	1.65	unes
	VBS9MX	_		65	77.5	80	IRE
	VBS9CT	_		55	62.5	70	
	VBS9MN	_		48	55.5	63	
Black Expansion Start Point	VBS2MX	_	(Note Y ₁₁)	35	42.5	50	
	VBS2CT	_		25	31.5	38	
-	VBS2MN	_		19	25.5	32	
Black Peak Detection Period (Horizontal)	ТbpH	_	(Note Y ₁₂)	15	16	17	μs
(Vertical)	TbpV	_		33	34	35	Н
	fp25	—		1.5	2.5	3.4	
Picture Quality Control Peaking Frequency	fp31	_	(Note Y ₁₃)	1.9	3.1	4.3	MHz
- 1 7	fp42	_		3.0	4.2	5.4	
	GS25MX	_		12.0	14.5	17.0	
Picture Quality Control Maximum Characteristic	GS31MX	_	(Note Y ₁₄)	12.0	14.5	17.0	
	GS42MX	_		10.6	13.5	16.4	
	GS25MN	—		-22.0	-19.5	-17.0	
Picture Quality Control Minimum Characteristic	GS31MN	—	(Note Y ₁₅)	-22.0	-19.5	-17.0	
	GS42MN	_		-19.5	-16.5	-13.5	dB
	GS25CT	—		6.0	8.5	11.0	
Picture Quality Control Center Characteristic	GS31CT	—	(Note Y ₁₆)	6.0	8.5	11.0	
	GS42CT	_		4.6	7.5	10.4	
Y Signal Gain	Gy	—	(Note Y ₁₇)	-1.0	0	1.6	
Y Signal Frequency Characteristic	Gfy	_	(Note Y ₁₈)	-6.5	0	1.0	
Y Signal Maximum Input Range	Vyd	_	(Note Y ₁₉)	0.9	1.2	1.5	V

Chroma section

CHARACTERIS	STIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		3N _{eAT}	_		30	35	90	m\/
		3N _{F1T}	_		68	85	105	mV _{p-p}
ACC Characteristic	f _o = 3.58	3N _{AT}	_		0.9	1.0	1.1	
	1 ₀ – 3.56	3N _{eAE}	_		18	35		timoo
		3N _{F1E}	_		71	85	102	times
		3N _{AE}	_	(Note C.)	0.9	1.0	1.1	
		4N _{eAT}	_	(Note C ₁)	18	35		mV _{p-p}
		4N _{F1T}	_		71	85	102	
	6 4 40	4N _{AT}	_		0.9	1.0	1.1	
	f _o = 4.43	4N _{eAE}	_		18	35		
	Ī	4N _{F1E}	—		71	85	102	times
	Ī	4N _{AE}	—		0.9	1.0	1.1	
		3Nfo ₀	—		3.43	3.579	3.73	
Band Pass Filter Characte	eristic	3Nfo ₅₀₀	—		3.93	4.079	4.23	
	f _o = 3.58	3Nfo ₆₀₀	_		4.03	4.179	4.33	
	İ	3Nfo ₇₀₀	_		4.13	4.279	4.43	
		4Nfo ₀	_	(Note C ₂)	4.28	4.433	4.58	
	f _o = 4.43 ·	4Nfo ₅₀₀	—		4.78	4.933	4.58	
		4Nfo ₆₀₀	_		4.88	5.033	5.18	
	İ	4Nfo700	_		4.98	5.133	5.28	
		fo ₀	_					
Band Pass Filter, -3dB B	and	fo ₅₀₀	_			4 70		
Characteristic	f _o = 3.58	fo ₆₀₀	_		1.64	1.79	1.94	
	İ	fo ₇₀₀	_					
		fo ₀	_	(Note C ₃)				MHz
	fo	fo ₅₀₀	—		0.07	0.00	0.07	
	f _o = 4.43	fo ₆₀₀	—		2.07	2.22	2.37	
	İ	fo ₇₀₀	—					
		Q ₁	_		_	3.58	_	
Band Pass Filter, Q	ļ	Q _{1.5}	_		_	2.39	_	
Characteristic Check	f _o = 3.58	Q _{2.0}	_		1.64	1.79	1.94	
	t	Q _{2.5}	_	· · · · · ·	_	1.43	_	
		Q ₁	_	(Note C ₄)	_	4.43	_	
	,	Q _{1.5}	_		_	2.95	_	
	f _o = 4.43	Q _{2.0}	_		2.07	2.22	2.37	
		Q _{2.5}	_		_	1.77	_	
	2.5				1			

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	fo ₀	-		1.45	1.60	1.75	
1 / 2 f _c Trap Characteristic	fo ₅₀₀	—		1.70	1.85	2.00	
f _o = 3.58	fo ₆₀₀	_		1.75	1.90	2.06	
	fo ₇₀₀	—	(Note C ₅)	1.80	1.95	2.10	MHz
	fo ₀	—	(Note 05)	1.85	2.00	2.15	
f _o = 4.43	fo ₅₀₀	_		2.00	2.15	2.30	
1 ₀ – 4.43	fo ₆₀₀	_		2.05	2.20	2.35	
	fo ₇₀₀	_		2.10	2.25	2.40	
	3N∆θ1	_		35.0	45.0	55.0	
Tint Control Range	3ΝΔθ2	_		-55.0	-45.0	-35.0	
(f _o = 600kHz)	4NΔθ1	_	(Note C ₆)	25.0	45.0	FF 0	0
	4ΝΔθ2	_		35.0	45.0	55.0	
Tint Control Variable Range	3NΔθΤ	_	(Note C.)	70.0	90.0	110.0	
(f _o = 600kHz)	4ΝΔθΤ	_	(Note C ₇)	70.0	90.0	110.0	
	3T0Tin	_		20	40	47	h:4
	3E0Tin	_		39	40	47	bit
Tist Control Channets ristic	3N∆Tin	_		73	80	87	Step
Tint Control Characteristic	4TθTin	_	(Note C ₈)	20	40	47	hit
	4EθTin	_		39	40	47	bit
	4N∆Tin	_		73	80	87	Step
	4.433PH	—		350	500	1500	
APC Lead-In Range	4.433PL	_		-350	-500	-1500	
(Lead-In Range)	3.579PH	—		350	500	1700	
	3.579PL	—		-350	-500	-1700	
	4.433HH	—	(Note C ₉)	400	500	1100	Hz
	4.433HL	_		-400	-500	-1100	
(Variable Range)	3.579HH	_		400	500	1100	
	3.579HL	—		-400	-500	-1100	
	3.58β3	_		1.50	2.2	2.90	
	4.43β3	_		1.70	2.4	3.10	
APC Control Sensitivity	M-PALβM	_	(Note C ₁₀)	4		0.00	—
	N-PALβN	_		1.50	2.2	2.90	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-VTK1	—		1.8	2.5	3.2	
	3N-VTC1	—		2.2	3.2	4.0	
	3N-VTK2			2.5	3.6	4.5	
	3N-VTC2	—		3.2	4.5	5.6	
	4N-VTK1	_		1.8	2.5	3.2	
	4N-VTC1	_		2.2	3.2	4.0	
	4N-VTK2	_		2.5	3.6	4.5	
	4N-VTC2	_		3.2	4.5	5.6	
	4P-VTK1	_		1.8	2.5	3.2	
	4P-VTC1	_		2.2	3.2	4.0	
Killer Operation Input Level	4P-VTK2	—	(Note C ₁₁)	2.5	3.6	4.5	
	4P-VTC2	_		3.2	4.5	5.6	
	MP-VTK1	—		1.8	2.5	3.2	
	MP-VTC1	—		2.2	3.2	4.0	
	MP-VTK2	_		2.5	3.6	5.6	mV _{p-p}
	MP-VTC2	_		3.2	4.5		
	NP-VTK1	_		1.8	2.5	3.2	
	NP-VTC1	_		2.2	3.2	4.0	
	NP-VTK2	_		2.5	3.6	4.5	
	NP-VTC2	_		3.2	4.5	5.6	
	3NeB-Y	_		320	380	460	
	3NeR-Y	_		240	290	350	
Color Difference Output	4NeB-Y	_		320	380	460	
(Rainbow Color Bar)	4NeR-Y	_		240	290	350	
	4PeB-Y	_	(Note C ₁₂)	360	430	520	
	4PeR-Y	_		200	240	290	
(750) 0 1 0 1	4Peb-y	_		540	650	780	
(75% Color Bar)	4Per-y	_		430	510	610	
	3NG _{R / B}	_		0.69	0.77	0.86	
Demodulation Relative Amplitude	4NG _{R / B}	_	(Note C ₁₃)	0.70	0.77	0.85	times
	4PG _{R/B}	_		0.49	0.56	0.64	
	3N0R-B	_		85	93	100	
Demodulation Relative Phase	4N0R-B	_	(Note C ₁₄)	87	93	99	o
	4P0R-B	_		85	90	95	
	3N-SCB	_					
	3N-SCR	_		6	_		
Demodulation Output Residual Carrier	4N-SCB	_	(Note C ₁₅)	0	5	15	mV _{p-p}
	4N-SCR	_					

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	3N-HCB	_					
Demodulation Output Residual Higher	3N-HCR	_	(Note C ₁₆)	0	10	30	mV _{p-p}
Harmonic	4N-HCB	_	(1010-016)	U	10	50	₩•р-р
	4N-HCR	—					
	B-Y - 1dB	—		-1.20	-0.9	-0.60	
Color Difference Output ATT Check	B-Y - 2dB	—	(Note C ₁₇)	-2.30	-1.7	-1.55	dB
	B-Y+1dB	_		0.60	0.8	1.20	
16.2MHz Oscillation Frequency	∆foF	_	(Note C ₁₈)	-2.0	0	2.0	kHz
16.2MHz Oscillation Start Voltage	VFon1	_	(Note C ₁₉)	3.0	3.2	3.4	V
f _{sc} Free-Run Frequency (3.58M)	3fr	Ι		-100	50	200	
(4.43M)	4fr	—	(Note C ₂₀)	-125	25	175	Hz
(M-PAL)	Mfr	—		-125	25	175	
(N-PAL)	Nfr	—		-140	10	160	
f Output Amplitude	4.43e27	_	(Note Car)	420	500	580	m) (
f _{sc} Output Amplitude	3.58e27	_	(Note C ₂₁)	420	500	560	mV _{p-p}
f Output DC Voltage	3.58eV27	—		2.6	2.9	3.2	v
f _{sc} Output DC Voltage	0th V27	_	—	1.6	1.9	2.2	

DEF section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO		(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	—	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	fH1	_	(Note DH3)	15.5	15.625	15.72	kHz
H. Output Frequency 2	fH2		(Note DH4)	15.62	15.734	15.84	KI IZ
H. Output Duty 1	Ηφ1	—	(Note DH5)	39	41	43	%
H. Output Duty 2	Ηφ2	_	(Note DH6)	35	37	39	70
H. Output Duty Switching Voltage 1	V ₅₋₁	—	(Note DH7)	1.2	1.5	1.8	
H. Output Voltage	VHH		(Note DH8)	4.5	5.0	5.5	v
11. Output Voltage	VHL	—		_	_	0.5	v
H. Output Oscillation Start Voltage	VHS	_	(Note DH9)		5.0	_	
H. FBP Phase	φFBP	—	(Note DH10)	6.2	6.9	7.6	
H. Picture Position, Maximum	HSFTmax	_	(Note DH11)	17.7	18.4	19.1	
H. Picture Position, Minimum	HSFTmin	_	(Note DH12)	12.4	13.1	13.8	μs
H. Picture Position Control Range	ΔHSFT	_	(Note DH13)	4.5	5.3	6.1	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Distortion Correction Control Range	ΔHCC	_	(Note DH14)	0.5	1.0	1.5	µs / V
H. BLK Phase	φBLK	_	(Note DH15)	6.2	6.9	7.6	
H. BLK Width, Minimum	BLKmin	_	(Note DH16)	9.8	10.5	11.3	
H. BLK Width, Maximum	BLKmax	—	(Note DH17)	13.2	14.0	14.7	
P / N-GP Start Phase 1	SPGP1	_	(Note DH18)	3.45	3.68	3.90	μs
P / N-GP Start Phase 2	SPGP2	—	(Note DH19)	3.95	4.18	4.40	
P / N-GP Gate Width 1	PGPW1	_	(Note DH20)	1.65	1.75	1.85	
P / N-GP Gate Width 2	PGPW2	_	(Note DH21)	1.70	1.75	1.85	
Noise Detection Level 1	NL1	_	(Note DH22)	0.15	0.2	0.25	
Noise Detection Level 2	NL2	_	(Note DH23)	0.1	0.18	0.26	v
Noise Detection Level 3	NL3	_	(Note DH24)	0.1	0.15	0.2	v
Noise Detection Level 4	NL4	_	(Note DH25)	0.08	0.13	0.2	
V. Ramp Amplitude	Vramp	_	(Note DV1)	1.62	2.0	2.08	
V. NF Maximum Amplitude	VNFmax	—	(Note DV2)	3.2	3.5	3.8	V _{p-p}
V. NF Minimum Amplitude	VNFmin	_	(Note DV3)	0.8	1.0	1.2	
V. Amplification Degree	GVA	_	(Note DV4)	20	26	32	dB
V. Amplifier Max. Output	Vvmax	_	(Note DV5)	5.0	_	_	v
V. Amplifier Min. Output	Vvmin	_	(Note DV6)	0	_	1.5	v
V. S-Curve Correction, Max. Correction Quantity	V _S	_	(Note DV7)	9	11	13	
V. Reverse S-Curve Correction, Max. Correction Quantity	V _{SR}	_	(Note DV8)	9		13	%
V. Linearity Max. Correction Quantity	VL	_	(Note DV9)	9	20	31	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	φAFCf	_	(Note DV10)	2.6	3.2	3.8	
AFC-MASK Stop Phase	φAFCe	-	(Note DV11)	4.4	5.0	5.6	
VNFB phase	φVNFB	_	(Note DV12)	0.45	0.75	1.05	
V. Output Maximum Phase	Vømax	_	(Note DV13)	7.3	8.0	8.7	
V. Output Minimum Phase	Vφmin	-	(Note DV14)	0.5	1.0	1.5	н
V. Output Phase Variable Range	ΔVφ	_	(Note DV15)	6.3	7.0	7.7	
50 System VBLK Start Phase	V50BLKf	_	(Note DV16)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	_	(Note DV17)	20	23	26	
60 System VBLK Start Phase	V60BLKf	_	(Note DV18)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	_	(Note DV19)	15	18	21	
Pin 56 VBLK Max Voltage	V56H	_		4.7	5.0	5.3	v
Pin 56 VBLK Min Voltage	V56L	_		0	_	0.3	v
V. Lead-In Range 1	VAcaL	_	(Note DV20)	_	232.5	_	
v. Leau-in Range i	VAcaH	_		_	344.5	_	U
V Load In Dange 2	V60caL	_	(Note D)(21)	_	232.5	_	Hz
V. Lead-In Range 2	V60caH	_	(Note DV21)	_	294.5	_	
W-VBLK Start Phase	SWVB	_	(Note DV22)	9		88	
W-PMUTE Start Phase	SWP	_	(Note DV23)	9	_	00	Н
W-VBLK Stop Phase	STWVB	_	(Note DV24)	10		100	
W-PMUTE Stop Phase	STWP	_	(Note DV25)	10	_	120	
V Centering Center Voltage	V51	_	(Note DV26)		4.55		
V Centering Max Voltage	V51Max	_	(Note DV27)		6.30		
V Centering Min Voltage	V51Min	—	(Note DV28)		2.75		V
Pin 28 DAC Output Voltage (High)	V28H	—		4.0	4.5	5.0	1
Pin 28 DAC Output Voltage (Low)	V28L	—		_	0	0.1	

