RENESAS

4559 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4559 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 Series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has one or two reload registers), a 16-bit timer for clock count, interrupts, and oscillation circuit switch function.

The various microcomputers in the 4559 Group include variations of type as shown in the table below.

FEATURES

- Minimum instruction execution time......0.5 µs (at 6 MHz oscillation frequency, in high-speed through-mode)
- Supply voltage1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)
- Timers

Timer 3...... 16-bit timer (fixed dividing frequency)

• Interrupt
• Key-on wakeup function pins17
• I/O port
• Output port
LCD control circuit
Segment output
Common output
Voltage drop detection circuit
Reset occurrence
Reset release
Skip occurrence
Power-on reset circuit
Watchdog timer
Clock generating circuit
Built-in clock (on-chip oscillator)
Main clock (ceramic resonator/RC oscillation)

- Sub-clock (quartz-crystal oscillation)
- LED drive directly enabled (port D)

APPLICATION

Remote control transmitter

Table 1Support Product

Part number	ROM size (× 10 bits)	RAM size (× 4 bits)	Package	ROM type
M34559G6FP (Note 1)	6144 words	288 words	PLQP0052JA-A	QzROM
M34559G6-XXXFP	6144 words	288 words	PLQP0052JA-A	QzROM

Note 1: Shipped in blank

PIN CONFIGURATION

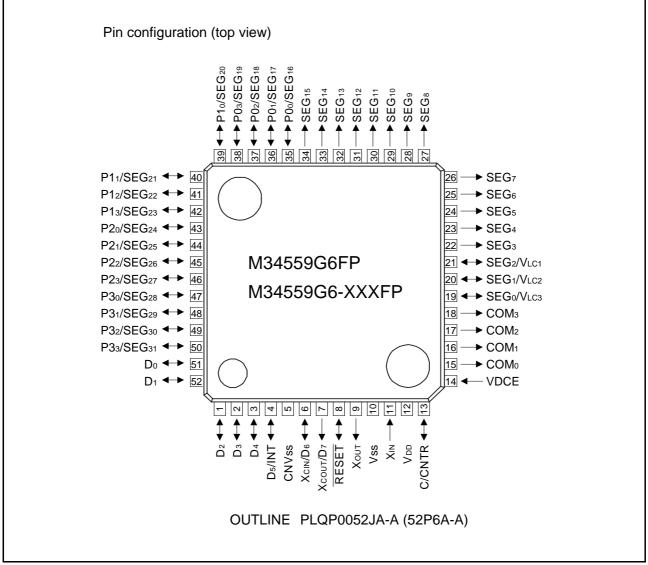
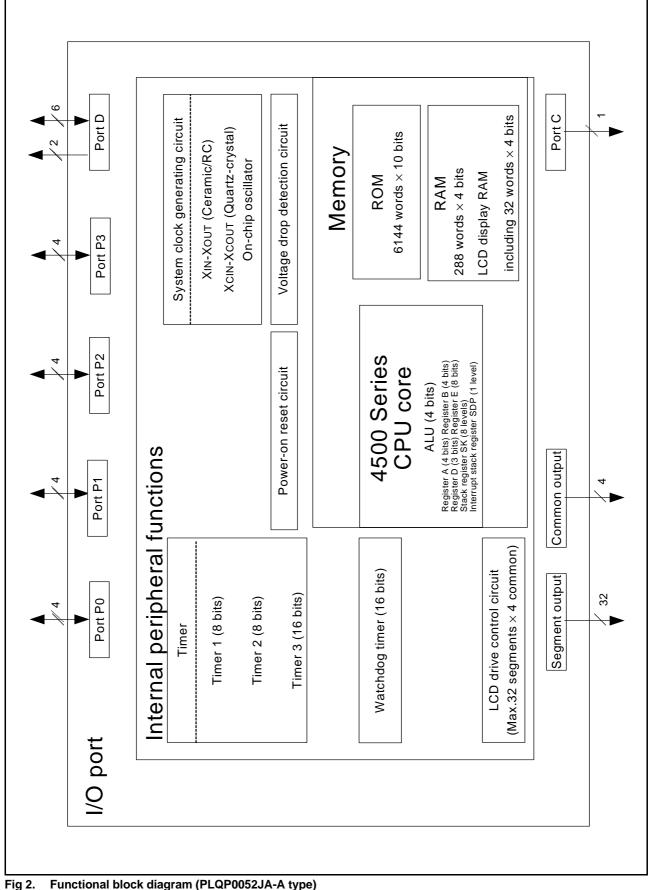



Fig 1. Pin configuration (PLQP0052JA-A type)

PERFORMANCE OVERVIEW

Table 2 Performance overview

	F	arameter		Function			
Number of t	basic inst	tructions		135			
Minimum in	struction	execution	time	0.5 μs (Oscillation frequency 6 MHz: high-speed through mode)			
Memory size	es	ROM		6144 words \times 10 bits			
		RAM		288 words \times 4 bits (including LCD display RAM 32 words \times 4 bits)			
I/O port		D0-D5	I/O (Input is examined by skip decision.)	Six independent I/O ports. The output structure can be switched by software. Port D_5 is also used as INT pin.			
		D6, D7	Output	Two independent output ports. Ports D_6 and D_7 are also used as XCIN and XCOUT, respectively.			
		P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P00–P03 are also used as SEG16–SEG19, respectively.			
		P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P10–P13 are also used as SEG20–SEG23, respectively.			
		P20-P23	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P20–P23 are also used as SEG24–SEG27, respectively.			
		P30-P33	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P30–P33 are also used as SEG28–SEG31, respectively.			
		С	Output	1-bit output; Port C is also used as CNTR pin.			
Timer		Timer 1		8-bit timer with a reload register and carrier wave output auto-control function, and has an event counter.			
		Timer 2		8-bit timer with two reload registers and carrier wave generation function.			
		Timer 3		16-bit timer, fixed dividing frequency (timer for clock count)			
		Timer LC		4-bit programmable timer with a reload register (for LCD clock generating)			
		Watchdog	timer	16-bit timer, fixed dividing frequency (timer for monitor)			
LCD control	l circuit	Selective		1/2, 1/3 bias			
LOD CONTO	onoun	Selective	duty value	2, 3, 4 duty			
		Common		4			
		Segment of	output	32			
		Internal resistor for power supply		$2r \times 3$, $2r \times 2$, $r \times 3$, $r \times 2$ (r = 100 k Ω , (Ta = 25 °C, Typical value))			
Voltage drop	р	Reset occ	urrence	Typ. 1.7 V (Ta=25 °C)			
detection cir	rcuit	Reset rele	ase	Typ. 1.8 V (Ta=25 °C)			
		Skip occu	rrence	Typ. 2.0 V (Ta=25 °C)			
Power-on re	eset circu	uit		Built-in			
Interrupt		Source		4 sources (one for external, three for timers)			
	·	Nesting		1 level			
Subroutine I	nesting			8 levels			
Device struc	cture			CMOS silicon gate			
Package				52-pin plastic molded LQFP (PLQP0052JA-A)			
Operating te	emperatu	ire range		-20 to 85 °C			
Power source	ce voltag	e		1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)			
dissipation	At active	e mode		0.3 mA (Ta = 25 °C, VDD = 3 V, $f(XIN) = 4 \text{ MHz}$, $f(XCIN) = \text{stop}$, $f(RING) = \text{stop}$, $f(STCK) = f(XIN)/8$			
(Typ. value)	At clock	operating i	mode	5 μA (Ta = 25 °C, VDD = 3 V, f(XCIN) = 32 kHz)			
	At RAM	back-up		0.1 μA (Ta = 25 °C, VDD = 5 V, output transistor is cut-off state)			

PIN DESCRIPTION

Table 3 Pin description

Pin	Name	Input/Output	Function
Vdd	Power source	-	Connected to a plus power supply.
Vss	Power source	-	Connected to a 0 V power supply.
CNVss	CNVss	_	This pin is shared with the VPP pin which is the power source input pin for programming the built-in QzROM. Connect to Vss through a resistor about 5 k Ω .
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
Xin	Main clock input	Input	$\ensuremath{I/O}$ pins of the main clock generating circuit. When using a ceramic resonator,
Хоит	Main clock output	Output	connect it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
XCIN	Sub clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32.768 kHz quartz-crystal
Хсоит	Sub clock output	Output	oscillator between pins XCIN and XCOUT. A feedback resistor is built-in between them. XCIN and XCOUT pins are also used as ports D6 and D7, respectively.
RESET	Reset I/O	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
D0-D5	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D ₅ is also used as INT pin.
D6, D7	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D ₆ and D ₇ are also used as XcIN pin and XcoUT pin, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00–P03 are also used as SEG16–SEG19, respectively.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P10-P13 are also used as SEG20-SEG23, respectively.
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20-P23 are also used as SEG24-SEG27, respectively.
P30-P33	I/O port P3	I/O	Port P3 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P3 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P30–P33 are also used as SEG28–SEG31, respectively.
С	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR pin.
COM0–COM3	Common output	Output	LCD common output pins. Pins COM ₀ and COM ₁ are used at 1/2 duty, pins COM ₀ -COM ₂ are used at 1/3 duty and pins COM ₀ -COM ₃ are used at 1/4 duty.
SEG0-SEG31	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively. SEG16-SEG31 pins are used as Ports P00-P03, Ports P10-P13, Ports P20-P23, and Ports P30-P33, respectively.
CNTR	Timer I/O	I/O	CNTR pin has the function to input the clock for the timer 1 event counter and to output the PWM signal generated by timer 2. CNTR pin is also used as Port C.
INT	Interrupt input	Input	INT pin accepts external interrupts. They have the key-on wakeup function which can be switched by software. INT pin is also used as Port D5.
VLC3–VLC1	LCD power source	_	These are the LCD power supply pins. If an internal resistor is used, connect the VLC3 pin to the VDD pin. (If brightness adjustment is required, connect via a resistor.) When using an external power supply, apply voltage such that VSS \leq VLC1 \leq VLC2 \leq VLC3 \leq VDD. Pins VLC3 to VLC1 also function as pins SEG0 to SEG2.