1H DL section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
1HDL Dynamic Range, Direct	VNBD	—	(Note H ₁)	0.8	1.2	_	
The Dynamic Nange, Direct	VNRD	_	(Note H1)	0.0	1.2		
1HDL Dynamic Range, Delay	VPBD	_	(Note H ₂)	0.8	1.2		v
The Dynamic Nange, Delay	VPRD	_	(Note H2)	0.0	1.2		v
1HDL Dynamic Range, Direct+Delay	VSBD	—	(Note H ₃)	0.9	1.2	_	
The bynamic Nange, birect belay	VSRD	—	(1000-113)	0.5	1.2		
Frequency Characteristic, Direct	GHB1	_	(Note H ₄)	-3.0	-2.0	0.5	
requency characteristic, Direct	GHR1		(Note H4)	5.0	2.0	0.5	
Frequency Characteristic, Delay	GHB2	_	(Note H ₅)	-8.2	-6.5	-4.3	
Trequency Characteristic, Delay	GHR2	-	(1000 115)	-0.2	-0.5	-4.5	
AC Gain, Direct	GBY1	_	(Noto H.)	-2.0	-0.5	2.0	dB
AC Gain, Direct	GRY1	_	(Note H ₆)	-2.0	-0.5	2.0	uв
AC Gain, Delay	GBY2	—	(Note H ₇)	-2.4	-0.5	1.1	
AC Galli, Delay	GRY2	—		-2.4	-0.5	1.1	
Direct-Delay AC Gain Difference	GBYD	_	(Note H ₈)	-1.0	0.0	1.0	
Direct-Delay AC Gain Direcence	GRYD	_		-1.0	0.0	1.0	
Color Difference Output DC Stepping	VBD		(Note H ₉)	-5	0.0	5	mV
	VRD	—	(Note Hg)	-5	0.0	5	IIIV
111 Delay Quantity	BDt	_	(Note LL.)	63.7	64.0	64.4	
1H Delay Quantity	RDt	_	(Note H ₁₀)	03.7	04.0	04.4	μs
Color Difference Output	Bomin	_		22	36	55	
DC-Offset Control	Bomax	_		-55	-36	-22	
Bus-Min Data	Romin	—	(Note H ₁₁)	22	36	55	
Bus-Max Data	Romax	_		-55	-36	-22	mV
Color Difference Output DC-Offset	Bo1	_	(Noto LL_)	4	А	0	
Control / Min. Control Quantity	Ro1	—	(Note H ₁₂)	1	4	8	
NTCO Mada Caia / NTCO COM C	GNB	—		-0.90	0	1.20	40
NTSC Mode Gain / NTSC-COM Gain	GNR	_	(Note H ₁₃)	0.92	0	1.58	dB

Text section

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcp31			1.7	2.0	2.3	
Y Color Difference Clamping Voltage	Vcp33	_	(Note T ₁)	2.2	2.5	2.8	
	Vcp34			2.2	2.5	2.0	
	Vc12mx	_		2.50	3.00	3.50	
	Vc12mn	_		0.21	0.31	0.47	
	D12c80	_		0.83	1.24	1.86	V
	Vc13mx			2.50	3.00	3.50	v
Contrast Control Characteristic	Vc13mn	_	(Note T ₂)	0.21	0.31	0.47	
	D13c80	_		0.83	1.24	1.86	
	Vc14mx	_		2.50	3.00	3.50	
	Vc14mn	—		0.21	0.31	0.47	
	D14c80	_		0.83	1.24	1.86	
	Gr	_					
AC Gain	Gg	_	(Note T ₃)	2.8	4.0	5.2	times
	Gb	—					
Frequency Characteristic	Gf	—	(Note T ₄)	—	-1.0	-3.0	dB
Y Sub-Contrast Control Characteristic	∆Vscnt	—	(Note T ₅)	3.0	6.0	9.0	
Y ₂ Input Range	Vy2d	_	(Note T ₆)	0.7	_		
	Vn12mx	—		1.6	2.3	4.3	
	Vn12mn	—		0.17	0.35	0.42	
	D12n80	—		0.67	1.16	1.68	
	Vn13mx	_		1.6	2.3	4.3	V
	Vn13mn	_		0.17	0.35	0.42	
Unicolor Control Characteristic	D13n80	_	(Note T ₇)	0.67	1.16	1.68	
	Vn14mx	_		1.6	2.3	4.3	
	Vn14mn	_		0.17	0.26	0.42	
	D14n80	_		0.67	1.16	1.68	
	ΔV13un	_		16	20	24	dB
Deleting Angelitude (NTOO)	Mnr-b	_	<u> </u>	0.70	0.77	0.85	41
Relative Amplitude (NTSC)	Mng-b	_	(Note T ₈)	0.30	0.34	0.38	times
Deleting Direct (NTOO)	θnr-b	—	AL	87	93	99	0
Relative Phase (NTSC)	θng-b	_	(Note T ₉)	235	241.5	248	
	Mpr-b	_		0.50	0.56	0.63	41
Relative Amplitude (PAL)	Mpg-b	_	(Note T ₁₀)	0.30	0.34	0.38	times
Relative Phase (PAL)	θpr-b	_	(Note T ₁₁)	86	90	94	0
			(Note T ₁₁)				Ň

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vcmx	—		1.50	1.80	2.10	V _{p-p}
Color Control Characteristic	e _{col}	—	(Note T ₁₂)	80	128	160	step
	Δ_{col}	—		142	192	242	Step
	e _{cr}	-					
Color Control Characteristic, Residual Color	e _{cg}	—	(Note T ₁₃)	0	12.5	25	m\/
	e _{cb}	—					mV _{p-p}
Chroma Input Range	Vcr	_	(Note T ₁₄)	700	_	_	
Brightnass Control Characteristic	Vbrmx	_	(Note T)	3.05	3.45	3.85	
Brightness Control Characteristic	Vbrmn	_	(Note T ₁₅)	1.05	1.35	1.65	V
Brightness Center Voltage	Vbcnt	_	(Note T ₁₆)	2.05	2.30	2.55	
Brightness Data Sensitivity	ΔVbrt	_	(Note T ₁₇)	6.3	7.8	9.4	
RGB Output Voltage Axes Difference	ΔVbct	_	(Note T ₁₈)	-150	0	150	mV
White Peak Limit Level	Vwpl	_	(Note T ₁₉)	2.63	3.25	3.75	
	Vcomx			2.55	2.75	2.95	.,
Cutoff Control Characteristic	Vcomn	_	(Note T ₂₀)	1.55	1.75	1.95	V
Cutoff Center Level	Vcoct	_	(Note T ₂₁)	2.05	2.3	2.55	
Cutoff Variable Range	ΔDcut	_	(Note T ₂₂)	2.3	3.9	5.5	mV
	DR+	_		2.7	3.85	5.0	
Drive Variable Range	DR-	_	(Note T ₂₃)	-6.5	-5.6	-4.7	dB
DC Regeneration	TDC	_	(Note T ₂₄)	0	50	100	mV
RGB Output S / N Ratio	SNo	_	(Note T ₂₅)	_	-50	-45	dB
	Vv	_					
Blanking Pulse Output Level	Vh	_	(Note T ₂₆)	0.7	1.0	1.3	V
Dianking Datas Datas Tina	t _{don}	_		0.05	0.25	0.45	
Blanking Pulse Delay Time	t _{doff}	_	(Note T ₂₇)	0.05	0.35	0.85	μs
RGB Min. Output Level	Vmn		(Note T ₂₈)	0.8	1.0	1.2	
RGB Max. Output Level	Vmx	_	(Note T ₂₉)	6.85	7.15	7.45	V
Halftone Ys Level	Vthtl	_	(Note T ₃₀)	0.7	0.9	1.1	
Halftone Gain 1	G3htl3	_	(Note T ₃₁)	-4.5	-3.0	-1.5	
Halftone Gain 2	G6htl3	_	(Note T ₃₂)	-7.5	-6.0	-4.5	dB
Text ON Ys Level	Vttxl	_	(Note T ₃₃)	1.8	2.0	2.2	
Text / OSD Output, Low Level	Vtxl13	_	(Note T ₃₄)	-0.45	-0.25	-0.05	
Text RGB Output, High Level	Vmt13	_	(Note T ₃₅)	1.15	1.4	1.85	
OSD Ys ON Level	Vtosl	_	(Note T ₃₆)	2.8	3.0	3.2	v
OSD RGB Output, High Level	Vmos13	_	(Note T ₃₇)	1.75	2.15	2.55	
Text Input Threshold Level	Vtxtg	_	(Note T ₃₈)	0.7	1.0	1.3	
OSD Input Threshold Level	Vosdg	_	(Note T ₃₉)	1.7	2.0	2.3	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	TRosr	—					
OSD Mode Switching Rise-Up Time	TRosg	—	(Note T ₄₀)	—	40	100	ns
	TRosb	—					
	t _{PRosr}	—					
OSD Mode Switching Rise-Up Transfer Time	t _{PRosg}	—	(Note T ₄₁)	—	40	100	ns
	t _{PRosb}	—					
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	Δt_{PRos}	_	(Note T ₄₂)	—	15	40	ns
	TFosr	—					
OSD Mode Switching Breaking Time	T _{Fosg}	—	(Note T ₄₃)	_	30	100	ns
	T _{Fosb}	-					
	t _{PFosr}	—					
OSD Mode Switching Breaking Transfer Time	t _{PFosg}	_	(Note T ₄₄)	—	30	100	ns
	t _{PFosb}	-					
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Δt_{FRos}		(Note T ₄₅)	—	20	40	ns
	TRoshr	—					
OSD Hi DC Switching Rise-Up Time	TRoshg	—	(Note T ₄₆)	—	20	100	ns
	TRoshb	—					
	t _{PRohr}	-					
OSD Hi DC Switching Rise-Up Transfer Time	t _{PRohg}	—	(Note T ₄₇)	—	20	100	ns
	t _{PRohb}	—					
OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	Δt_{PRoh}	_	(Note T ₄₈)	_	0	40	ns
	TFoshr	_					
OSD Hi DC Switching Breaking Time	TFoshg	_	(Note T ₄₉)	—	20	100	ns
	TFoshb	—					
	t _{PFohr}	_					
OSD Hi DC Switching Breaking Transfer Time	tPFohg	_	(Note T ₅₀)	_	20	100	ns
	tPFohb	—					
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFoh}	_	(Note T ₅₁)	_	0	40	ns

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	Vc12mx	-		2.10	2.5	2.97	
	Vc12mn	_		0.21	0.31	0.47	
	D12c80	_		0.84	1.25	1.87	
	Vc13mx	_		2.10	2.5	2.97	
RGB Contrast Control Characteristic	Vc13mn	_	(Note T ₅₂)	0.21	0.31	0.47	V
	D13c80	_		0.84	1.25	1.87	
	Vc14mx	_		2.10	2.5	2.97	
	Vc14mn	_		0.21	0.31	0.47	
	D14c80	_		0.84	1.25	1.87	
Analog RGB AC Gain	Gag	_	(Note T ₅₃)	4.0	5.1	6.3	times
Analog RGB Frequency Characteristic	Gfg	_	(Note T ₅₄)	-0.5	-1.75	-3.0	dB
Analog RGB Dynamic Range	Dr24	_	(Note T ₅₅)	0.5	_	_	
RGB Brightness Control	Vbrmxg	_	(Note Tar)	3.05	3.25	3.45	v
Characteristic	Vbrmng	_	(Note T ₅₆)	1.05	1.25	1.45	v
RGB Brightness Center Voltage	Vbcntg	_	(Note T ₅₇)	2.05	2.25	2.45	
RGB Brightness Data Sensitivity	ΔVbrtg	_	(Note T ₅₈)	6.3	7.8	9.4	mV
Analog RGB Mode ON Voltage	Vanath	_	(Note T ₅₉)	0.8	1.0	1.2	V
	TRanr	_					
Analog RGB Switching Rise-Up Time	TRang	_	(Note T ₆₀)	—	50	100	
	TRanb	_					
	t _{PRanr}	_					
Analog RGB Switching Rise-Up Transfer Time	t _{PRang}	-	(Note T ₆₁)	—	20	100	
	t _{PRanb}	_					
Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRas}	_	(Note T ₆₂)	_	0	40	20
	TFanr	_					ns
Analog RGB Switching Breaking Time	TFang	_	(Note T ₆₃)	—	50	100	
	TFanb	_					
	t _{PFanr}	_					
Analog RGB Switching Breaking Transfer Time	t _{PFang}	—	(Note T ₆₄)	—	30	100	
	t _{PFanb}	_					
Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	Δt_{PFas}	_	(Note T ₆₅)	_	0	40	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
	TRanhr	_					
Analog RGB Hi Switching Rise-Up Time	TRanhg	_	(Note T ₆₆)	_	50	100	
	TRanhb	_					
	t _{PRahr}	—					
Analog RGB Hi Switching Rise-Up Transfer Time	t _{PRahg}	—	(Note T ₆₇)	—	20	100	
	t _{PRahb}	_					
Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	Δt _{PRah}	-	(Note T ₆₈)	_	0	40	
	t _{Fanhr}	_					ns
Analog RGB Hi Switching Breaking Time	t _{Fanhg}	_	(Note T ₆₉)	—	50	100	
	t _{Fanhb}	_					
	t _{PFahr}	_					
Analog RGB Hi Switching Breaking Transfer Time	t _{PFahg}	—	(Note T ₇₀)	—	20	100	
	t _{PFahb}	—					
Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	∆t _{PFah}	-	(Note T ₇₁)	_	0	40	
TV-Analog RGB Crosstalk	Crtvag	_	(Note T ₇₂)	-80	-50	-40	dB
Analog RGB-TV Crosstalk	Crantg	_	(Note T ₇₃)	-00	-50	-40	uБ
	Vablpl	_		5.5	5.6	5.7	
ABL Point Characteristic	Vablpc	_	(Note T ₇₄)	5.7	5.8	5.9	V
	Vablph	_		5.9	6.0	6.1	
ACL Characteristic	Vcal	_	(Note T ₇₅)	-19	-16	-13	dB
	Vabll	_		-0.3	0	0.3	
ABL Gain Characteristic	Vablc	_	(Note T ₇₆)	-1.3	-1.0	-0.7	V
	Vablh	—		-2.3	-2.0	-1.7	

TEST CONDITION VIDEO SECTION

						ST COM	NDITION					, RGB V	'cc =	= 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S S42	W MOD S44)E S ₄₅	S ₅₁	04H	SUB-A 08H	DDRES 0FH	S & BUS 10H	<u>5 DATA</u> 13H	14H		MEASURING METHOD
Y ₁	Y Input Pedestal Clamping Voltage	A	C	В	A	A	20H	04H	80H	00H	BAH	03H	(1) (2)	Short circuit pin 45 (Y ₁ IN) in AC coupling. Input synchronizing signal to pin 51 (SYNC IN).
													(3)	Measure DC voltage at pin 45, and express the measurement result as VYclp.
													(1)	Set the 358 TRAP mode to AUTO by setting the bus data.
													(2)	Set the bus data so that chroma trap is ON and f_0 is 0.
Y ₂	Chroma Trap	•											(3)	Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y $_{\rm 1}$ IN).
¥2	Frequency	Ť	Ť	A	В	Ť	Î	Ť	Ť	Ť	Ť	Ť	(4)	While observing waveform at pin 37 37 (Y $_{1out}$), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as fIr3.
													(5)	Change the frequency of the signal 1 to 4.43MHz (PAL) and perform the same measurement as the preceding step 4. The obtained frequency shall be expressed as flr4.
													(1)	Set the 358 TRAP mode to AUTO by setting bus data.
													(2)	Set the bus data so that Q of chroma trap is 1.5.
													(3)	Set the bus data so that f_0 of chroma trap is 0.
	Chroma Trap Attenuation (3.58MHz)				Ť	Î	Ť	Î	Vari- able	Vari- able	Vari- able	Î	(4)	Input TG7 sine wave signal whose frequency is 3.58MHz (NTSC) and video amplitude is 0.5V to pin 45 (Y $_{\rm 1}$ IN).
Y ₃		¢	Ţ	¢									(5)	While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 (Y _{1out}) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 (Y _{1out}) with the chroma trap being turned off. Gtr = 20log (VToff / VTon)
													(6)	Change f_0 of the chroma trap to -100kHz, -50kHz, 0 and +50kHz, and perform the same measurement as the preceding steps 4 and 5 with the respective f_0 settings.
													(7)	Change Q of the chroma trap to 1, 1.5, 2 and 2.5, and perform the same measurement as the preceding steps 4 through 6. The maximum Gtr shall be expressed as Gtr3a.
													(8)	Set the 358 TRAP mode to the forces 358 mode by setting bus data, and perform the same measurement as the preceding steps 2 through 7 (Gtr3f).

		TEST CONDITION (Unless otherwise specified : H, RGB V SW MODE SUB-ADDRESS & BUS DATA									(_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)		
NOTE	ITEM	S ₃₉	S42	W MOE S ₄₄	DE S45	S ₅₁	04H	SUB-A	DDRES 0FH	<u>S & BUS</u> 10H	5 DATA 13H	14H	MEASURING METHOD
Y ₄	Chroma Trap Attenuation (4.43MHz)	A	C	A	В	A	20H	04H	Vari- able	Vari- able	Vari- able	03H	 Set the 358 TRAP mode to AUTO by setting bus data. Set the bus data so that Q of chroma trap is 1.5.
													 (3) Set the bus data so that f₀ of chroma trap is 0. (4) Input TG7 sine wave signal whose frequency is 4.43MHz and video amplitude is 0.5V to pin 45 (Y₁ IN).
													(5) Perform the same measurement as the steps 5 through 7 of the preceding item Y_3 . The measurement result shall be expressed as Gtr4.
Y ₅	Chroma Trap Attenuation (SECAM)	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	 Set the bus data so that the 358 TRAP mode is AUTO and the Dtrap is ON. Set the bus data so that Q of chroma trap is 1.5. Set the bus data so that f₀ of chroma trap is 0. Input SECAM signal whose amplitude in video period is 0.5V to pin 45 (Y₁ IN). Perform the same measurement as the steps 5 through 7 of the preceding item Y₃ to find the maximum attenuation (Gtrs).
Y ₆	Yγ Correction Point	↑	ţ	ţ	↑ Î	ţ	ţ	Vari- able	80H	00H	ВАН	ţ	 Connect the power supply to pin 45 (Y₁ IN). Turn off Y_γ by setting the bus data. While raising the supply voltage from the level measured in the preceding item Y₁, measure voltage change characteristic of Y₁ output at pin 37. Set the bus data to turn on Y_γ Perform the same measurement as the above step 3. Find a gamma (γ) point from the measurement results of the steps 3 and 5. γp = Vr+0.7
Y ₇	Yγ Correction Curve	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	From the measurement in the above item $Y_6,$ find gain of the portion that the γ correction has an effect on.

						ST CON	DITION					, RGB V	(_{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S S ₄₂	W MOE S44	0E S ₄₅	S ₅₁	04H	SUB-A	DDRES 0FH	S & BUS 10H	<u>5 DATA</u> 13H	14H	MEASURING METHOD
Y ₈	APL Terminal Output Impedance	A	С	В	A	A	20H	04H	80H	00H	ВАН	03H	 (1) Short circuit pin 45 (Y₁ IN) in AC coupling. (2) Input synchronizing signal to pin 51. (3) Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). (4) Raise the voltage at pin 44 by 0.1V, and measure the current (lin) at that time. Zo44 (Ω) = 0.1V+lin (A)
Y9	DC Transmission Compensation Amplifier Gain	ţ	ţ	ţ	ţ	Î	ţ	ţ	Ť	ţ	ţ	Vari- able	(1) Set the bus data so that DC transmission factor correction gain is maximum. (2) In the condition of the Note Y ₈ , observe Y _{1out} waveform at pin 37 and measure voltage change in the video period. (3) Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2. Pin 19 waveform ΔV_1 Pin 44 + 0.1V Pin 44 + 0.2V Adr = $(\Delta V_2 - \Delta V_1)$ +0.1V+Y ₁ gain
Y ₁₀	Maximum Gain of Black Expansion Amplifier	Ť	Î	A	В	Ť	Ť	Ť	00H	Ť	Î	E3H	 Set the bus data so that black expansion is on and black expansion point is maximum. Input TG7 sine wave signal whose frequency is 500kHz and video amplitude is 0.1V to pin 45 (Y₁ IN). While impressing 1.0V to pin 39 (Black Peak Hold), measure amplitude (Va) of Y_{1out} signal at pin 37. While impressing 3.5V to pin 39 (Black Peak Hold), measure amplitude (Vb) of Y_{1out} signal at pin 37. Akc = Va÷Vb

					TES	T CON	DITION	I (Unles	ss othe	rwise s	pecifie	d : H, F	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	-	-	W MOD	E		S	UB-AD	DRES	S & BL	JS DAT	A	MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	
													(1) Set the bus data so that black expansion is on and black expansion point is maximum.
													(2) Supply 1.0V to pin 39 (Black Peak Hold).
													(3) Supply 2.9V to the APL of pin 44.
Y ₁₁	Black Expansion Start Point	A	С	A	A	А	20H	04H	00Н	00Н	ван	Vari- able	 (4) Connect the power supply to pin 45 Pin 37 (Y₁ IN). While raising the supply voltage from the level measured in the preceding item Y₁, measure voltage change at pin 37 (Y_{1out}).
													(5) Set the bus data to center the black Black expansion expansion point, and perform the OFF Same measurement as the above steps 2 through 4
													(6) Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4.
													(7) While supplying 2.2V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum.
													In the condition of the Note Y_1 , measure waveform at pin 39 (Black Peak Hold).
Y ₁₂	Black Peak Detection Period (Horizontal)	В	¢	¢	¢	Ť	¢	¢	¢	¢	¢	E3H	—≠ търн
	Black Peak Detection Period (Vertical)												

						ST CON	NDITION					, RGB V	<u>'cc =</u>	: 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₃₉	S S ₄₂	W MOD	0E S ₄₅	S ₅₁	04H	SUB-A	DDRES 0FH	S & BUS 10H	DATA 13H	14H		MEASURING METHOD
		039	042	044	045	051		0011	0111	1011	1011	1-111	(1)	Set the bus data so that picture quality control frequency is 2.5MHz.
													(2)	Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y $_1$ IN) and pin 51 (Sync. IN).
	Picture Quality				_							Vari-	(3)	Maximize the picture quality control data.
Y ₁₃	Control Peaking Frequency	A	С	A	В	A	3FH	04H	80H	00H	BAH	able	(4)	While observing Y_{1out} of pin 37, find an SG frequency as the waveform amplitude is maximum (fp25).
													(5)	Set the bus data so that picture quality control frequency is 3.1MHz and 4.2MHz, and perform the same measurement as the above steps 2 through 4 at the respective frequencies (fp31, fp42).
													(1)	Input TG7 sine wave (sweeper) signal whose video level is 0.1V to pin 45 (Y_1 IN) and pin 51 (Sync. IN).
													(2)	Set the picture quality control data to maximum.
													(3)	Set the picture quality control frequency is 2.5MHz by setting the bus data.
													(4)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp25) of the same as the SG frequency is 2.5MHz.
														GS25MX = 20łog (Vp25 / V100k)
Y ₁₄	Picture Quality Control Maximum	↑	¢	¢	↑	¢	↑	Ŷ	¢	¢	↑	Ŷ	(5)	Set the picture quality control frequency data to 3.1MHz by setting the bus data.
	Characteristic												(6)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp31) of the same as the SG frequency is 3.1MHz.
														GS31MX = 20łog (Vp31 / V100k)
													(7)	Set the picture quality control frequency to 4.2MHz by setting the bus data.
													(8)	Measure amplitude (V100k) of the output of pin 37 (Y ₁ OUT) as the SG frequency is 100kHz, and the amplitude (Vp42) of the same as the SG frequency is 4.2MHz.
														GS42MX = 20log (Vp42 / V100k)

					TE	ST CON	NDITION	l (Unless	s otherw	ise spec	ified : H	, RGB V	'cc =	9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	_	-	SW MOD)E			SUB-A	DDRES	S & BUS	5 DATA			MEASURING METHOD
		S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	04H	08H	0FH	10H	13H	14H	(1)	In the condition of the Note Y_{14} , set the picture quality control bus data to
Y ₁₅	Picture Quality Control Minimum Characteristic	A	С	A	В	А	00H	04H	80H	00H	BAH	Vari- able	(2)	minimum. Perform the same measurement as the steps 3 through 8 of the Note Y ₁₄ to find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz. GS25MN = 20łog (Vp25 / V100k) GS31MN = 20łog (Vp31 / V100k) GS42MN = 20łog (Vp42 / V100k)
													(1) (2)	In the condition of the Note Y_{14} , set the picture quality control bus data to center. Perform the same measurement as the steps 3 through 8 of the Note Y_{14} to
Y ₁₆	Picture Quality Control Center Characteristic	Ţ	Ť	¢	¢	¢	20H	Ţ	Ť	Ť	Ţ	Ť	(_)	find respective gains as the picture quality control frequency is set to 2.5MHz, 3.1MHz and 4.2MHz. GS25CT = 20log (Vp25 / V100k)
														GS31CT = 20łog (Vp31 / V100k)
														GS42CT = 20log (Vp42 / V100k)
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y ₁₇	Y Signal Gain	Ŷ	¢	¢	Ŷ	¢	Ŷ	¢	¢	Ŷ	¢	03H	(2)	Input TG7 sine wave signal whose frequency is 100kHz and video level is 0.5V to pin 45 (Y_1 IN) and pin 51 (Sync. IN). (Vyi100)
													(3)	Measure amplitude of Y1 output at pin 37 (Vyout). Gy = 20log (Vyout / Vyi100)
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
V	Y Signal	*			*	*	*	*			*	*	(2)	Input TG7 sine wave signal whose frequency is 6MHz and video level is 0.5V to pin 45 (Y $_{\rm 1}$ IN) and pin 51 (Sync. IN). (Vyi6M)
Y ₁₈	Frequency Characteristic		I			I	Ť	Î	Î	I	I	I	(3)	Measure amplitude of Y ₁ output at pin 37 (Vyo6M). Gy6M = 20łog (Vyo6M / Vyi6M)
													(4)	Find Gfy from the result of the Note Y17 Gfy = Gy6M – Gy

					TE	ST CON	NDITION	(Unless	s otherw	ise spec	ified : H	, RGB V	V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		S	W MOD)E			SUB-A	DDRES	S & BUS	S DATA		MEASURING METHOD
		S ₃₉	S ₄₂	S44	S45	S ₅₁	04H	08H	0FH	10H	13H	14H	
													 Set the bus data so that black expansion is off, picture quality control is off a DC transmission compensation is minimum.
Y ₁₉	Y Signal Maximum Input Range	А	С	А	В	А	20H	04H	80H	00H	BAH	03H	(2) Input TG7 sine wave signal whose frequency is 100kHz to pin 45 (Y ₁ IN) an pin 51 (Sync. IN).
													(3) While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y ₁ output (pin 37) is distorted.

CHROMA SECTION

NOTE					TI			N (Unles	s otherv	vise spe	cified : H	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE		S ₂₆	S ₁	S ₃₁	S ₃₃	SW N S34		S ₄₂	S44	S ₄₅	S ₅₁	MEASURING METHOD
NOTE	ITEM ACC Characteristic	S ₂₆	S ₁	<u>S₃₁</u> В		SW N	/ODE					
												(7) Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same measurement as the above-mentioned steps with 3N rainbow color bar signal input.