MULTIFUNCTION

Table 4 Pin description

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
P00	SEG16	SEG16	P00	P30	SEG ₂₈	SEG ₂₈	P30
P01	SEG17	SEG17	P01	P31	SEG29	SEG29	P31
P02	SEG18	SEG18	P02	P32	SEG30	SEG30	P32
P03	SEG19	SEG19	P03	P33	SEG31	SEG31	P33
P10	SEG20	SEG ₂₀	P10	D5	INT	INT	D5
P11	SEG21	SEG21	P11	D6	XCIN	XCIN	D6
P12	SEG22	SEG22	P12	D7	Хсоит	Хсоит	D7
P13	SEG23	SEG23	P13	С	CNTR	CNTR	С
P20	SEG24	SEG24	P20	SEG ₀	VLC3	VLC3	SEG ₀
P21	SEG25	SEG25	P21	SEG1	VLC2	VLC2	SEG1
P22	SEG ₂₆	SEG ₂₆	P22	SEG ₂	VLC1	VLC1	SEG ₂
P23	SEG27	SEG27	P23				

Note 1. Pins except above have just single function. Note 2. The input/output of D₅ can be used even when INT is selected. Be careful when using inputs of both INT and D₅ since the input threshold value of INT pin is different from that of port D₅. Note 3. "H" output function of port C can be used even when the CNTR (output) is used.

PORT FUNCTION

Table 5 Port function

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0–D4, D5/INT	I/O (6)	N-channel open-drain/ CMOS	1 bit	SD, RD SZD, CLD	FR1, FR2, I1, K2	Programmable output structure selection function
	D6/XCIN, D7/XCOUT	Output (2)	N-channel open-drain			RG	-
Port P0	P00/SEG16, P01/SEG17, P02/SEG18, P03/SEG19	I/O (4)	N-channel open-drain/ CMOS	4 bits	OP0A IAP0	PU0, K0, FR0, C1	Programmable pull-up, key- on wakeup and output structure selection function
Port P1	P10/SEG20, P11/SEG21, P12/SEG22, P13/SEG23	I/O (4)	N-channel open-drain/ CMOS	4 bits	OP1A IAP1	PU1, K0, FR0, C2	Programmable pull-up, key- on wakeup and output structure selection function
Port P2	P20/SEG24, P21/SEG25, P22/SEG26, P23/SEG27,	I/O (4)	N-channel open-drain/ CMOS	4 bits	OP2A IAP2	PU2, K1, FR3, L3	Programmable pull-up, key- on wakeup and output structure selection function
Port P3	P30/SEG28, P31/SEG29, P32/SEG30, P33/SEG31	I/O (4)	N-channel open-drain/ CMOS	4 bits	OP3A IAP3	PU3, K2, K3, FR2, C3	Programmable pull-up, key- on wakeup and output structure selection function
Port C	C/CNTR	Output (1)	CMOS	1 bit	RCP SCP	W1, W2, W4	-

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- \bullet Clock (f(XIN)) by the external ceramic resonator
- \bullet Clock (f(XIN)) by the external RC oscillation
- \bullet Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- \bullet Clock (f(XCIN)) by the external quartz-crystal oscillation

• System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

• Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

	Register MR			System clock Operation mode	
MR3	MR2	MR1	MR ₀	System clock	Operation mode
1	1	0	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	0	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	0	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	0	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	1	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	1	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	1	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	1	f(STCK) = f(XIN)	High-speed through mode
1	1	1	0	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode
1	0	1	0	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode
0	1	1	0	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode
0	0	1	0	f(STCK) = f(XCIN)	Low-speed through mode

Table 6 Table Selection of system clock

Note 1. The f(RING)/8 is selected after system is released from reset

CONNECTIONS OF UNUSED PINS

Table 7 Port function

Pin	Connection	Usage condition
Xin	Connect to Vss.	RC oscillator is not selected
Хоит	Open.	-
XCIN/D6	Connect to Vss.	_
XCOUT/D7	Open.	_
D0D4	Open.	-
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D5/INT	Open.	INT pin input is disabled.
	Connect to Vss.	N-channel open-drain is selected for the output structure.
P00/SEG16-	Open.	The key-on wakeup function is invalid.
P03/SEG19	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
P10/SEG20-	Open.	The key-on wakeup function is invalid.
P13/SEG23	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
P20/SEG24-	Open.	The key-on wakeup function is invalid.
P23/SEG27	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
P30/SEG28-	Open.	The key-on wakeup function is invalid.
P33/SEG31	Connect to Vss.	Segment output is not selected. N-channel open-drain is selected for the output structure. Pull-up transistor is OFF. The key-on wakeup function is invalid.
C/CNTR	Open.	CNTR input is not selected for timer 1 count source.
COM0-COM3	Open.	-
SEG0/VLC3	Open.	SEGo pin is selected.
SEG1/VLC2	Open.	SEG1 pin is selected.
SEG2/VLC1	Open.	SEG2 pin is selected.
SEG3-SEG15	Open.	-

(Note when connecting to Vss or Vbb) Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

PORT BLOCK DIAGRAM

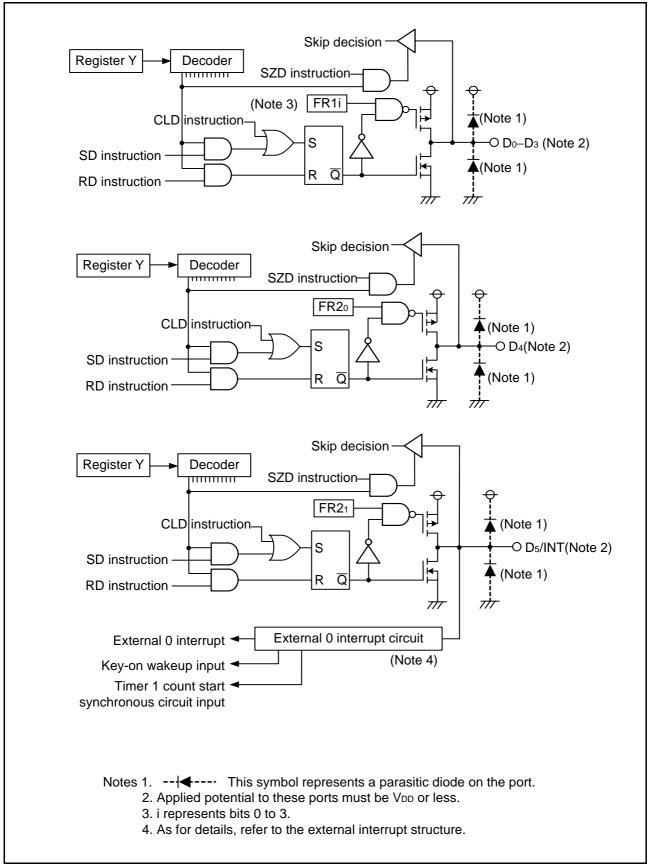
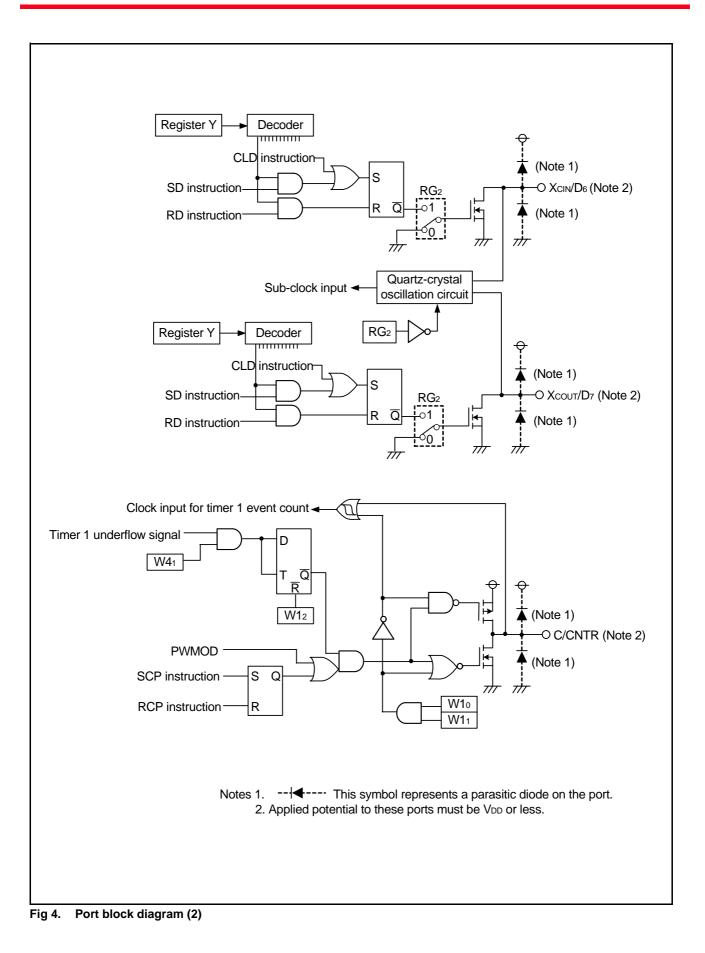
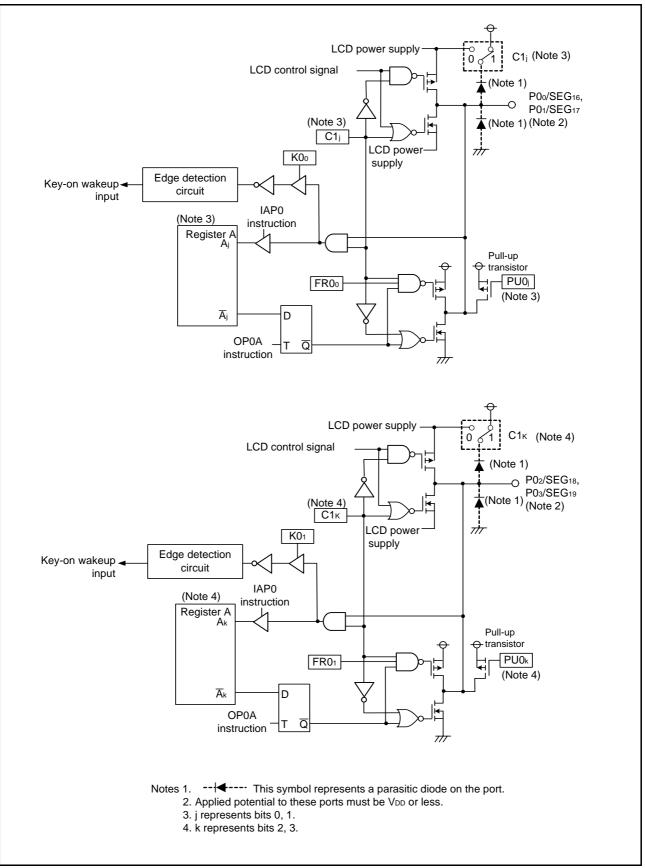