NOTE					TE	ST CON	NDITION MODE	l (Unless	s otherw	ise spec	cified : H	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	Svv v S ₃₄	S39	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
1												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36 and measure the peak frequency, too.
												(5) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure peak frequencies respectively with different f_0 .
												(6) For measuring frequency characteristic as f ₀ is 4.43, use 4.43MHz crystal clock.
C ₂	Band Pass Filter Characteristic	ON	А	В	В	В	А	В	А	А	В	Measure the following items in the same manner.
												f _o =3.58 Pin 36 Peak of Pin 36 Peak of Pin 36 Frequency Bottom of frequency Pin 42 sine wave signal Fo = 4.43 Peak of Frequency Pin 42 sine wave signal

					TE	ST CON	DITION	I (Unless	s otherw	ise spec	cified : H	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM		0	<u> </u>		-	IODE		0		0	MEASURING METHOD
		S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 01h).
												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to $3.579 / 4.43$ MHz.
												(3) Set the gate to the normal status.
												(4) Input 3N composite sine wave signal $(1V_{p-p})$ to pin 42 (Chroma IN).
	Band Pass Filter,			_		_		_			_	(5) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
C ₃	-3dB Band Characteristic	ON	A	В	В	В	A	В	A	A	В	(6) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the -3dB band respectively with different f_0 .
												$f_0 = 3.58$ $F_0 = 4.43$ $F_{10} = 4.43$
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows : TV mode (f _o = 600), Crystal mode = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
	Band Pass Filter,											(4) Measure frequency characteristic of B-Y output of pin 36, and measure peak frequency in the −3dB band.
C ₄	Q Characteristic Check	ſ	ſ	¢	¢	¢	Î	¢	Ţ	¢	Ť	(5) Changing f _o of the band pass filter to 0, 500, 600 and 700 by the bus control and measure peak frequencies in the −3dB band respectively with different f _o .
												$f_0 = 3.58$ Pin 36 Pin 36 Pin 42 sine wave signal $f_0 = 4.43$ Pin 36 Pin 36 Pin 42 sine wave signal

					TE	ST CO	NDITION	I (Unless	s otherw	ise spe	cified : ⊢	, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM						NODE					MEASURING METHOD
		S ₂₆	S ₁	S ₃₁	S ₃₃	S ₃₄	S ₃₉	S ₄₂	S44	S ₄₅	S ₅₁	
												(1) Activate the test mode (S26-ON, Sub Add 02; 01h).
												(2) Set as follows : band pass filter Q = 2, crystal clock = conforming to 3.579 / 4.43MHz, gate = normal status.
												(3) Input 3N composite sine wave signal (1V _{p-p}) to pin 42 (Chroma IN).
												(4) Measure frequency characteristic of B-Y output of pin 36, and measure bottom frequency.
C ₅	1 / 2 f _o Trap Characteristic	ON	А	В	В	В	А	В	А	А	В	(5) Changing f_0 to 0, 500, 600 and 700 by the bus control and measure bottom frequencies respectively with different f_0 .
												$f_0 = 3.58$ $f_0 = 4.43$
												Pin 36 Bottom Pin 42 sine freq. wave signal

					TE			(Unless	s otherw	ise spec	ified : H	I, RGE	B V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S1	S ₃₁	S ₃₃	SW N S ₃₄	NODE S ₃₉	S ₄₂	S44	S ₄₅	S ₅₁	_	MEASURING METHOD
		026	51	031	033	034	039	042	044	045	051	(1)	Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2)	Connect band pass filter (Q = 2), set crystal mode to conform to European, Asian system and set the gate to normal status.
	Tint Control					P	•	٨	•			(3)	Input 3N rainbow color bar signal (100mV _{p-p}) to pin 42 (Chroma IN).
C ₆	Sharing Range (f _o = 600kHz)	ON	A	В	В	В	A	A	A	A	В	(4)	Measure phase shift of B-Y color difference output of pin 36. $\Delta \theta_2$
												(5)	While shifting color phase (tint) from minimum to maximum by the bus control, measure phase change of B-Y color difference output of pin 36. On the condition that 6 bars in the center have the peak level (regarded as center of color
													phase), the side of 5 bars is regarded as positive direction while the side of 7 bars is regarded as negative direction when the 5 bars or the 7 bars are in the peak level. Based on this assumption, open angle toward the positive direction is expressed as $\Delta\theta_1$ and that toward the negative direction is expressed as $\Delta\theta_2$ as viewed from the phase center. $\Delta\theta_1$ and $\Delta\theta_2$ show the tint control sharing range.
C7	Tint Control Variable Range (f _o = 600kHz)	Ţ	Ť	¢	Ť	Ť	Ť	¢	Ť	Ť	Ť	(6)	Variable range is expressed by sum of $\Delta \theta_1$ sharing range and $\Delta \theta_2$ sharing range. $\Delta \theta_T = \Delta \theta_1 + \Delta \theta_2$
												(7)	While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as θ_{Tin} .
C ₈	Tint Control Characteristic	Î	Ť	Ť	Ť	Ť	Î	Î	Ť	Î	Ţ	(8)	While shifting color phase from minimum to maximum with the bus control, measure values of color phase bus step corresponding to 10% and 90% of absolutely variable phase shift of B-Y color difference output of pin 36. The range of color phase shifted by the bus control is expressed as While shifting color phase from minimum to maximum with the bus control, measure phase shift of B-Y color difference output of pin 36. When center 6 bars have peak level, value of color phase bus step is expressed as Δ_{Tin} (conforming to TV mode, $f_0 = 600$ kHz). Input 4N rainbow color bar signal to pin 42 (Chroma IN), and perform the same
													measurement as the 3N signal.

					TE			I (Unless	otherw	ise spec	ified : H	B V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)	
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N S ₃₄	NODE S ₃₉	S ₄₂	S44	S ₄₅	S ₅₁	MEASURING METHOD	
		- 20		- 01	- 00	- 04	- 00				- 01	Connect band pass filter (Q = 2), set to TV mode (f_0 = 600kHz) with conforming to European, Asian system.	Yital clock
												Set the gate to normal status.	
												Input 3N CW signal of $100 \text{mV}_{\text{p-p}}$ to pin 42 of the chroma input term	iinal.
												While changing frequency of the CW (continuous waveform) signal frequency when B-Y color difference signal of pin 36 is colored.	, measure its
												Input 4N CW (continuous waveform) 100mV $_{p\mbox{-}p}$ signal to pin 42 (Ch	iroma IN).
C ₉	APC Lead-In Range	OFF ↓	A	В	в	в	A	A ↓	A	А	В	While changing frequency of the CW signal, measure frequencies we difference output of pin 36 is colored and discolored. Find difference measured frequency and f_c (4.433619MHz) and express the difference fPL, which show the APC lead-in range.	e between the
		ON						С				Variable frequency of VCXO is used to cope with lead-in of 3.582M PAL system.	Hz / 3.575MHz
												Activate the test mode (S26-ON, Sub Add 02 ; 02h).	
												Input nothing to pin 42 (Chroma IN).	
) While varying voltage of pin 30 (APC Filter), measure variable frequ pin 35 (R-Y OUT) while observing color and discoloring of R-Y colo Express difference between the high frequency (fH) and f _o center a difference between the low frequency (fL) and f _o center as 3.582HL measurement for the NP system (3.575MHz PAL).	r difference signal. Is 3.582HH, and
												Activate the test mode (S26-ON, Sub Add 02 ; 02h).	
												Connect band pass filter as same as the Note C ₉ .	
	ADC Control											Change the X'tal mode properly to the system.	
C ₁₀	APC Control Sensitivity	ON	Ť	Î	↑	↑	↑	С	Ť	↑	Ť	Input nothing to pin 42 (Chroma IN).	
												When V ₃₀ 's APC voltage ±50mV is impressed to pin 30 (APC Filter is being varied, measure frequency change of pin 35 output signal calculate sensitivity according to the following equation. b = (frH - frL) / 100	

					TE			I (Unless	s otherw	ise spe	cified : H	I, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N S ₃₄	/ODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
				01								(1) Connect band pass filter (Q = 2) and set to TV mode ($f_0 = 600$ kHz).
												(2) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
												(3) Input 3N color signal having 200mV _{p-p} burst to pin 42 (Chroma IN).
												(4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as 3N-VTK1 and 3NVTC1 respectively (killer operation input level).
												(5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as 3N-VTK2 or 3N-VTC2.
												(6) Perform the same measurement as the above step 4 with different inputs of 4N, 4P, MP, NP color signals having 200mV _{p-p} burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.)
C ₁₁	Killer Operation	OFF	А	В	В	В	А	А	А	А	в	 Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4N system is expressed as 4N-VTK1, 4N-VTC1.
-11	Input Level											Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1.
												Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2.
												Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2.
												Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1.
												Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2.
												[Reference] 3N system : 3.579545MHz NTSC
												4N system : 4.433619MHz False NTSC
												4P system : 4.433619MHz PAL
												MP system : 3.575611MHz M-PAL
												NP system : 3.582056MHz N-PAL

					TE	ST CON		I (Unless	s otherw	ise spec	ified : H	RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N S ₃₄	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
		0								10		(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₂	Color Difference Output	ON	А	В	В	В	A	A	A	А	В	(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively.
												(6) While inputting 4P 75% color bar signal (100mV _{p-p} burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively.
												(1) Activate the test mode (S26-ON, Sub Add 02; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
												(3) Set the crystal mode to conform to European, Asian system and set the gate to normal status.
C ₁₃	Demodulation Relative Amplitude	¢	¢	¢	Ŷ	¢	¢	¢	¢	¢	¢	(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
	Ampillude											(5) Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively.
												(Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section.

					TE			I (Unless	s otherw	ise spec	ified : H	l, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S ₁	S ₃₁	S ₃₃	SW N S ₃₄	NODE S ₃₉	S ₄₂	S ₄₄	S ₄₅	S ₅₁	MEASURING METHOD
		-20	~ 1	- 51	- 33	- 34	- 33	- 72		- +5	51	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation
												(3) Set the crystal mode to conform to European, Asian system and set the gate to no status.
_	Demodulation			_		_						(4) Input 3N, 4N and 4P rainbow color bar signals having 100mV _{p-p} burst to pin 42 of chroma input terminal one after another.
C ₁₄	Relative Phase	ON	A	В	В	В	A	A	A	A	В	(5) Measure phases of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express them as 3N0R-B, 4N0R-B and 4P0R-B respectively.
												(6) For measuring with 3N and 4N color bar signals in NTSC system, set six bars of th B-Y color difference waveform to the peak level with the Tint control and measure phase difference from phase of R-Y color difference signal of pin 35 (R-Y OUT).
												(Note) Relative phase of G-Y color difference signal shall be checked later in th Text section.
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation
												(3) Set the crystal mode to conform to European, Asian system.
C ₁₅	Demodulation Output Residual		↑	↑		↑		↑	↑.	↑	↑	(4) Set the gate to normal status.
015	Carrier		I	1		1		1	1	1	1	(5) Input 3N and 4N rainbow color bar signals having 100mVp-p burst to pin 42 of the chroma input terminal one after another.
										(6) Measure subcarrier leak of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as 3N-SCB / R and 4N-SCB / R.		

					TE			I (Unless	s otherw	ise spec	cified : ⊢	H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	S ₂₆	S1	S ₃₁	S ₃₃	SW N S ₃₄	/ODE S ₃₉	S ₄₂	S44	S ₄₅	S ₅₁	MEASURING METHOD
		- 20		- 01	- 00	- 04	- 00	- 72		- 40	- 01	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2) Connect band pass filter (Q = 2), set to TV mode ($f_0 = 600$ kHz) with 0dB attenuation.
	Demodulation											(3) Set the crystal mode to conform to European, Asian system and set the gate to norma status.
C ₁₆	Output Residual Higher Harmonic	ON	A	В	В	В	A	A	A	A	В	(4) Input 3N and 4N rainbow color bar signals having 100mV _{p-p} burst to pin 42 of the chroma input terminal one after another.
												(5) Measure higher harmonic (2f _c = 7.16MHz or 8.87MHz) of 3N and 4N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as 3N-HCB / R and 4N-HCB / R.
												(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h).
												(2) Connect band pass filter (Q = 2) and set bus data for the TV mode ($f_0 = 600$ kHz).
												(3) Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status.
C ₁₇	Color Difference Output ATT Check	¢	¢	¢	¢	¢	¢	¢	¢	¢	¢	(4) Input 3N rainbow color bar signal whose burst is 100mV _{p-p} to pin 42 of the chroma input terminal.
	Check											(5) Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0dB attenuation set by the bus control.
												Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0dB, and measure amplitude of the same signal with different attenuation of $-2dB$, $-1dB$ and $+1dB$ set by the bus control.

							FEST (CONE	NOITION	l (Unle	ess oth	nerwise	e spec	ified :	H, RC	BB V _{CC} = 9V ; V _{DD} , Fsc	V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C)
NOTE	ITEM	s				TEST	MOD						-	MAL (CONT	ROL MODE	
		26	D ₅		2H D1	D ₀	D7	07H D4	D ₃	D ₅	D4	10 D3		D1	D ₀	OTHER CONDITION	MEASURING METHOD
		20	D5	D2	D1	D0	υγ	04	03	D5	04	03	D2	D1	D0		(1) Input nothing to pin 12
	16.2MHz																(1) Input nothing to pin 42.
C ₁₈	Oscillation Frequency	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	—	(2) Measure frequency of CW signal of pin 35 as fr, and find oscillation frequency by the following equation.
																	Δ foF = (fr - 0.05MHz)×4
C ₁₉	16.2MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38, measure voltage when oscillation waveform appears at pin 40.
																	(1) Input nothing to pin 42.
C ₂₀	f _{sc} Free-Run	ON	0	0	0	1	0	0	0	0		/ariabl	0	0	0		 (2) Change setting of SUB (10H) D₄, D₃ and D₂ according to respective frequency modes, and measure frequency of CW signal of pin 35.
020	Frequency	ON	0	0	0		0	0	0	0	v	anabi	C	0	0	—	Detail of D_4 , D_3 and D_2
																	3.58M = 1 : (001),4.43M = 2 : (010)
																	M-PAL = 6 : (110),N-PAL = 7 : (111)
																	(1) Input nothing to pin 42.
C ₂₁	f _{sc} Output Amplitude	OFF	0	0	0	0	0	0	0	0	0	0↓ 1	1↓ 0	0	0	—	(2) Change setting of SUB (10H) D ₄ , D ₃ and D ₂ according to respective frequency modes.Measure the amplitude of output signal of pin 27.