Fig 3. Port block diagram (1)

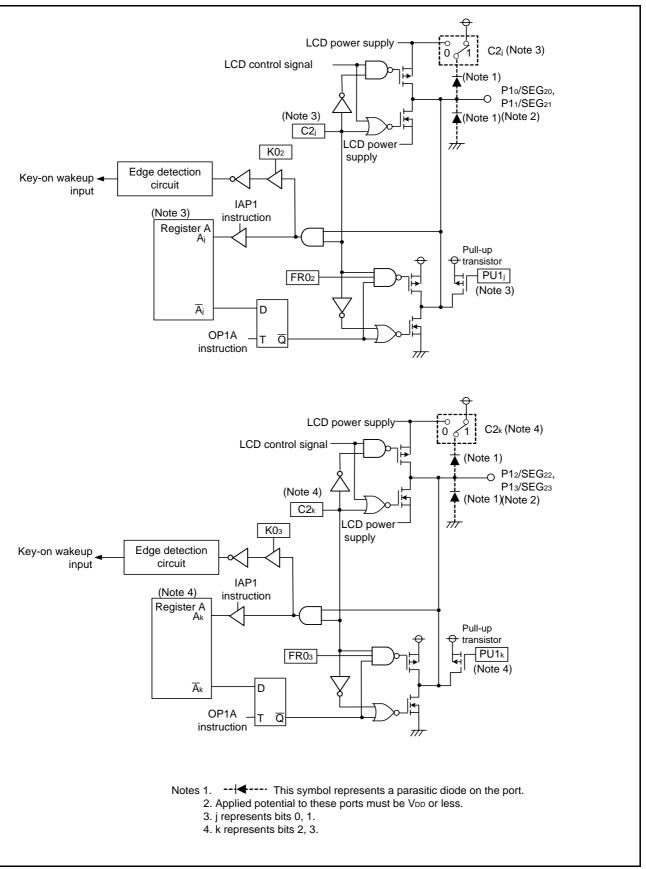


Fig 6. Port block diagram (4)

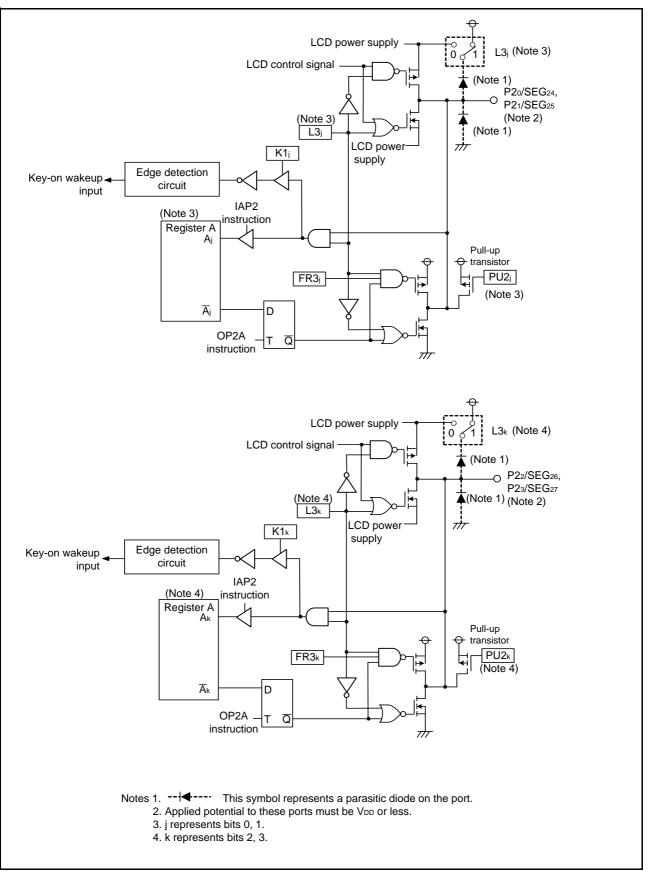


Fig 7. Port block diagram (5)

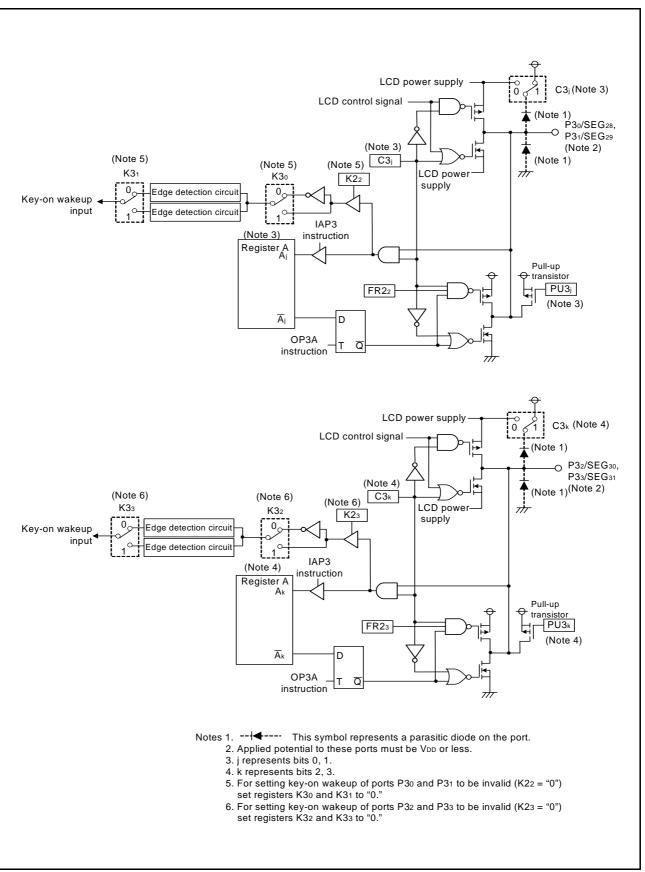


Fig 8. Port block diagram (6)