DEF SECTION

NOTE	ITEM		SUB		nless o			(N		I	TEST CONDITION $_{C}$ = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON. MEASURING METHOD
DH1	H. Reference Frequency	Sub 02H	0	0	0	0	0	0	0	1	 Supply 5V to pin 26. Set bus data as indicated on the left. Measure the frequency of sync. output of pin 49.
DH2	H. Reference Oscillation Start Voltage	Sub 02H	0	0	0	0	0	0	0	1	In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5V, measure the voltage when oscillation of pin 49 stops.
DH3	H. Output Frequency 1	Sub 10H	×	×	×	×	×	×	0	1	 Set bus data as indicated on the left. In the condition of the above step 1, measure frequency (TH1) at pin 4.
DH4	H. Output Frequency 2	Sub 10H	×	×	×	×	×	×	1	0	 Set the input video signal of pin 51 to the 60 system. Set bus data as indicated on the left. In the above-mentioned condition, measure frequency (TH2) at pin 4.
DH5	H. Output Duty 1	_	_	_	_	_	_	_	_	_	 Supply 4.5V DC to pin 5 (or, make pin 5 open-circuited). Measure duty of pin 4 output.
DH6	H. Output Duty 2	_	_	_	_	_	_	_	_	_	(1) Make a short circuit between pin 5 and ground.(2) Measure duty of pin 4 output.
DH7	H. Output Duty Switching Voltage	_	-	_	_	_	_	_	_	-	Supply 2V DC to pin 5. While turning down the voltage from 2V, measure voltage when the output duty ratio becomes 41 to 37%.
DH8	H. Output Voltage	_	_	_	_	_	_	_	_	_	Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH9	H. Output Oscillation Start Voltage	_	_	_	_	_	_	_	_	_	While raising H. V_{CC} (pin 3) from 0V, measure voltage when pin 4 starts oscillation.

NOTE	ITEM				U	nless	otherwi	ise spe				TEST CONDITION _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON.
				SUE	3-ADD	RESS	<u>& BUS</u>	DATA	\ 	1		MEASURING METHOD
												(1) Supply 4.5V DC to pin 5.
												(2) Input video signal to pin 51.
												(3) Set the width of pin 6 input pulse to 8µs.
												(4) Measure φFBP shown in the figure below (φFBP).
												(5) Adjust the phase of pin 6 input pulse so that the center of pin 4's output pulse corresponds to the trailing edge of input sync. signal.
DH10	H. FBP Phase											(6) Set bus data as indicated on the left and measure the horizontal picture position with respective bus data settings (HSFTmax, HSFTmin).
												(7) Find HP difference between the coditions mentioned in the above step 6 (Δ HSFT).
DH11	H. Picture											(8) Reset bus data to the preset value.
	Position, Maximum											(9) While impressing 5V DC to pin 5, measure HP.
												(10) While impressing 4V DC to pin 5, measure HP.
DH12	H. Picture Position,	Sub	0BH	0	0	0	0	0	×	×	×	(11) Find difference between the two measurement results obtained in the preceding steps 9 and 10 $(\Delta$ HCC).
DH13 DH14	Minimum H. Picture position Control Range H. Distortion Correction Control Range			1	1	1	1	1	×	×	×	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0.1 \mu F \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline$
												(5) SYNC input

NOTE	ITEM		SUB	U 3-ADDI				(N		1	TEST CONDITION C = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; bin 51 input video signal = 50 system e data column represents preset value at power ON. MEASURING METHOD
DH15	H. BLK Phase	Sub 02H	0	0	0	0	0	1	0	0	(1) In the condition of the steps 1 through 4 of the Note DH10, perform the following measurement.
DH16 DH17	H. BLK Width, Minimum H. BLK Width, Maximum	Sub 16H	0	0	0	×	×	×	×	×	 (2) Supply 5V DC to pin 26. (3) Set bus data as indicated on the left. (4) Measure phase difference between pin 51 and pin 49 as shown below. (5) Change the bus data as shown on the left and measure BLK width. (5) SYNC input (4) Output (4) Output (5) BLK
DH18 DH19	P / N-GP Start Phase 1 P / N-GP Start Phase 2		×	×	×	×	0	×	×	×	 Supply 5V to pin 26. Set bus data as indicated on the left. With the respective bus data settings mentioned above, measure the phase and gate width as shown in the figure below.
DH20	P / N-GP Gate Width 1	Sub 0FH	×	×	×	×	1	×	×	×	
DH21	P / N-GP Gate Width 2										SPGP1, 2 PGPW

NOTE	ITEM			U	nless c	otherwi	se spe				TEST CONDITION $_{C}$ = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON.
			SUE	B-ADDI	RESS	& BUS	DATA	\			MEASURING METHOD
											(1) Input such a signal as shown by "a" of the following figure to pin 51.
											(2) Set bus data as indicated in the first line of the left table.
D U IOO											(3) Measure NLX when amplitude of pin 41 changes. \rightarrow NL1
DH22	Noise Detection Level 1										(4) Set bus data as indicated in the second line of the left table.
			0	0	×	×	×	×	×	×	(5) Measure NLX when amplitude of pin 41 changes. \rightarrow NL2
DH23	Noise Detection										(6) Set bus data as indicated in the third line of the left table.
21.20	Level 2		0	1	×	×	×	×	×	×	(7) Measure NLX when amplitude of pin 41 changes. \rightarrow NL3
		Sub 1DH									(8) Set bus data as indicated in the fourth line of the left table.
DH24	Noise Detection	Sub 1DH	1	0	×	×	×	×	×	×	(9) Measure NLX when amplitude of pin 41 changes. \rightarrow NL4
DH25	Noise Detection Level 4		1	1	×	×	×	×	×	×	Sync 2MHz 2MHz MLX a AFC1 filter AFC1 AFC
											(1) Measure amplitude of V. ramp waveform of pin 52.
DV1	V. Ramp Amplitude	_	_	_	_	_	_	_	_	_	Vramp
DV2	V. NF Maximum	Sub 17H	4	1	4	1	1	1	4	×	(1) Set data bus as indicated on the left.
DVZ	Amplitude		1						1	Â	(2) Measure amplitude of pin 54's signal.
	V. NF Minimum	0						0	_	l	(1) Set data bus as indicated on the left.
DV3	Amplitude	Sub 17H	0	0	0	0	0	0	0	×	(2) Measure amplitude of pin 54's signal.

NOTE	ITEM		SUE	- U 				(Ne			TEST CONDITION _C = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; bin 51 input video signal = 50 system data column represents preset value at power ON. MEASURING METHOD
			301								
											(1) Set bus data as indicated on the left.
											(2) Change 5.0V of pin 54 voltage by +0.1V and −0.1V, and measure V ₅₃ output voltage in both the condition.
DV4	V. Amplification										(3) Find GVA shown in the figure below.
	Degree										(4) Measure Vvmax and Vvmin shown in the figure below.
DV5	V. Amplifier Max. Output	Sub 1BH	1	1	×	×	×	×	×	×	V ₅₃ Vvmax
DV6	V. Amplifier Min. Output										VvmiN VvmiN
											(1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value.
											(2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below.
	V. S-Curve										(3) Find V _S according to the equation that $V_S = (X / Y) \times 100\%$.
DV7	Correction, Max. Correction Quantity	Sub 19H	1	1	1	1	1	1	1	×	Pin 52 ramp output Y X V. HF output

NOTE	ITEM		SUB		nless o			(N			TEST CONDITION C = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON. MEASURING METHOD
DV8	V. Reverse S-Curve Correction, Max. Correction Quantity	Sub 19H	0	0	0	0	0	0	0	×	 (1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. (2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. (3) Find V_S according to the equation that V_S = (X / Y)×100%.
DV9	V. Linearity Max. Correction Quantity	Sub 1AH	1	1	1	1	1	×	×	×	 (1) Adjust the oscilloscope's amplitude with the UNCAL so that pin 52 and pin 54 waveforms overlap each other as the bus data is set to the preset value. (2) Change the bus data as indicated on the left, and measure values of X and Y shown in the figure below. (3) Find V_S according to the equation that V_S = (X / 2Y)×100%.

NOTE	ITEM	TEST CONDITION Unless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system (Note) "×" in the data column represents preset value at power ON. SUB-ADDRESS & BUS DATA
DV10 DV11 DV12	AFC-MASK Start Phase AFC-MASK Stop Phase VNFB Phase	Sub 02H 0 0 0 0 0 0 0 0 1 (5) Measure the VNFB start phase (Z) of pin 54. Sub 16H $\times \times \times \times \times \times 0$ 0 0 0 0 0 0 0 0 0 0 0 0 0
DV13 DV14 DV15	V. Output Maximum Phase V. Output Minimum Phase V. Output Phase Variable Range	Sub 16H $x \times x \times x \times x \times 1$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

			C					alfia al s			
NOTE	ITEM			Ui	nless o	otherwi	se spe	cified :	H, RC		_C = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; bin 51 input video signal = 50 system
			<u> </u>						ote) "×		e data column represents preset value at power ON.
			SUB	B-ADDF	RESS 8	& BUS	DATA				MEASURING METHOD
											(1) Input such a video signal of the 50 system as shown in the figure to pin 51.
51// 6											(2) Set bus data as indicated on the left.
DV16	50 System VBLK Start Phase	Sub 1BH	0	1	×	×	×	×	×	×	(3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
DV17	50 System VBLK	Sub 1CH	0	×	×	×	×	×	×	×	
	Stop Phase										
											(1) Input such a video signal of the 60 system as shown in the figure to pin 51.
											(2) Set bus data as indicated on the left.
DV18	60 System VBLK Start Phase	Sub 1BH	0	1	×	×	×	×	×	×	(3) Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
	Start Phase	Sub Ibli		'	Â	Â	Â	^	Â	Â	
DV19	60 System VBLK Stop Phase	Sub 1CH	0	×	×	×	×	×	×	×	
	Stop Fliase										
											γγγ
											(1) Set bus data as indicated on the left.
											(2) Input 262.5 H video signal to pin 51.
											(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below.
											(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other.
DV20	V. Lead-In	Sub 16H	×	×	×	0	0	0	0	0	(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.
0.20	Range 1		Î	Î		U	U	U	U	U	(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52
											signals do not synchronize with each other.
											<u>64</u>

NOTE	ITEM		SUF	UI				(N		_	TEST CONDITION C = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin 51 input video signal = 50 system e data column represents preset value at power ON. MEASURING METHOD
							0, (1)				(1) Set bus data as indicated on the left.
											(1) Set bus data as indicated on the left.(2) Input 262.5 H video signal to pin 51.
											(3) Set a certain number of field lines in which signals of pin 51 and pin 54 completely synchronize with each other as shown in the figure below.
											(4) Decrease the field lines in number and measure number of lines in which pin 51 and pin 54 signals do not synchronize with each other.
DV21	V. Lead-In Range 2	Sub 16H	×	×	×	0	1	0	0	0	(5) Again set a certain number of field lines in which pin 51 and pin 52 signals synchronize with each other.
											(6) Increase the field lines in number and measure number of lines in which pin 51 and pin 52 signals do not synchronize with each other.
DV22	W-VBLK Start Phase		×	×	0	0	0	0	0	0	(1) Set bus data as specified for the Sub 1BH in the left columns, and measure the value of X shown in the figure below. W-VBLK start phase : MAX, MIN
DV23	W-PMUTE Start Phase	Sub 1BH	×	×	1	1	1	1	1	1	(2) Set bus data as specified for the Sub 1DH in the left columns, and measure the value of X shown in the figure below. W-PMUTE start phase : MAX, MIN
	(Note) Only the 60	Sub 1DH	×	×	0	0	0	0	0	0	52
	system is subject to evaluation.		×	×	1	1	1	1	1	1	

NOTE	ITEM								(N		-	TEST CONDITION $_{C}$ = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; bin 51 input video signal = 50 system data column represents preset value at power ON.
				SUB	B-ADDF	RESS	& BUS	DATA	۱			MEASURING METHOD
DV24	W-VBLK Stop Phase			×	0	0	0	0	0	0	0	 Set bus data as specified for the Sub 1CH in the left columns, and measure the value of Y shown in the figure below. W-VBLK stop phase : MAX, MIN
DV25	W-PMUTE Stop	Sub	1CH	×	1	1	1	1	1	1	1	(2) Set bus data as specified for the Sub 1EH in the left columns, and measure the value of Y shown in the figure below.
0120	Phase						•					W-PMUTE stop phase : MAX, MIN
	(Note) Only the 60	Sub	1EH	×	0	0	0	0	0	0	0	
	system is subject to evaluation	Cub		×	1	1	1	1	1	1	1	
DV26	V Centering											(1) Set bus data as indicated on the left.
	Center Voltage			1	0	0	0	0	0	×	×	(2) Measure the voltage of pin 47 with respective bus data settings.
DV27	V Centering Max Voltage	Sub	18H	1	1	1	1	1	1	×	×	
DV28	V Centering Min Voltage			0	0	0	0	0	0	×	×	

1H DL SECTION

		TE	EST CON	NDITION	N (Unles	s otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin3 = 9V ; pin8 · 38 · 41 = 5V)
NOTE	ITEM	SW MODE	SUB	ADDRE DATA	SS &	MEASURING METHOD
		S26	07H	0FH	11H	
						 Input waveform 1 to pin 33 (B · Yin), and measure VNBD, that pin 36 (B · Yout) is saturated input level. Measure VNRD of R · Y input in the same way as VNBD.
H ₁	1HDL Dynamic Range Direct	ON	94H	_	_	Waveform1 0.7V (typ)
						H.BLK
H ₂	1HDL Dynamic Range Delay	↑	8CH	_	_	(1) Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level.
	Range Delay					(2) Measure VPRD of R-Y input in the same way as VPBD.
	1HDL Dynamic Range,					(1) Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level.
H ₃	Direct+Delay	Ť	A4H	_	_	(2) Measure VNRD of R-Y input in the same way as VSBD.
H4	Frequency Characteristic,	¢	94H	_	_	 In the same measuring as H₁, set waveform 1 to 0.3V_{p-p} and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level. GHB1 = 20log (VB700 / VB100)
	Direct					(2) Measure GHR1 of R-Y out in the same way as GHB1.
	Frequency					(1) In the same measuring as H ₁ , set waveform 1 to 0.3V _{p-p} and f = 100kHz. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to f = 700kHz. Measure VB700, that is pin 36 (B-Yout) level.
H ₅	Characteristic, Delay	↑	8CH	-	-	GHB2 = 20log (VB700 / VB100)
	20.09					(2) Measure GHR2 of R-Y out in the same way as GHB2.
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7V _{p-p} . Measure VByt1, that is pin 36 (B-Yout) level.
H ₆	AC Gain Direct	↑	94H	-	—	GBY1 = 20log (VByt1 / 0.7)
						(2) Measure GRY1 of R-Y out in the same way as GBY1.
						(1) In the same measuring as H ₁ , set waveform 1 to 0.7V _{p-p} . Measure VByt2, that is pin 36 (B-Yout) level.
H ₇	AC Gain Delay	↑	8CH	-	-	GBY2 = 20log (VByt2 / 0.7)
						(2) Measure GRY2 of R-Y out in the same way as GBY2.