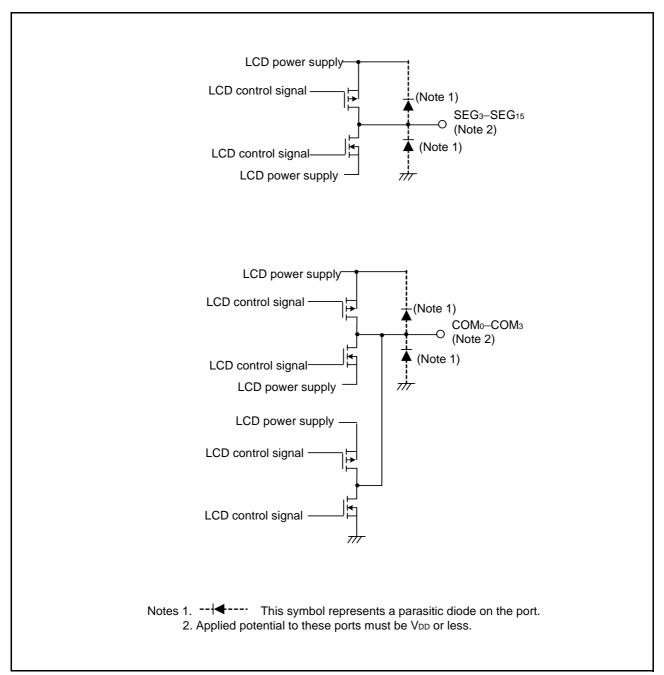


Fig 9. Port block diagram (7)

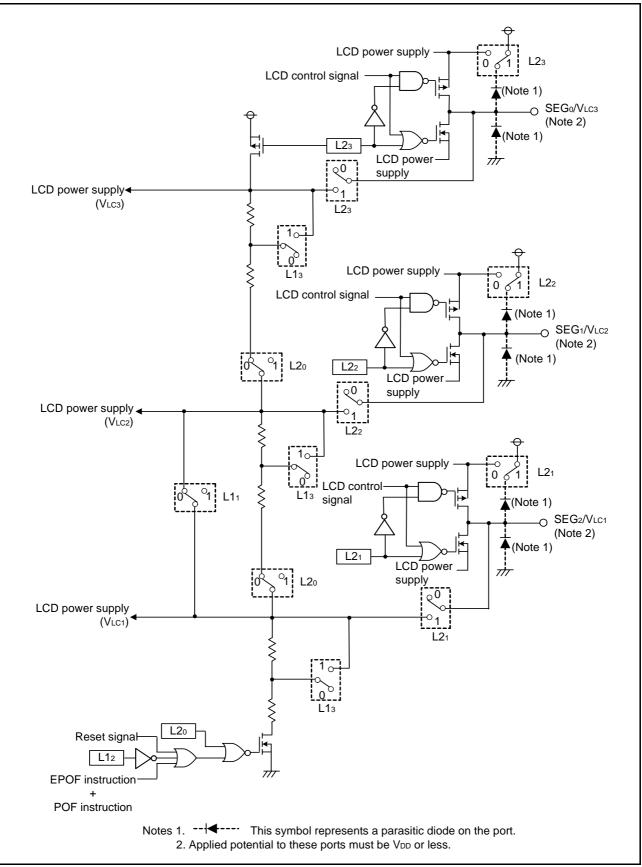


Fig 10. Port block diagram (8)

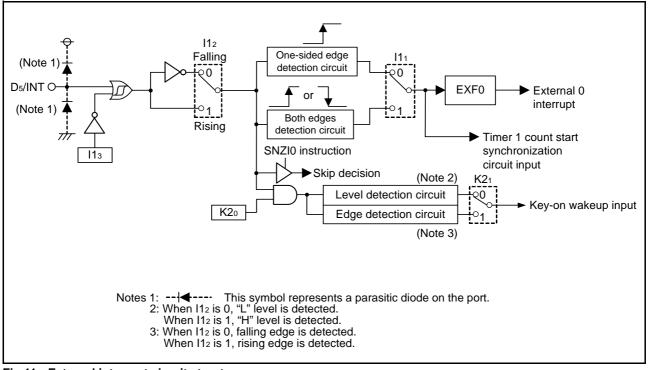


Fig 11. External interrupt circuit structure

FUNCTION BLOCK OPERATIONS

CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 12).

It is unchanged with both A n instruction and AM instruction. The value of A0 is stored in carry flag CY with the RAR instruction (Figure 13).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 14).

Register E is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 15).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0".

When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction.

The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

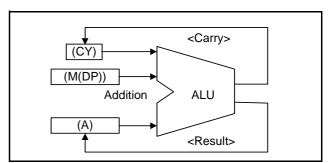


Fig 12. AMC instruction execution example

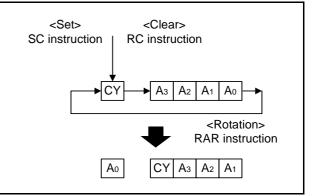


Fig 13. RAR instruction execution example

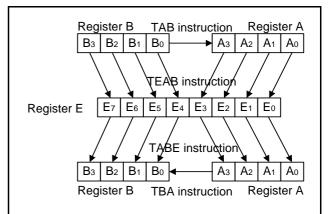


Fig 14. Registers A, B and register E

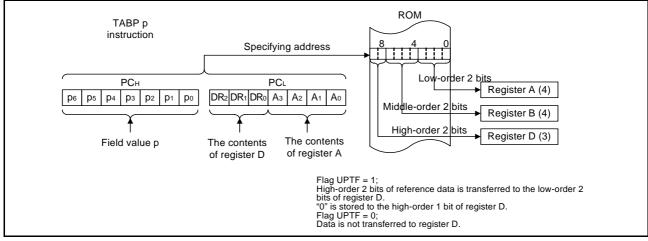


Fig 15. TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers are 14-bit registers.

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

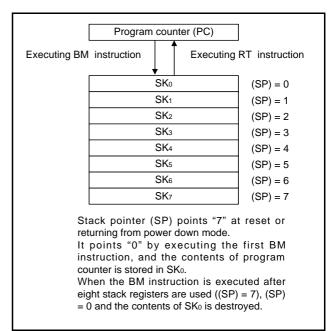
• branching to an interrupt service routine (referred to as an interrupt service routine),

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction. Figure 16 shows the stack registers (SKs) structure.

Figure 17 shows the example of operation at subroutine call.


(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

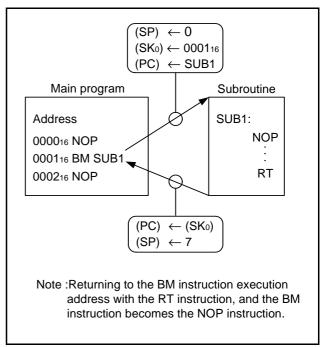


Fig 17. Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 18).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 19).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 20).

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the power down mode. After system is returned from the power down mode, set these registers.

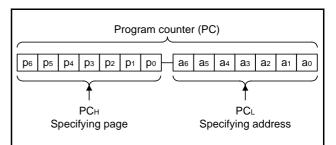
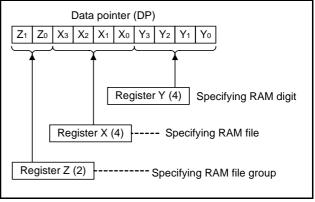



Fig 18. Program counter (PC) structure

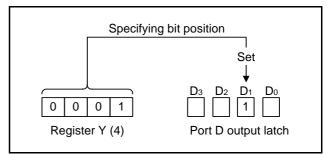


Fig 20. SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 21 shows the ROM map of M34559G6.

Table 8ROM size and pages

Part number	ROM (PROM) size (× 10 bits)	Pages
M34559G6	6144 words	48 (0 to 47)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 22). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.

As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.

As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

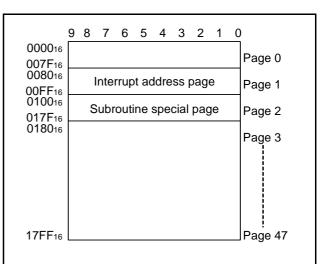


Fig 21. ROM map of M34559G6

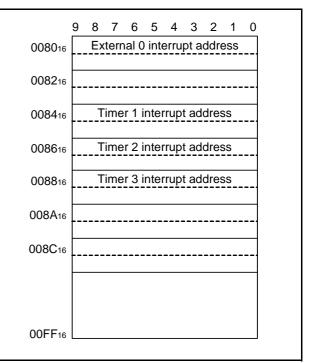


Fig 22. Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from power down mode).

RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 9 shows the RAM size. Figure 23 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in power down mode. After system is returned from the power down mode, set these registers.

Table 9 RAM size and pages

Part number	RAM size
M34559G6	288 words \times 4 bits (1152 bits)

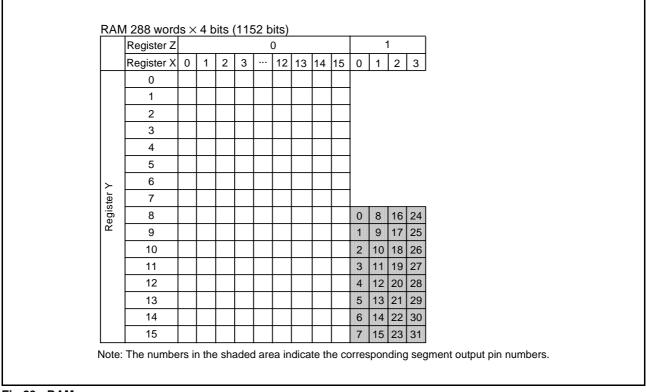


Fig 23. RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 10 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction. Table 11 shows the interrupt request flag, interrupt enable bit and

skip instruction.