		TE	EST CO	NDITION	V (Unles	s oth	nerwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ; pin3 = 9V ; pin8 · 38 · 41 = 5V)
NOTE	ITEM	SW MODE	SUB	ADDRE DATA	SS &		MEASURING METHOD
		S26	07H	0FH	11H		
H ₈	Direct · Delay	Ţ	94H	_	_	(1)	GBYD = GBY1 - GBY2
0	AC Gain Difference	I	8CH			(2)	GRYD = GRY1 - GRY2
Hο	Color Difference Output DC	Ţ	8CH	_	_	(1)	Measure pin 36 (B-Yout) DC stepping of the picture period.
ng	Stepping	Ι	0011			(2)	Measure pin 35 (R-Yout) DC stepping of the picture period.
						(1)	Input waveform 2 to pin 33 (B-Yin). And measure the time deference BDt of pin 36 (B-Yout).
						(2)	
H ₁₀	1H Delay Quantity	ON	8CH	_	_		Output BDt : waveform
							H.BLK
						(1)	Set Sub-Address 11h ; data 88h. Measure the pin 36 DC voltage, that is BDC1.
					00H	(2)	Set Sub-Address 11h ; data 88h. Measure the pin 35 DC voltage, that is RDC1.
	Color Difference					(3)	Set Sub-Address 11h ; data 00h. Measure the pin 36 DC voltage, that is BDC2.
H ₁₁	Output DC-Offset Control	Ŷ	8CH	20H	88H	(4)	Set Sub-Address 11h ; data 00h. Measure the pin 35 DC voltage, that is RDC2.
	Control					(5)	Set Sub-Address 11h ; data FFh. Measure the pin 36 DC voltage, that is BDC3.
					FFH	(6)	Set Sub-Address 11h ; data FFh. Measure the pin 35 DC voltage, that is RDC3.
						(7)	Bomin = BDC2 - BDC1, Bomax = BDC3 - BDC1, Romin = RDC2 - RDC1, Romax = RDC3 - RDC1
	Color Difference Output DC-Offset					(1)	Measure the pin 36 DC voltage, that is BDC4.
H ₁₂	Control / Min.	Ť	A4H	00H	89H	(2)	Measure the pin 35 DC voltage, that is RDC4.
	Control Quantity					(3)	Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1
						(1)	Input waveform 1, that is set $0.3V_{p-p}$ and f = 100kHz, to pin 33. Measure pin 36 output level, that is VBNC.
H ₁₃	NTSC Mode Gain / NTSC-COM Gain	Ť	94H	80H	_	(2)	GNB = 20log (VBNC / VB100)
		·				(3)	In the same way as (1) and (2), measure the pin 36 output level, that is VRNC.
							GNR = 20log (VRNC / VR100)

TEXT SECTION

				TE	ST CC	NDITI	ON (Ur	nless of	therwis	e spec	ified : I	H, RGB	V _{CC} =	: 9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S22	S ₃₁		N MOE S ₃₄		<u> </u>	<u> </u>		00H	UB-AD 02H	DRES	S & BU	IS DAT	A —	MEASURING METHOD
T ₁	Y Color Difference Clamping Voltage	В	В	В	В	В	A	_	_	_	FFH	00Н	_	_	_	_	 Short circuit pin 31 (Y IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling. Input 0.3V synchronizing signal to pin 51 (Sync IN). Measure voltage at pin 31, pin 34 and pin 33 (Vcp31, Vcp34, Vcp33).
T ₂	Contrast Control Characteristic	Î	Ţ	↑	↑	Î	Ţ				FFH 80H 00H	00H					 (1) Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). (2) Input 0.3V Synchronizing Signal to pin 51 (Sync IN). (3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. (5) Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80). (Vc12mx, Vc12mn, D12c80) (Vc14mx, Vc14mn, D14c80) (6) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel (ΔV13ct).
T ₃	AC Gain	Ţ	¢	¢	¢	Ţ	¢	_	_	_	_	_	_	—	—	_	In the test condition of Note T ₂ , find output / input gain (double) with maximum contrast. G = Vc13mx / 0.7V

				TE	ST CO	NDITIO	ON (Un	less ot	herwise	e spec							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM			-	S	w Moe	DE				S	UB-AD	DRES	<u>S & BL</u>	JS DAT	TA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	—	—	—	00H	02H	—	—	—	—	
																	 Input TG7 sine wave signal whose frequency is 6MHz and video amplitude is 0.7V to pin 31 (Y IN).
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₄	Frequency Characteristic	В	В	В	в	в	А	_	_	_	FFH	00H	_	_	_	_	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum.
																	(5) Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M).
																	(6) From the results of the above step 5 and the Note T_3 , find the frequency characteristic.
																	Gf = 20log (G6M / G)

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE S ₃₄		S ₄₂	_	_	00H	UB-AD 02H	-		-	ГА 	MEASURING METHOD
T5	Y Sub-Contrast Control Characteristic	В	В	В	В	В	A				FFH	00H	1FH 00H	_		_	 Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Input TG7 sine wave signal whose frequency is 100kHz and video amplitude is 0.7V to pin 31 (Y IN). Input 0.3V synchronizing signal to pin 51 (Sync IN). Set bus data so that contrast is maximum, drive is set at center value and color is minimum. Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn). From the results of the above step 5, find ratio between Vscmx and Vscmn in conversion into decibel (ΔVscnt).
T ₆	Y ₂ Input Level	Ť	Ť	Ť	Ť	Ť	Ť			_	Ť	_		BFH	44H	_	 Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value. Input 0.3V synchronizing signal to pin 51 while inputting TG7 sine wave signal whose frequency is 100kHz to pin 31 (TY IN). While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)

				TE	ST CO	NDITIO	DN (Un	less otl	herwise	e speci	fied : H	, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	-		DE S ₅₁	S ₄₂	_	_	S 00H	UB-AD 02H	DRES 05H				MEASURING METHOD
T7	Unicolor Control Characteristic	B	B	B	В	В	А			_	FFH 80H 00H			BFH	<u> </u>		 (1) Input 0.3V synchronizing signal to pin 51 (Sync IN). (2) Input 100kHz, 0.3V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that drive is at center value and Y mute is on. (5) While changing bus data on unicolor from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 13 (G OUT) and pin 12 (B OUT) in video period respectively, and read the bus data together with., Also, measure respective amplitudes as unicolor data is set at center value (80). (Vn12mx, Vn12mn, D12n80) (Vn14mx, Vn14mn, D14n80) (6) Find ratio between amplitude with maximum unicolor data and that with minimum unicolor data in conversion into decibel (ΔV13un).
T ₈	Relative Amplitude (NTSC)	Ţ	Ť	A	А	A	Ţ	A			FFH			Ţ	_	_	$\label{eq:stability} \begin{array}{l} \mbox{While inputting rainbow color bar signal (3.58MHz for NTSC) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is 0.38V_{p-p}, find the relative amplitude. \\ \mbox{(Mnr-b = Vu14mx / Vu12mx, Mng-b = Vu13mx / Vu12mx)} \end{array}$
Tg	Relative Phase (NTSC)	¢	ſ	Ť	Ť	Ť	Ť	¢			Ť			¢	_	_	 In the test condition of the Note T₈, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θnr-b, θng-b).

NOTE				TE		NDITIO		less ot	herwis	e spec							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset vaive)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S ₃₃			S ₄₂	I —	—	00H		DRES			A —	MEASURING METHOD
Т ₁₀	Relative Amplitude (PAL)	В	В	A	A	A	A	A	_	_	FFH	_	BFH		_	_	While inputting rainbow color bar signal (4.43MHz for PAL) to pin 42 and 0.3V synchronizing signal to pin 51 so that video amplitude of pin 33 is 0.38V _{p-p} , find the relative amplitude. (Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx)
T ₁₁	Relative Phase (PAL)	Ť	Ţ	Ţ	¢	¢	Ţ	Ţ	_	_	Ţ	_	_		_	_	 In the test condition of the Note T₁₀, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively (θpr-b, θpg-b).
T ₁₂	Color Control Characteristic	ţ	ţ	В	В	В	ţ	_	_	_	Ť	FFH	Î	_	_	_	 Input 0.3V synchronizing signal to pin 51 (Sync IN). Input 100kHz, 0.1V_{p-p} sine wave signal to both pin 33 (B-Y IN) and pin 34 (R-Y IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (FF). (Vcmx)
T ₁₃	Color Control Characteristic, Residual Color	Î	ţ	Î	Î	Î	Î				Î	00H	ſ	_			 (6) Read bus data when output level of pin 12 is 10%, 50% and 90% of Vcmx respectively (Dc10, Dc50, Dc90). (7) From results of the above step 6, calculate number of steps from Dc10 to Dc90 (Δc0l) and that from 00 to Dc50 (ecol). (8) Measure respective Vcmn amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr).

NOTE				TE	ST CO	NDITIO	ON (Un	less ot	nerwise	e speci	fied : H		V _{CC} = = 9V ;				, Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value ;
NOTE	ITEM				SI	w Moe	DE				S	UB-AD	DRES	S & BU	S DAT	A	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	S ₄₂			00H	02H	1BH	—	I	—	MEASONING METHOD
T ₁₄	Chroma Input Range	В	В	A	A	A	A	A	_	_	FFH	88H	BFH			_	 Input rainbow color bar signal (3.58MHz for NTSC or 4.43MHz for PAL) to pin 42 (C IN) and 0.3V synchronizing signal to pin 51 (Sync IN). Connect pin 36 (B-Y OUT) and pin 33 (B-Y IN), pin 35 (R-Y OUT) and pin 34 (R-Y IN) in AC coupling respectively. Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that unicolor is maximum, drive and color are
																	 set at each center value (80) and mute is on. (5) While increasing amplitude of chroma signal input to pin 42, measure amplitude just before any of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) output signals is distorted (Vcr).

TOSHIB	A

				TE				less ot	herwise	e speci	ified : H	, RGB	V _{CC} =	9V ; V[DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	S\ S ₃₃	N MOE S ₃₄				_	01H	UB-AD 05H	DRES	S & BU	S DAT	A 	MEASURING METHOD
		021	022	031	033	034	051				FFH	0011					 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₁₅	Brightness Control Characteristic	В	В	В	В	В	А	_	-	—		10H	—	—	—	—	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
											00H						(3) Set bus data so that R, G, B cut off data are set at center value.
																	(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₁₆	Brightness Center Voltage	¢	¢	¢	Ŷ	¢	¢	_	_	_	80H	¢	_	_	_	_	(5) While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn).
																	(6) With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt).
T ₁₇	Brightness Data Sensitivity	ſ	¢	¢	¢	¢	¢	_	_	_	_	_	_	_	_	_	(7) On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	ΔVbrt = (Vbrmxg - Vbrmng) / (Dbrmxg - Dbrmng)
Т ₁₈	RGB Output Voltage Axes	Ţ	¢	Ţ	¢	¢	↑	_	_		_		_		_	_	 In the same manner as the Note T₁₆, measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value.
10	Difference	I	1	1													(2) Find maximum axes difference in the brightness center voltage.
																	 Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum.
T ₁₉	White Peak Limit Level	ţ	ţ	ţ	Ţ	ţ	Ţ	_	_		оон	1FH	_	_			 (2) Input TG7 sine wave signal whose frequency is 100kHz and amplitude in video period is 0.9V to pin 31 (Y IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) While turning on / off WPL Pin 14 output waveform
																	with bus, measure video amplitude of pin 14 (R OUT) with WPL being activated (Vwpl).

	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB V _{CC} = 9V ; V _{DD} , Fsc V _{DD} , Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value) SW MODE SUB-ADDRESS & BUS DATA														Y / C V _{CC} = 5V ; Ta = $25\pm3^{\circ}$ C ; BUS = preset value)	
NOTE		S ₂₁	S ₂₂	S ₃₁	S\ S ₃₃	N MOE S ₃₄	DE S ₅₁	_	_		S 09H	-	-	S & BU 0DH	-	A 	MEASURING METHOD
T ₂₀	Cutoff Control Characteristic	В	В	В	В	B	A	_	_			80H		FFH			(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
											80H		00H	00H	00H	_	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data on brightness at center value.
Т ₂₁	Cutoff Center Level	Ť	¢	î	¢	¢	ſ		_	_	¢	¢	80H	80H	80H	_	(5) While changing data on cutoff from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum values (max : Vcomx, min : Vcomn).
																	(6) Set cutoff data at center value and measure video voltage of pin 13 (G OUT) (Vcoct).
T ₂₂	Cutoff Variable Range	î	¢	1	Î	Ţ	Ţ	_	_	_	_	_	_	_	_	_	(7) On the condition that bus data with which Vcomx is obtained in measurement of the above step 5 is Dcomx and bus data with which Vcomn is obtained in the same is Dcomn, calculate number of steps (ΔDcut).
																	ΔDcut = Dcomx – Dcomn
	Drive Variable Range	Ť	Ť	Î	î	Î	î	_	_			FFH 00H	80H	80H	80H	_	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input a stepping signal whose amplitude in video period is 0.3V to pin 31 (Y IN).
											FFH 00H						(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₃										_							(5) Set bus data so that contrast is maximum and Y sub contrast is minimum.
																	(6) While changing drive data from minimum to maximum, measure video amplitude of pin 13 (G OUT) to find maximum and minimum values (max : Vdrmx, min : Vdrmn).
																	(7) Set drive data at center value and measure video amplitude of pin 13 (G OUT) (Vdrct). Calculate amplitude ratio of the measured value to the maximum and minimum amplitudes measured in the above step 6 respectively (DR+, DR-).