Table 12 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag except the voltage drop detection circuit interrupt request flag is cleared to "0" when either;

- · an interrupt occurs, or
- a skip instruction is executed.

The voltage drop detection circuit interrupt request flag cannot be cleared to "0" at the state that the activated condition is satisfied.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 10.

Table 10 Interrupt sources

Priority	Interrup	t source	Interrupt
level	Interrupt name	Activated condition	address
1	External 0	Level change of	Address 0
	interrupt	INT0 pin	in page 1
2	Timer 1 interrupt	Timer 1	Address 4
		underflow	in page 1
3	Timer 2 interrupt	Timer 2	Address 6
		underflow	in page 1
4	Timer 3 interrupt	Timer 3	Address 8
		underflow	in page 1

Table 11 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 12 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 25).

- Program counter (PC) An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
- INTE flag is cleared to "0" so that interrupts are disabled. • Interrupt request flag
- Only the request flag for the current interrupt source is cleared to "0".
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine.

Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 24)

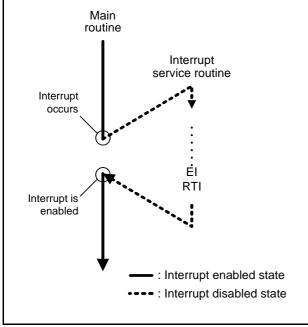


Fig 24. Program example of interrupt processing

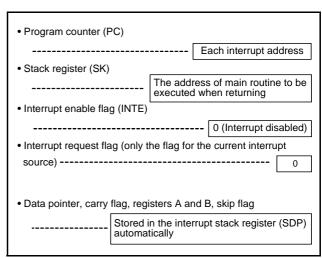
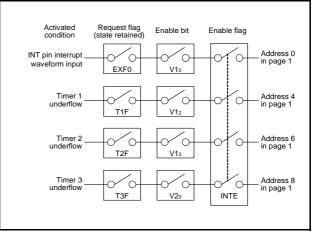
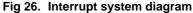




Fig 25. Internal state when interrupt occurs

(6) Interrupt control registers

• Interrupt control register V1

Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 13 Interrupt control registers

• Interrupt control register V2

The timer 3 interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

	Interrupt control register V1	at reset : 00002		at power down : 00002	R/W TAV1/TV1A	
V13	Timor 2 interrupt enable hit	0	Interrupt disabled (SNZT2 instruction is valid)			
V 13	V13 Timer 2 interrupt enable bit		Interrupt enabled (S	NZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit	0 Interrupt disabled (SNZT1 instruction is valid		SNZT1 instruction is valid)	(1	
V 12	V12 Timer 1 interrupt enable bit		Interrupt enabled (SNZT1 instruction is invalid)			
V11	Not used	0	This bit has no function, but read/write is enabled.			
V I1	Not used	1				
1/10	V10 External 0 interrupt enable bit		Interrupt disabled (SNZ0 instruction is valid)			
VIU			Interrupt enabled (SNZ0 instruction is invalid)			

	Interrupt control register V2		at reset : 00002	at power down : 00002	R/W TAV2/TV2A	
V23	Notwood	0	This hit has no fund	er bet med dowler 'n rechted		
V Z 3	23 Not used		This bit has no fund	tion, but read/write is enabled.		
V22	Not used	0	This hit has no function, but read/units is enabled			
V Z Z	VZ2 Not used		THIS DIL HAS NO TUNC	This bit has no function, but read/write is enabled.		
V21	Not used	0	This bit has no function, but read/write is enabled.			
VZ1	Not used	1	THIS DIL HAS NO TUNC	tion, but read/write is enabled.		
V20	Timor 2 interrupt enable hit	0	Interrupt disabled (SNZT3 instruction is valid)			
v 20	V20 Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)			
Note 1	"P" represents read enabled, and "\M" repres	o nto u	rite enchlad			

Note 1."R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts occur only when the respective INTE flag, interrupt enable bits (V10, V12, V13, V30), and interrupt request flag are set to "1." The interrupt occurs two or three cycles after the cycle where all the above three conditions are satisfied.

The interrupt occurs after three machine cycles if instructions other than one-cycle instruction are executed when the conditions are satisfied (Refer to Figure 27).

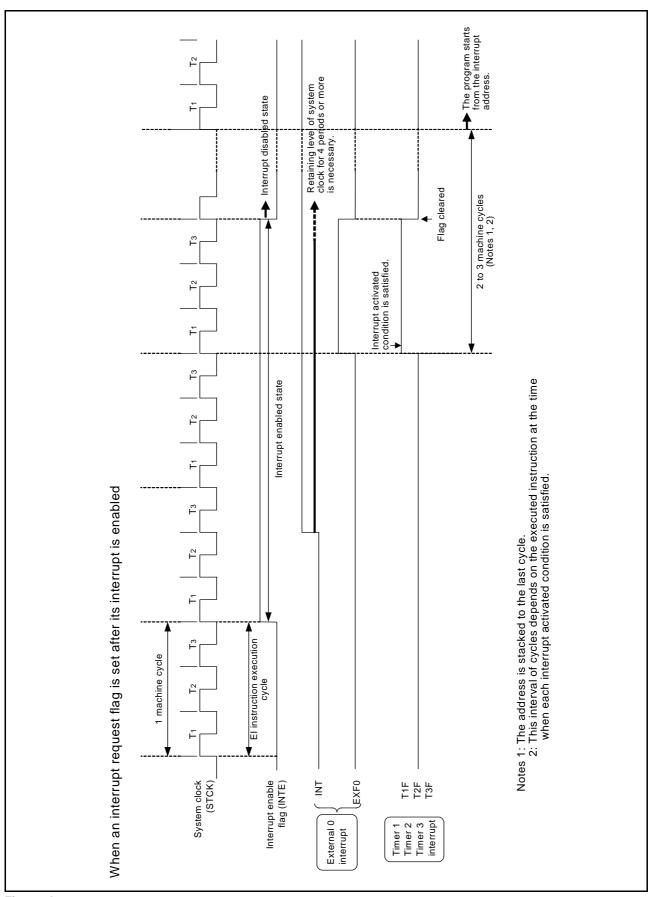


Fig 27. Interrupt sequence

EXTERNAL INTERRUPTS

The 4559 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 14 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt		 When the next waveform is input to D₅/INT pin Falling waveform ("H" → "L") Rising waveform ("L" → "H") Both rising and falling waveforms 	11 12

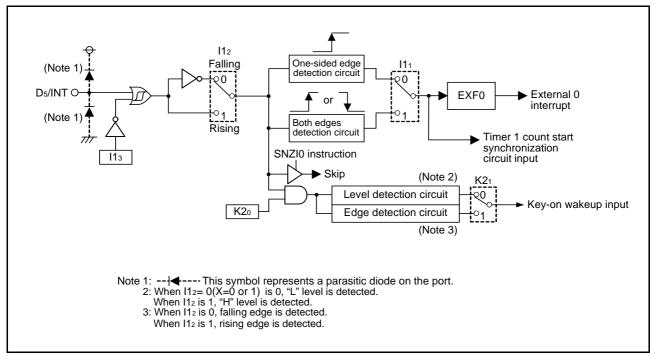


Fig 28. External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D5/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 27).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D5/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- (1) Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- (2) Select the valid waveform with the bits 1 and 2 of register I1.
- (3) Clear the EXF0 flag to "0" with the SNZ0 instruction.
- (4) Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- (5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D5/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

Table 15 External interrupt control register

(2) External interrupt control registers

(1) Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A	
113	Ita INT nin input control hit (Note 2)		INT pin input disable	ed		
113	INT pin input control bit (Note 2)	1	INT pin input enable	ed		
11.0	Interrupt valid waveform for INT pin/		Falling waveform instruction)/"L" level	Falling waveform ("L" level of INT pin is recognized with the SNZI(instruction)/"L" level		
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the S instruction)/"H" level			
111	INT pin edge detection circuit control bit	0	One-sided edge detected			
111	INT pin edge detection circuit control bit	1	Both edges detected			
110	INT pin timer 1 count start synchronous		Timer 1 count start synchronous circuit not selected			
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected			

Note 1."R" represents read enabled, and "W" represents write enabled.

Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

(3) Notes on interrupts

- Bit 3 of register I1
 When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 29.) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2)

in Figure 29.). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 29.).

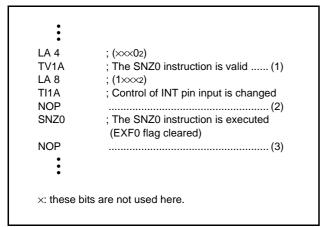


Fig 29. External 0 interrupt program example-1

(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the power down mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the INT pin input is disabled (register I13 = "0"), set the key-on wakeup of INT pin to be invalid (register K20 = "0") before system enters to power down mode. (refer to (1) in Figure 30.).

LA 0 TK2A DI EPOF POF2	; (xxx02) ; INT0 key-on wakeup disabled(1) ; RAM back-up
×: these bi	ts are not used here.

Fig 30. External 0 interrupt program example-2

When the interrupt valid waveform of the INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 31.) and then, change the bit 2 of register I1 is changed.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 31.).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 31.).

:	
LA 4	; (×××02)
TV1A	; The SNZ0 instruction is valid(1)
LA 12	; (×1××2)
TI1A	; Interrupt valid waveform is changed
NOP	(2)
SNZ0	; The SNZ0 instruction is executed (EXF0 flag cleared)
NOP	(3)
:	· · ·

Fig 31. External 0 interrupt program example-3

TIMERS

- The 4559 Group has the following timers.
- · Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

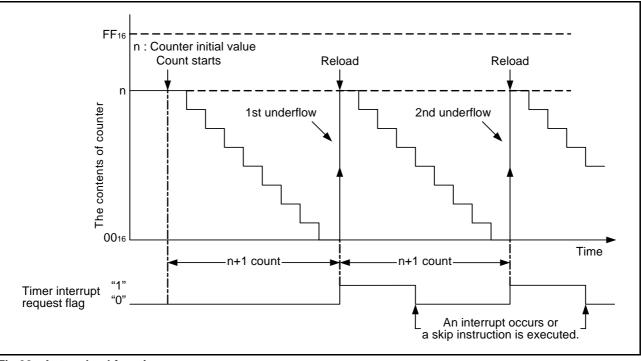


Fig 32. Auto-reload function

- The 4559 Group timer consists of the following circuits.
- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 16-bit fixed frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer: 16-bit fixed frequency timer

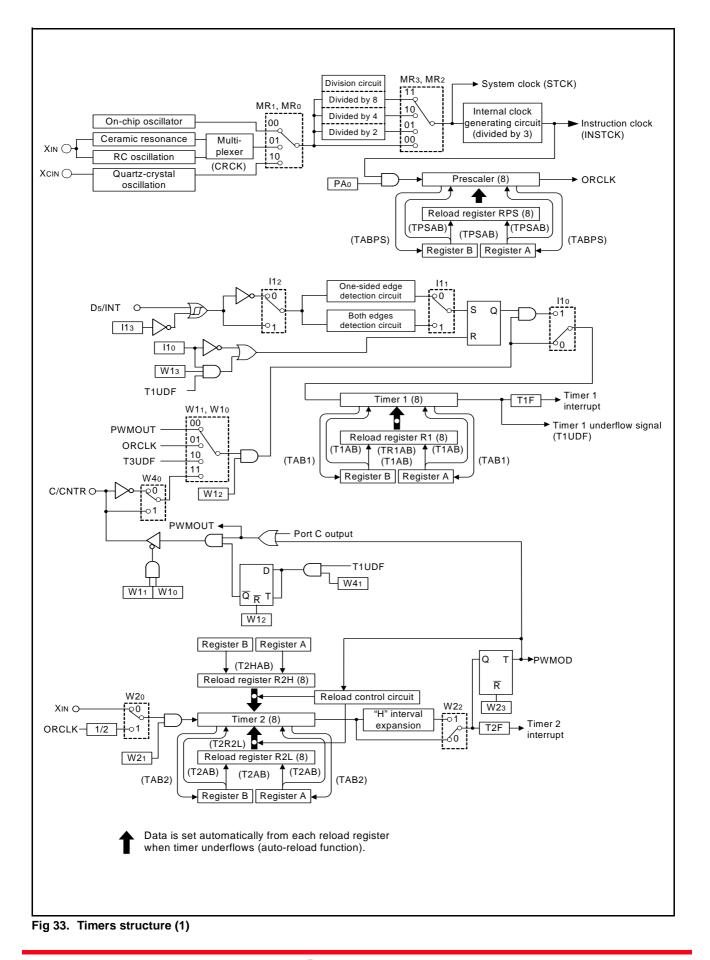

(Timers 1, 2 and 3 have the interrupt function, respectively)

Table 16 Function related timers

Prescaler, timer 1, timer 2, timer 3 and timer LC can be controlled with the timer control registers PA and W1 to W4. The watchdog timer is a free counter which is not controlled with the control register.

Each function is described below.

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK)	1 to 256	 Timer 1 count source Timer 2 count source Timer 3 count source 	PA
Timer 1	8-bit programmable binary down counter (link to INT input) (carrier wave output auto- control function)	 PWM signal (PWMOUT) Prescaler output (ORCLK) Timer 3 underflow (T3UDF) CNTR input 	1 to 256	CNTR output control Timer 1 interrupt	W1 W4
Timer 2	8-bit programmable binary down counter (with carrier wave generation function)	 XIN input Prescaler output divided by 2 (ORCLK/2) 	1 to 256	 Timer 1 count source CNTR output Timer 2 interrupt 	W2 W4
Timer 3	16-bit fixed dividing frequency	 XIN input Prescaler output (ORCLK) 	8192 16384 32768 65536	 Timer 1 count source Timer LC count source Timer 3 interrupt 	W3
Timer LC	4-bit programmable binary down counter	Bit 4 of timer 3 (T34)System clock (STCK)	1 to 16	LCD clock	W4
Watchdog timer	16-bit fixed dividing frequency	Instruction clock (INSTCK)	65536	System reset (counting twice)Decision of flag WDF1	-

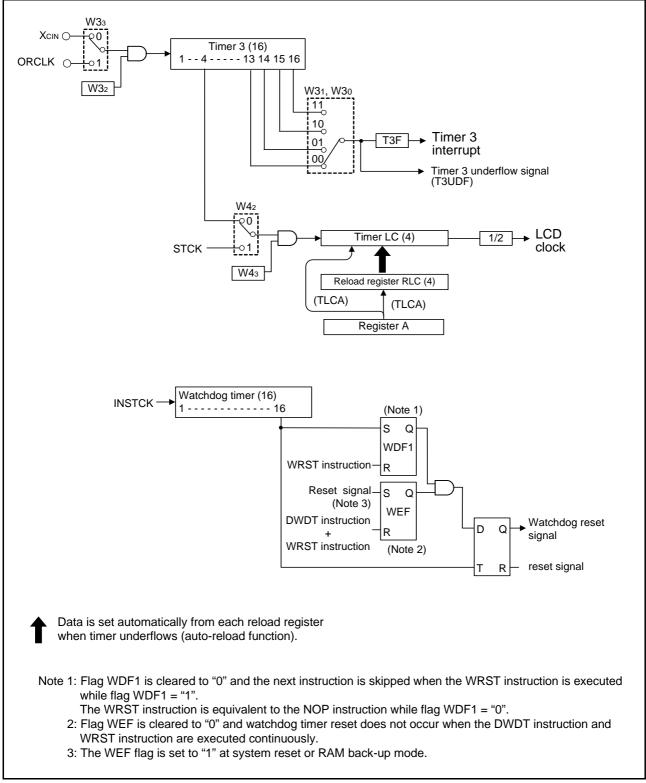


Fig 34. Timers structure (2)

Table 17 Timer control registers

Timer control register PA		at reset : 02		at power down : 02	W TPAA
DAo	PA0 Prescaler control bit		Stop (state retained)	
FA0			Operating		

	Timer control register W1		at re	set : 00002	at power down : state retained	R/W TAW1/TW1A	
W13	Timer 1 count auto-stop circuit selection bit	0	Time	Fimer 1 count auto-stop circuit not selected			
VV 13	^{W13} (Note 2)		Time	r 1 count auto-stop	circuit selected		
W12	Timer 1 control bit	0	Stop (state retained)				
VV 12			Oper	Operating			
			W10	W10 Count source			
W11		0	0	0 PWM signal (PWMOUT)			
	Timer 1 count source selection bits (Note 3)		1	1 Prescaler output (ORCLK)			
W/10	W10	1	0	Timer 3 underflow	signal (T3UDF)		
VV 10		1	1	CNTR input			

	Timer control register W2		at reset : 00002	at power down : 00002	R/W TAW2/TW2A		
W/2 2	W23 CNTR pin function control bit		CNTR pin output invalid				
VVZ3			CNTR pin output valid				
W/2 2	W22 PWM signal "H" interval expansion function control bit		PWM signal "H" interval expansion function invalid				
VVZ2			PWM signal "H" interval expansion function valid				
W21	Timer 2 control bit	0	Stop (state retained)				
VVZ1		1	Operating				
W20			XIN input				
vv20	W20 Timer 2 count source selection bit	1	Prescaler output (ORCLK)/2				

	Timer control register W3	at r		set : 00002	at power down : state retained	R/W TAW3/TW3A
W/2 2	W33 Timer 3 count source selection bit		XCIN	input		
VV 33			Preso	caler output (ORCL	К)	
W32	Timer 3 control bit	0	Stop	(initial state)		
VV 32			Oper	Operating		
		W31	W30	N30 Count value		
W31		0	0	0 Underflow every 8192 count		
	Timer 3 count value selection bits	0	1	1 Underflow every 16384 count		
W30		1	0	Underflow every 3	2768 count	
VV30		1	1	Underflow every 65536 count		

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W42	Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
		1	System clock (STCK)		
W41	CNTR pin output auto-control circuit selection bit	0	CNTR output auto-control circuit not selected		
		1	CNTR output auto-control circuit selected		
W40	CNTR pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Note 1. "R" represents read enabled, and "W" represents write enabled. Note 2. This function is valid only when the timer 1 control start synchronous circuit is selected (I10 ="1"). Note 3. Port C output is invalid when CNTR input is selected for the timer 1 count source.