				TE	ST CO	NDITIC	DN (Un	less ot	herwise	e speci	fied : H	, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE S ₃₄		S ₄₅	S ₃₉	S ₄₄	S	UB-AD	DRES	S & BL	JS DAT	-a 	MEASURING METHOD
						01											(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input such the step-up signal as shown below to pin 45 (Y IN) and pin 51 (Sync IN).
																	(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that contrast is maximum and DC transmission correction factor is minimum.
Т ₂₄	DC Regeneration	В	В	A	В	В	A	В	A	A	-	—	_	_	—	-	(5) Adjust data on Y sub contrast so that video amplitude of pin 13 (G OUT) is 2.5V.
																	(6) While varying APL of the step-up signal from 10% to 90%, measure change in voltage at the point A.
																	$\begin{bmatrix} 1.0V \\ 1V \\ 1.4 \\ 1 \end{bmatrix} \xrightarrow{f} \begin{bmatrix} 1.0V \\ Variable \\ APL \\ APL \\ from from from from from from from from$
																	(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
																	(2) Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN).
	RGB Output S / N																(3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
T ₂₅	Ratio	1	Ť	В	Ť	1	Î	—	_	—	-	—	—	_	—	—	(4) Set bus data on contrast at maximum.
																	(5) Set bus data on Y sub contrast at center value.
																	(6) Measure video noise level of pin 13 (G OUT) with oscilloscope (no).
																	SNo = −20łog (2.5 / (1 / 5)×no)

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S31	S\ S ₃₃	N MOE S ₃₄		I —	<u> </u>	_				S & BL 0CH			MEASURING METHOD
T ₂₆	Blanking Pulse Output Level	В	В	В	В	В	A	_	_	_	80H	10H				80H	 Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that blanking is on. Measure voltage of pin 13 (G OUT) in V. blanking period (Vy). Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
T ₂₇	Blanking Pulse Delay Time	Ť	Ţ	Ţ	Ť	Ť	Ţ	_	_	_	Ŷ	Ţ	¢	Ť	Ţ	Î	In the setting condition of the Note T_{26} , find "t _{don} " and "t _{doff} " (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT).
T ₂₈	RGB Min. Output Level	Î	Ť	Ť	Ť	Ť	Ť	_	_	_	оон	Ť	Ť	оон	00Н	00H	 Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that brightness and RGB cutoff are minimum. Measure video voltage of pin 13 (G OUT) (Vmn).
T ₂₉	RGB Max. Output Level	Î	ţ	Î	Î	Î	Î	_	_		80H	1fH	44H	80H	80H	80H	 Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. Input stepping signal to pin 31 (Y IN) and synchronizing signal of 0.3V in amplitude to pin 51 (Sync IN). Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. Set bus data so that contrast and Y sub contrast are maximum. While increasing amplitude of the stepping signal, measure maximum output level just before video signal of pin 13 (G OUT) is distorted (Vmn).

TOSHIBA	

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM		-	_		N MOE		-	-	_		UB-AD			IS DAT	A	MEASURING METHOD
		S ₁₈	S ₁₉	S ₂₀	S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	15H	1CH	—	_	_	_	
																	 Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN).
Т ₃₀	Halftone Ys Level	В	В	В	A	В	В	В	В	A	00H	80H	—	—	—	-	(2) Set bus data so that blanking is off and halftone is −3dB in on status.
																	(3) Connect power supply to pin 21 (Digital Ys). While impressing 0V to it, measure amplitude and pedestal level of pin 13 (G OUT) in video period (Vm13, Vp13).
Т ₃₁	Halftone Gain 1	¢	¢	¢	¢	Ť	¢	¢	¢	¢	¢	Ť	_	_	_	_	(4) Raising supply voltage to pin 21 gradually from 0V, measure level (Vtht1) of pin 21 when amplitude of pin 13 output signal changes. At the same time, measure amplitude and pedestal level of pin 13 in video period after the pin 13 output signal changed in amplitude. (Vm13b, Vp13b)
T ₃₂	Halftone Gain 2	¢	Ť	¢	¢	Ť	↑	Ť	Ť	Ť	01H	Ť	_	_	_	_	(5) According to results of the above steps 3 and 4, calculate gain of −3dB halftone and variation of pedestal level.
1.32		1					I	I	I	1	• …	1					G3ht13 = 20 log (Vm13b / Vm13)
																	(6) Set bus data so that halftone is −6dB in on status, and perform the same measurement as the above steps 4 and 5 to
																	find gain of −6dB halftone and variation of pedestal level (G6th13).
Т ₃₃	Text ON Ys, Low Level	¢	¢	¢	Ť	Ţ	Ţ	Ţ	Ţ	¢	¢	¢	_	_	_	_	(7) Raising supply voltage to pin 21 further from Vtht1, measure level (Vttx1) of pin 21 when output signal of pin 13 (G OUT) changes in amplitude and DC level of pin 13 after the change of its output (Vtx13).
																	(8) From results of the above steps 3 and 7, calculate low level of the output in the text mode.
T ₃₄	Text / OSD Output,	↑	↑ (↑	↑	↑	↑	↑	↑	↑	↑	↑	_	_	_	_	Vtxl13 = Vtx13 - Vp13
. 04	Low Level			1	1	T	1	1	1	1		-					 Raising supply voltage to pin 21 by 3V from that in the above step 7, confirm that there is no change in output level of pin 13.

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₁₈	S ₁₉	S ₂₀	-	N MOE S ₂₂		S ₃₃	S ₅₁	_	S 15H	UB-AD 1CH	DRES	S & BU	IS DAT	A	MEASURING METHOD
Т ₃₅	Text RGB Output, High Level	A	A	A	A	B	B	В	A	_	02H	80H			_	_	 Input stepping signal whose amplitude is 0.3V in video period to pin 31 (Y IN) and pin 51 (Sync IN). Set bus data so that blanking and halftone are off. Connect power supply to pin 21 (Digital Ys). While impressing OV to it, measure pedestal level of pin 13 output signal (G OUT) (Vpl13).
																	(4) Connect power supply to pin 19 (Digital G IN) and impress it with 2V.
Т ₃₆	OSD Ys ON, Low Level	Ť	Ť	Ť	Î	Ť	Ť	Ť	Ť		Ţ	¢	_	_		_	 (5) Raising supply voltage to pin 21 gradually from 0V, measure video level of pin 21 after output signal of pin 13 changed (VIx13). (6) From measurement results of the above steps 3 and 5, calculate high level in the text mode. Vmt13 = Vtx13 - Vpt13 (7) Raising supply voltage to pin 21 further from that in the step 5,
T ₃₇	OSD RGB Output, High Level	1	1	1	↑	<u>↑</u>	1	1	1		<u>↑</u>	↑				_	 (7) Raising supply voltage to pin 21 when the level of pin 13 output signal changes from that in the step 5 to -6dB as halftone data is set to ON (the 6th step of Notes T₃₀ to T₃₄). (8) In the condition of the above step 7, raise voltage impressed to pin 19 to 3V and measure output voltage of pin 13 (Vos13). (9) From results of the above steps 3 and 7, calculate high level of the output in the OSD mode.
																	Vmos13 = Vos13 - Vpt13

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	<u> </u>	<u> </u>	<u></u>	-	N MOE	-	6	6	6	S	UB-AD	DRES	S & BL	JS DA	ΓA –	MEASURING METHOD
T ₃₈	Text Input Threshold Level	<u>S₁₈</u> А	S ₁₉	S ₂₀	S ₂₁	<u>S₂₂</u> В	<u>S₃₁</u> В	<u>S₃₃</u> В	<u>S₃₄</u> В	S ₅₁	_	_	_	_	_	_	 Connect power supply to pin 21 (Digital Ys) and impress 1.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vtxt). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).
Т ₃₉	OSD Input Threshold Level	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	_	_	_	_	_	_	 Connect power supply to pin 21 (Digital Ys) and impress 2.5V to it. Connect power supply to pin 19 (Digital G IN). While raising supply voltage gradually from 0V, measure supply voltage when output signal of pin 13 (G OUT) changes (Vosd). Raising the supply voltage to pin 19 furthermore to 4V, confirm that there is no change in the output signal of pin 13 (G OUT).

				TE	ST CO	NDITI	ON (Un	less ot	herwis	e speci	ified : H	I, RGB	V _{CC} =	9V ; V	_{DD} , Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₁₈	S ₁₉	S ₂₀		N MOE		See	S ₃₄	S ₅₁	S	ÚB-AD	DRES	S & BL	JS DAT	Α	MEASURING METHOD
T ₄₀	OSD Mode Switching Rise-Up Time	A	A	A	A	B	B	В	В	A	_	_	_	_	_	_	 Input a Signal Shown by (a) in the following figure to pin 21 (Digital Ys). According to (b) in the figure, measure T_{Rosd}, t_{PRos}, T_{Fosd} and t_{PFos} for output signals of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) respectively.
T ₄₁	OSD Mode Switching Rise-Up Transfer Time	Ţ	Ť	¢	¢	¢	Ţ	Ţ	Ţ	Ţ	_	_	_	_	_	_	(3) Find maximum values of t_{PRos} and t_{PFos} respectively ($\Delta t_{PRos} \Delta_{tPFos}$).
T ₄₂	OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	_	_	_	_	_	_	(a)
T ₄₃	OSD Mode Switching Breaking Time	¢	¢	¢	¢	¢	¢	¢	¢	¢	_	_	_	_	_	_	(d) 50% (b) <u>tPR</u> <u>tPF</u>
T ₄₄	OSD Mode Switching Breaking Transfer Time	Ţ	¢	¢	¢	¢	¢	Ţ	¢	¢	_	_	_	_	_	_	0%
T ₄₅	OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	Ţ	Ŷ	¢	¢	¢	Ţ	Ţ	Ţ	Ţ	_	_	_	_	_	_	90%

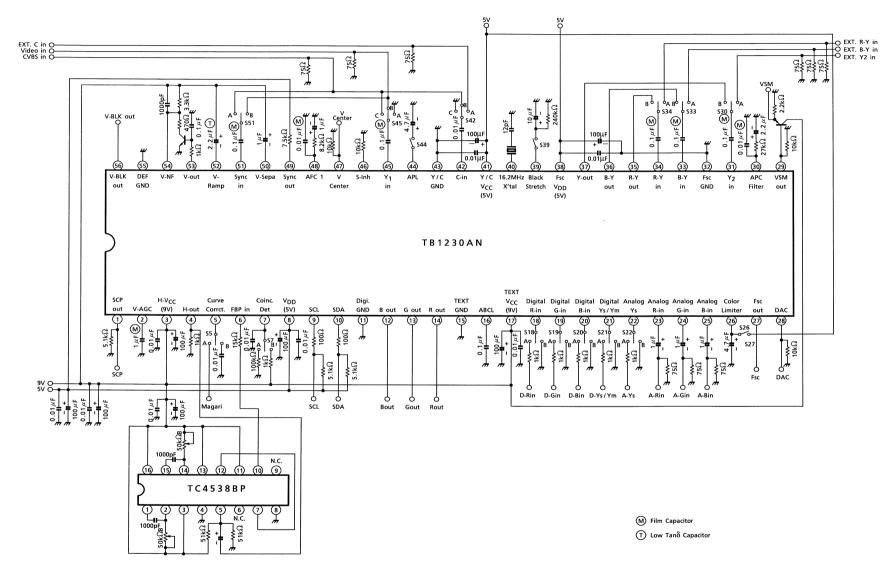
				TE	ST CO	NDITIO	ON (Un	less ot	herwis	e speci	fied : H	, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₁₈	S ₁₉	S ₂₀		N MOE	DE S ₃₁	S	S ₃₄	S ₅₁	S	UB-AD	DRES	S & BL	JS DAT	A	MEASURING METHOD
T ₄₆	OSD Hi DC Switching Rise-Up	A	A	A	A	<u>В</u>	B	B	<u>- 334</u> В	A							 Supply pin 21 (Digital Ys) with 2.5V. Input 5V_{p-p} signal shown by (a) in the figure to pin 18 (Digital R IN).
	Time																 (3) Referring to (b) of the following figure, measure T_{Rosh}, t_{PRoh}, T_{Fosh} and t_{PFoh} for output signal of pin 14 (R OUT).
_	OSD Hi DC																(4) Input 5Vp-p signal shown by (a) in the figure to pin 19 (Digital G IN).
Т ₄₇	Switching Rise-Up Transfer Time	1	Î	Ť	Ţ	ſ	Ť	Ť	↑	Î	_	_	_	_	_	-	 Perform the same measurement as the above step 3 for pin 13 output (G OUT) referring to (b) of the following figure.
																	(6) Input 5V _{p-p} signal shown by (a) in the figure to pin 20 (Digital B IN).
т ₄₈	OSD Hi DC Switching Rise-Up Transfer Time, 3	Ŷ	Ŷ	Ť	Ŷ	Ŷ	Ŷ	¢	¢	↑	_	_	_	_	_	_	(7) Perform the same measurement as the above step 3 for pin 12 output (B OUT) referring to (b) of the following figure.
	Axes Difference																(8) Find maximum axes differences in t_{PRoh} and t_{PFoh} among the three outputs (Δt_{PRoh} , Δt_{PFoh}).
T ₄₉	OSD Hi DC Switching Breaking Time	Ť	Ť	Ť	Ť	Ť	Ť	Ţ	Ŷ	¢	_				_		1H
																	(a)
Т ₅₀	OSD Hi DC Switching Breaking Transfer Time	¢	¢	¢	ţ	ţ	Ŷ	¢	¢	¢	_	_	_	_	_	_	50%
																	(b) tPR:
Т ₅₁	OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	ţ	Ť	Ť	ţ	ţ	Ţ	Ţ	Ŷ	¢	_	_	_	_	_	_	90%

NOTE				TE	ST CO	NDITIO	TION	l (Unl	less otl	herwise	e speci	ified : H	, RGB	V _{CC} =	9V ; V	DD, Fs	c V _{DD} ,	Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	-	N MOE S ₃₄		S ₅₁	_	_		06H	UB-AD	DRES	S & BL	JS DAT	A 	MEASURING METHOD
T ₅₂	RGB Contrast Control Characteristic	В	A	<u>S₃₁</u> В	В	В		A				06H FFH 80H 00H						 (1) Input 0.3V synchronizing signal to pin 51 (Sync IN). (2) Supply 5V of external supply voltage to pin 22 (Analog Ys). (3) Set bus data on drive at center value. (4) Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 23 (Analog R IN). (5) While changing data on RGB contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of pin 14 (R OUT) in video period. At the same time, measure video amplitude of pin 14 when the bus data is set at the center value (80). (Vc14mx, Vc14mn, D14c80) (6) In the same manner as the above steps 4 and 5, measure output signal of pin 13 with input of the same external power supply to pin 24 (Analog G IN), and measure output signal of pin 12 with input of the same power supply to pin 25 (Analog B IN). (Vc12mx, Vc12mn, D12c80). (7) Find amplitude ratio between signal with maximum unicolor data and signal with minimum unicolor data in conversion into decibel (ΔV13ct).