(1) Timer control registers

• Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

• Timer control register W1

Register W1 controls the count operation and count source of timer 1, and timer 1 count auto-stop circuit. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the count operation and count source of timer 2, CNTR pin output, and extension function of PWM signal "H" interval. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W3

Register W3 controls the count operation and count source of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the input count edge of CNTR pin, CNTR1 pin output auto-control circuit. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

(1) set data in prescaler, and

(2) set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler can be selected the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2 and 3 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with a timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register R1 with the T1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- (1) set data in timer 1
- (2) set count source by bit 0 and 1 of register W1, and
- (3) set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1".

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload register (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows.

Timer 2 starts counting after the following process;

- (1) set data in timer 2
- (2) set count source by bit 0 of register W2, and
- (3) set the bit 1 of register W2 to "1."

When a value set in reload register R2L is n and R2H is m, timer 2 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (autoreload function).

When bit 3 of register W2 is set to "1", timer 2 reloads data from reload register R2L and R2H alternately each underflow.

Timer 2 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R2L, and the "H" interval set as reload registerR2H. The PWM signal (PWMOUT) is output from CNTR pin. When bit 2 of register W2 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R2H for the counter of timer 2 is extended for a half period of count source.

In this case, when a value set in reload register R2H is m, timer 2 divides the count source signal by n + 1.5 (m = 1 to 255).

When this function is used, set "1" or more to reload register R2H.

When bit 1 of register W4 is set to "1", the PWM signal output to CNTR pin is switched to valid/invalid each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W2 is cleared to "0" in the "H" interval of PWM signal, timer 2 does not stop until it next timer 2 underflow.

When clearing bit 1 of register W2 to "0" to stop timer 2, avoid a timing when timer 2 underflows.

(5) Timer 3 (interrupt function)

Timer 3 is a 16-bit binary down counter.

Timer 3 starts counting after the following process;

(1) set count value by bits 0 and 1 of register W3,

- (2) set count source by bit 3 of register W3, and
- (3) set the bit 2 of register W3 to "1."

Once count is started, when timer 3 underflows (the set count value is counted), the timer 3 interrupt request flag (T3F) is set to "1," and count continues.

Bit 4 of timer 3 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W3 is cleared to "0", timer 3 is initialized to "FFFF16" and count is stopped.

Timer 3 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 3 underflow occurs at clock operating mode, system returns from the power down state.

When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 2 of register W3 to "1" till executing the POF instruction.

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

- (1) set data in timer LC,
- (2) select the count source with the bit 2 of register W4, and
- (3) set the bit 3 of register W4 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(7) Timer input/output pin (C/CNTR pin)

CNTR pin is used to input the timer 1 count source and output the PWM signal generated by timer 2. The selection of CNTR output signal can be controlled by bit 3 of register W2.

When the PWM signal is output from C/CNTR pin, set "0" to the output latch of port C.

When the CNTR input is selected for timer 1 count source, timer 1 counts the waveform of CNTR input selected by bit 0 of register W4. Also, when the CNTR input is selected, the output of port C is invalid (high-impedance state).

(8) Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(9) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT pin input can be performed.

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or system reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(10)Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop circuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(11) Precautions

- Prescaler
- Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

- Timer count source
- Stop timer 1, 2, 3 or LC counting to change its count source. • Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

- Writing to the timer Stop timer 1, 2 or LC counting and then execute the T1AB, T2AB, T2R2L or TLCA instruction to write data to timer.
- · Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 3 underflow.

PWM signal

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.

When "H" interval expansion function of the PWM signal is used, set "1" or more to reload register R2H.

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

• Timer 3

Stop timer 3 counting to change its count source.

When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 2 of register W3 to "1" till executing the POF instruction.

• Prescaler and timer 1 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) in Figure 35 after prescaler and timer operations start (1) in Figure 35.

Time to first underflow (3) in Figure 35 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 35 by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer 1, timer 1 operates synchronizing with the falling edge of CNTR input.

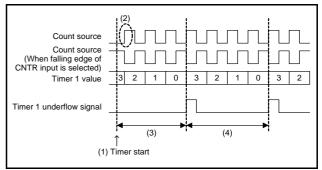
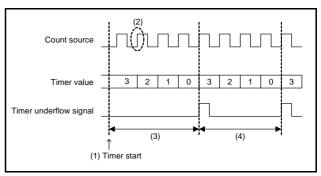


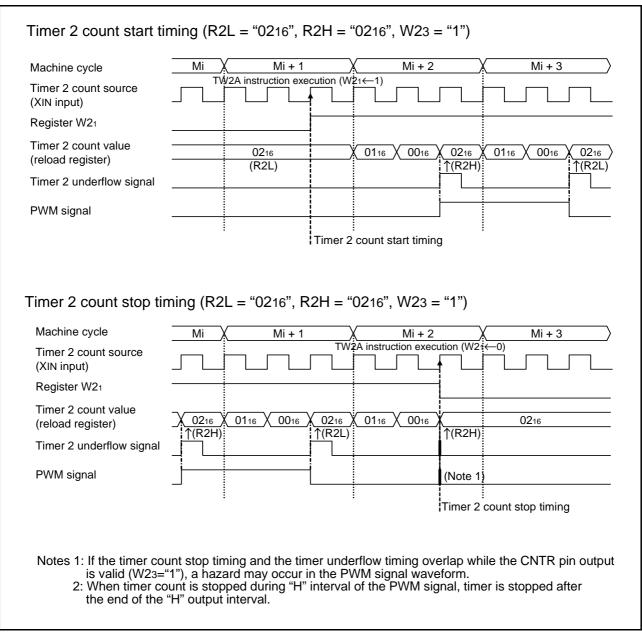
Fig 35. Timer count start timing and count time when operation starts

• Timer 2 and Timer LC count start timing and count time when operation starts

Count starts from the rising edge (2) after the first falling edge of the count source, after Timer 2 and Timer LC operations start (1).

Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source operations after count starts.




Fig 36. Timer count start timing and count time when operation starts (Timer 2 and Timer LC)

- CNTR pin outpu	ut invalid (W23=0)
Timer 2 count source	
Timer 2 count value (Reload register)	$ \begin{array}{c} \hline 0316 \\ \hline 0216 \\ \hline 016 \\ \hline 016 \\ \hline 0216 \\ \hline 016 \\ \hline 0$
Timer 2 underflow signal	(R2L) (R2L) (R2L) (R2L)
PWM signal	
	PWM1 signal "L" fixed
	Timer 2 start
- CNTR pin outp	out valid (W23=1), PWM signal "H" interval expansion function invalid (W22=0)
Timer 2 count source	
Timer 2 count value (Reload register)	0316 0216 0116 0016 0216 0116 0016 0316 0216 0116 0016 0216 0116 0016 0316 0216 0116 0016 0216 0116
T	(R2L)
Timer 2 underflow signal	
PWM signal	$\leftarrow 4 \operatorname{clock} \rightarrow \leftarrow 3 \operatorname{clock} \rightarrow \leftarrow 4 \operatorname{clock} \rightarrow \leftarrow 3 \operatorname{clock} \rightarrow \leftarrow 4 $
	Timer 2 start
- CNTR pin outp	out valid (W23=1), PWM signal "H" interval expansion function valid (W22=1) (Note)
Timer 2 count source	
Timer 2 count value	0316 X0216X0116X0016K 0216 X0116X0016K0316X0216X0116X0016K 0216 X0116X0016K0316X0216X0116X0016K0216
(Reload register)	$(R2L) \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$
Timer 2 underflow signal	(R2H) (R2L) (R2H) (R2H) (R2H)
PWM signal	4 clock 3.5 clock 4 clock 4 clock 4 clock 4 clock
	Timer 2 start PWM period 7.5 clock PWM period 7.5 clock PWM period 7.5 clock
	* : "0316" is set to reload register R3L and "0216" is set to reload register R3H.
	PWM signal "H" interval expansion function is valid, nore to reload register R2H.