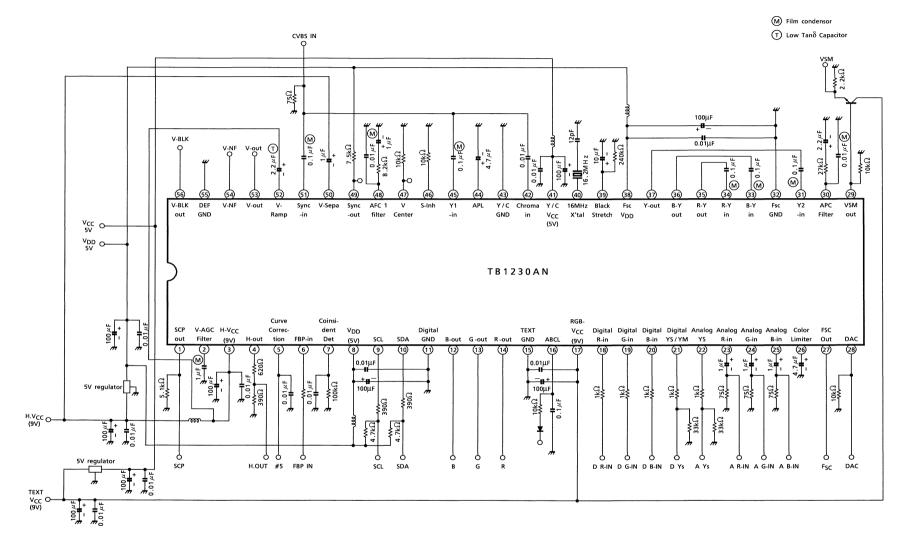
				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM		-		-	N MOE					-	UB-AD	DRES	S & BU	IS DAT	ΓA	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	—	—	—	06H	—	—	—	—	—	
Т ₅₃	Analog RGB AC Gain	в	A	В	В	В	A	_	_	_	_	-	-	_	_	_	In the setting condition of the Note T_{52} , calculate output / input gain (double) with contrast data being set maximum. G = Vc13mx / 0.5V
																	(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).
	Analog RGB Frequency Characteristic				ţ	ţ	Î	_	_	_	FFH	_	_		_		(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).
		↑		ſ										_			 Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.5V) to pin 24 (Analog G IN).
Т ₅₄			¢													_	(4) Set bus data so that contrast is maximum and drive is set at center value.
																	(5) Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M).
																	(6) From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic.
																	Gf = 20 ℓog (G6M / G)

				TE				less ot	herwise	e speci							Y / C V _{CC} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	0	<u> </u>	0	-	N MOE						UB-AD			IS DAT	A	MEASURING METHOD
		S ₂₁	S ₂₂	S ₃₁	S ₃₃	S ₃₄	S ₅₁	_	_	—	01H	06H	_	_	_	—	
																	(1) Input 0.3V synchronizing signal to pin 51 (Sync IN).
	Analog RGB																(2) Supply 5V of external supply voltage to pin 22 (Analog Ys).
T ₅₅		В	А	в	в	В	А	_	_	_	_	00H	_	_	_	_	(3) Set bus data so that contrast is minimum and drive is set at center value.
- 33	Dynamic Range																(4) While inputting stepping signal to pin 24 (Analog G IN), increase video amplitude gradually from 0.
																	 Measure video amplitude of pin 24 when video voltage of pin 13 (G OUT) does not change.
	RGB Brightness										FFH						(1) Short circuit pin 31 (Y IN), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling.
T ₅₆	Control	1	↑	↑	↑	↑	↑	—	—	_			—	_	—	—	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
	Characteristic										00H						(3) Set bus data on RGB cutoff at center value.
																	(4) Supply 5V of external supply voltage to pin 22 (Analog Ys).
Т ₅₇	RGB Brightness	↑	↑	↑	↑	Ť	↑	_	_	_	80H	_	_	_	_		(5) While changing data brightness from maximum to minimum, measure maximum and minimum voltages of pin 13 (G OUT) in video period. (max : Vbrmx, min : Vbrmn)
07	Center Voltage		·	I	I	I	Ι	_									(6) Set bus data on brightness at center value and measure video voltage of pin 13 (G OUT) (Vbcnt).
Т ₅₈	RGB Brightness Data Sensitivity	¢	¢	¢	ſ	ſ	¢	_	_	_	_	_			_	_	(7) On the condition that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data (ΔVbrt).
																	ΔVbrt = (Vbrmx – Vbrmn) / (Dbrmx – Dbrmn)
																	 Input TG7 sine wave signal (f = 100kHz, video amplitude = 0.3V) to pin 23 (Analog R IN).
T ₅₉	Analog RGB Mode ON Voltage	¢	Ţ	¢	¢	¢	¢	_	_	_	80H	_	_	_	_	-	(2) Supply 5V of external supply voltage to pin 22 (Analog Ys) and raise the voltage gradually from 0V.
																	(3) Measure voltage at pin 22 when signal 1 is output from pin 14 (R OUT) (Vanath).

				TE	ST CO	NDITIO	ON (Un	less ot	herwis	e spec	ified : H	I, RGB	V _{CC} =	9V ; V	' _{DD} , Fs	c V _{DD} ,	$Y / C V_{CC} = 5V$; Ta = 25±3°C; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁			DE S ₅₁		_	_	S	UB-AD	DRES	S & BL	JS DAT	ГА 	MEASURING METHOD
Т ₆₀	Analog RGB Switching Rise-Up Time	B	A	В	В	B	A	_	_	_	_	_	_	_	_	_	 Supply signal (2V_{p-p}) shown by (a) in the following figure to pin 22 (Analog Ys). Referring to (b) of the following figure, measure T_{Rana}, t_{PRan}, T_{Fana} and t_{PFan} for outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT).
Т ₆₁	Analog RGB Switching Rise-Up Transfer Time	Ţ	Ţ	ţ	Ţ	ţ	Ţ	_	_	_	_	_	_	_	_	_	(3) Find maximum values of t_{PRan} and t_{PFan} respectively $(\Delta t_{PRan}, \Delta t_{PFan})$.
Т ₆₂	Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	Ţ	¢	¢	¢	¢	Ţ	_	_	_	_	_	_	_	_	_	(a)
Т ₆₃	Analog RGB Switching Breaking Time	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	_	_	_	_	_	_	_	-		(b) <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>tpp</u> <u>t</u>
Т ₆₄	Analog RGB Switching Breaking Transfer Time	Ţ	¢	ţ	¢	Ţ	Ţ	_	_	_	_	_	_	_	_	_	90% (c) <u>tpr</u> , <u>tpr</u> , 90% 50%
Т ₆₅	Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	Ţ	Ţ	ţ	ţ	ţ	ţ	_	_	_	_	_	_	_	_	_	10%

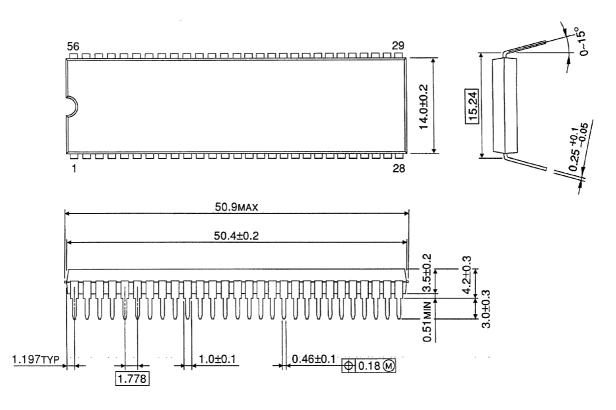

TOSHIBA	

				TE	ST CO	NDITIO	DN (Un	less ot	herwis	$C V_{CC} = 5V$; Ta = 25±3°C; BUS = preset value)							
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁	SN S ₃₃	N MOE S ₃₄		_		_	S	UB-AD	DRES	S & BL	IS DAT	A —	MEASURING METHOD
		321	322	331	333	334	351	_					_			_	(1) Supply 2V to pin 22 (Analog Ys).
Т ₆₆	Analog RGB Hi Switching Rise-Up	В	А	В	В	В	A	_	_	_	_	_	_	_	_	_	 Input 0.5V_{p-p} signal shown by (a) in the following figure to pin 23 (Analog R IN).
	Time																(3) Referring to (b) of the following figure, measure T _{Ranh} , t _{PRah} , T _{Fanh} and t _{PFah} for output of pin 14 (R OUT).
																	 Input 0.5V_{p-p} signal shown by (a) in the following figure to pin 24 (Analog G IN).
Т ₆₇	Analog RGB Hi Switching Rise-Up Transfer Time	¢	Ŷ	¢	¢	ſ	1	_	_	_	_	_	_	_	_	_	(5) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 13
																	(G OUT).
																	(6) Input 0.5V _{p-p} signal shown by (a) in the following figure to pin 25 (Analog B IN).
т ₆₈	Analog RGB Hi Switching Rise-Up Transfer Time, 3 Axes Difference	Ŷ	¢	Ţ	↑	Ť	Ť	_	_	_	_	_	_	—	_	_	 (7) Referring to (b) of the following figure, perform the same measurement as the above step 3 for output of pin 12 (B OUT).
																	(8) Find maximum axes difference in t _{PRoh} and t _{PFoh} among the three outputs (Δt _{PRah} , Δt _{PFah}).
Т ₆₉	Analog RGB Hi Switching Breaking Time	Ť	Ť	ţ	Ţ	ţ	Ţ	_	_	_	_	_	_	_	_	_	
																	(a)
Т ₇₀	Analog RGB Hi Switching Breaking Transfer Time	Ŷ	Ť	Ţ	¢	Ŷ	Ŷ	_	_	_	_	_	_	—	_	_	50%
																	(b) + tPR + tPF +
T ₇₁	Analog RGB Hi Switching Breaking Transfer Time, 3 Axes Difference	ſ	¢	Ţ	¢	ſ	Ţ	_	_	_	_	-	_	_	_	_	90% 50% 10% 0%


				TE	ST CO	NDITIO	ON (Un	less ot	herwis	e spec	ified : H	I, RGB	V _{CC} =	9V ; V	′ _{DD} , Fs	c V _{DD}	$Y / C V_{CC} = 5V$; Ta = 25±3°C; BUS = preset value)
NOTE	ITEM	S ₂₁	S22	S ₃₁		W MOE S ₃₄		<u> </u>	<u> </u>	—	S	UB-AD	DRES	S & Bl	JS DA ⁻	ТА —	MEASURING METHOD
				- 01	- 00	- 04	- 01										 Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 31 (Y₂ IN).
																	(2) Short circuit pin 25 (Analog G IN) in AC coupling.
																	(3) Input 0.3V synchronizing signal to pin 51 (Sync IN).
													_	_	_		(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value.
	TV-Analog RGB											_					(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
T ₇₂	Crosstalk	В	A	В	В	В	A	-	-	-	_					-	 Measure video voltage of output signal of pin 13 (G OUT) (Vtg).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	 Measure video voltage of output signal of pin 13 (G OUT) (Vana).
																	(9) From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB.
																	Crtva = 20log (Vana / Vtv)
																	(1) Short circuit pin 31 (Y ₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y IN) in AC coupling.
																	(2) Input 0.3V synchronizing signal to pin 51 (Sync IN).
																	(3) Set bus data so that contrast is maximum and drive is set at center value.
																	 Input TG7 sine wave signal (f = 4MHz, video amplitude = 0.5V) to pin 24 (Analog G IN).
T ₇₃	Analog RGB-TV	¢	↑	↑	↑	↑	↑								_	_	(5) Supply pin 22 (Analog Ys) with 0V of external power supply.
173	Crosstalk				I		1										 Measure video voltage of output signal of pin 13 (G OUT) (Vant).
																	(7) Supply pin 22 (Analog Ys) with 2V of external power supply.
																	 Measure video voltage of output signal of pin 13 (G OUT) (Vtan).
																	(9) From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV.
																	Crant = 20log (Vant / Vtan)

				TE				less otl	nerwise	e speci							Y/CV _C	_{:C} = 5V ; Ta = 25±3°C ; BUS = preset value)
NOTE	ITEM	S ₂₁	S ₂₂	S ₃₁		N MOE	DE S ₅₁	_			S 01H	UB-AD 15H	DRES	5 & BU	S DAT	A		MEASURING METHOD
		321	322	331	333	334	351				0111	-	_				0.	put TG7 sine wave signal (f = 4MHz, video amplitude = 5V) to pin 31 (Y ₂ IN). nort circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and
T ₇₄	ABL Point Characteristic	В	В	В	В	В	A	_	_	_	FFH	10Н 90Н F0H	_	_	_	_	(3) Se at vc gr vc	n 26 (Analog B IN) in AC coupling. et bus data so that brightness is maximum and ABL gain is center value, and supply pin 16 with external supply oltage. While turning down voltage supplied to pin 16 adually from 7V, measure voltage at pin 16 when the oltage supplied to pin 12 decreases by 0.3V in three onditions that data on ABL point is set at minimum, center
																	(1) In	nd maximum values respectively. (Vablpl, Vablpc, Vablph) put TG7 sine wave signal (f = 4MHz, video amplitude = 5V) to pin 31 (Y ₂ IN).
																		put 0.3V synchronizing signal to pin 51 (Sync IN).
					î			_	_	_							• •	easure video amplitude at pin 12. (Vacl1)
T ₇₅	ACL Characteristic	↑	↑	Ť		Ţ	Î				_		_	_	_	_	(4) M	easure DC voltage at pin 16 (ABCL).
175		I	I	I														upply pin 16 with a voltage that the voltage measured in the pove step 4 minus 2V.
																		easure video amplitude at pin 12 (Vacl2) and its ratio to the nplitude measured in the above step 3.
																	,	Vacl = 20log (Vacl2 / Vacl1)
																	(1) SH IN	nort circuit pin 31 (Y ₂ IN), pin 34 (R-Y IN) and pin 33 (B-Y) in AC coupling.
																	(2) In	put 0.3V synchronizing signal to pin 51 (Sync IN).
												0011						et bus data on brightness at maximum and measure video C voltage at pin 12 (Vmax).
												00H						easure voltage at pin 16 which is being supplied with the ltage measured in the step 5 of the preceding Note 75.
Т ₇₆	ABL Gain Characteristic	Ţ	¢	Ţ	Ť	Ť	Î	—	—	—	FFH	10H	—	—	—	—	ar	nanging setting of bus data on ABL gain at minimum, center nd maximum values one after another, measure video DC Iltage at pin 12. (Vabl1, Vabl2, Vabl3)
												1CH						nd respective differences of Vabl1, Vabl2 and Vabl3 from evoltage measured in the above step 3.
																	,	Vabll = Vmax - Vabl1
																	,	Vablc = Vmax - Vabl2
																		Vablh = Vmax - Vabl3

TEST CIRCUIT


APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78

Unit : mm

Weight: 5.55g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.