Fig 37. Timer 2 operation example

CNTR output auto-cor	ntrol circuit operation example 1 (W23 = "1", W41 = "1")
PWM signal	
Timer 1 underflow signal	
CNTR output	↑Timer 1 start N\\\\\\\\\\ ↑CNTR output start
* When the CNTR1 output auto	-control circuit is selected, valid/invalid of CNTR output is repeated every timer 1 underflows.
CNTR output auto-cor	ntrol circuit operation example 2 (W23 = "1")
PWM signal	
Timer 1 underflow signal	
Register W41	Timer 1 start (1) (2) Timer 1 stop
CNTR output	
	CNTR output start CNTR output stop
CNTR output invalid state is (2) When the CNTR output auto- CNTR output valid state is re	control function is not selected while the CNTR output is valid,

Fig 38. CNTR output auto-control function by timer 1

Fig 39. Timer count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1." If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer. Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

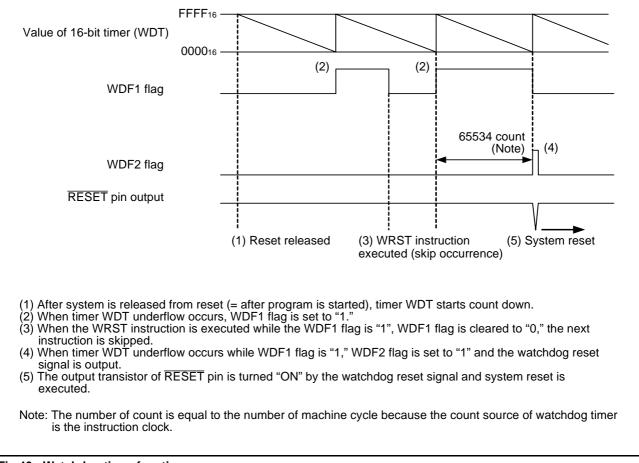


Fig 40. Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction.

When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 41).

The watchdog timer is not stopped with only the DWDT instruction.

The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down mode. Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction (refer to Figure 42).

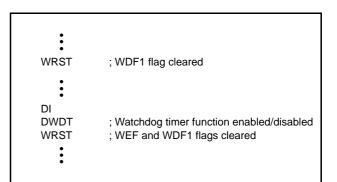
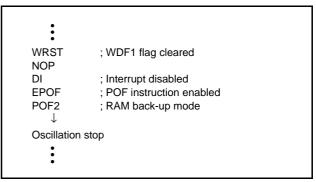
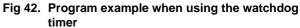




Fig 41. Program example to start/stop watchdog timer

LCD FUNCTION

The 4559 Group has an LCD (Liquid Crystal Display) controller/ driver. When data are set in LCD RAM and timer LC, LCD control registers (L1, L2, L3, C1, C2, C3), and timer control registers (W3, W4), the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 pixels (when internal power, 1/4 duty and 1/3 bias are selected) can be controlled to display. When using the external input, set necessary pins with the LCD control register 2 and apply the proper voltage to the pins.

The LCD power input pins (VLC3–VLC1) are also used as pins SEG0–SEG2. When SEG0 is selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 18 Table 11 Duty and maximum number of

displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
1/2	64 pixels	COM ₀ , COM ₁ (Note)
1/3	96 pixels	COM0-COM2 (Note)
1/4	128 pixels	COM0-COM3

Note. Leave unused COM pins open.

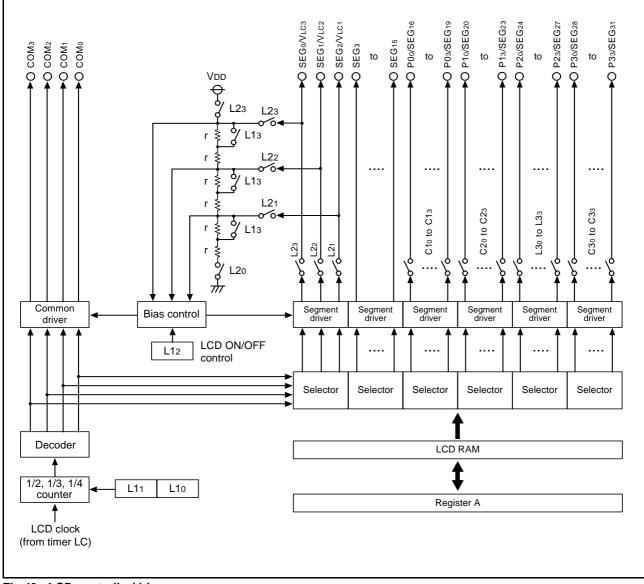


Fig 43. LCD controller/driver

(2) LCD clock control

The LCD clock is determined by the timer LC setting value and timer LC count source.

After setting data to timer LC, timer LC starts counting by setting count source with bit 2 of register W4 and setting bit 3 of register W4 to "1."

Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers ((1) to (3)) shown below the formula correspond to numbers in Figure 44, respectively.

• When using the system clock (STCK) as timer LC count source (W42="1")

$$F = STCK \times \frac{1}{LC+1} \times \frac{1}{2}$$

$$(1) \quad (2) \quad (3)$$
[LC: 0 to 15]

• When using the bit 4 of timer 3 as timer LC count source (W42="0")

$$F = T34 \times \frac{1}{LC + 1} \times \frac{1}{2}$$
(1)
(2)
(3)
[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame frequency =
$$\frac{n}{F}$$
 (Hz)
[F: LCD clock frequency $1/n$: Duty

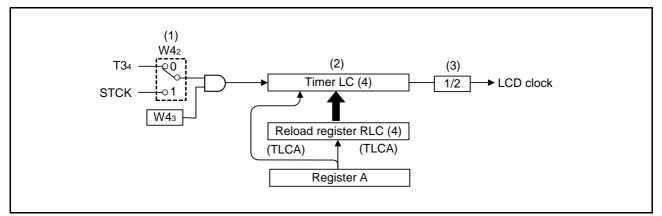


Fig 44. LCD clock control circuit structure

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

Z		1														
Х		()				1			2	2		3			
Y K	oit 3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG ₀	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	SEG24	SEG24	SEG24	SEG24
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEG25
10	SEG2	SEG ₂	SEG ₂	SEG ₂	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG26
11	SEG3	SEG3	SEG3	SEG ₃	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG27
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG28
13	SEG5	SEG ₅	SEG ₅	SEG ₅	SEG13	SEG13	SEG13	SEG13	SEG21	SEG21	SEG21	SEG21	SEG29	SEG29	SEG29	SEG29
14	SEG6	SEG6	SEG ₆	SEG ₆	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22	SEG30	SEG30	SEG30	SEG30
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15	SEG23	SEG23	SEG23	SEG23	SEG31	SEG31	SEG31	SEG3 [,]
COM	COM3	COM ₂	COM ₁	COM ₀	COM ₃	COM ₂	COM ₁	COM ₀	COM ₃	COM ₂	COM ₁	COM ₀	COM ₃	COM ₂	COM ₁	COM

Fig 45. LCD RAM map

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes lVLC3l and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

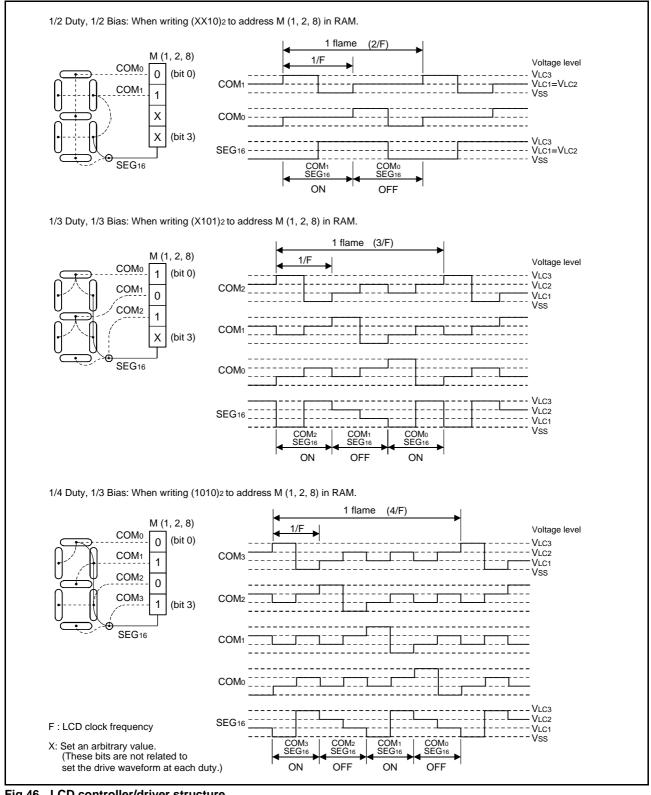


Fig 46. LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power supply circuit suitable for the using LCD panel.

- The LCD power supply circuit is fixed by the followings;
- The internal dividing resistor is controlled by bit 0 of register
- L2.The internal dividing resistor is selected by bit 3 of register L1.
- The bias condition is selected by bits 0 and 1 of register L1.
- · Internal dividing resistor

The 4553 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to $i0\hat{i}$, the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to $i0\hat{i}$, the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor.

According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- $L_{13} = "0"$, 1/3 bias used: $2r \times 3 = 6r$
- L13 = "0", 1/2 bias used: 2r × 2 = 4r
- $L_{13} = "1"$, 1/3 bias used: $r \times 3 = 3r$
- L13 = "1", 1/2 bias used: $r \times 2 = 2r$

• SEG0/VLC3 pin

The selection of SEG0/VLC3 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEG0 pin function is selected, VLC3 is connected to VDD internally.

• SEG1/VLC2, SEG2/VLC1 pin

The selection of SEG1/VLC2 pin function is controlled with the bit 2 of register L2.

The selection of SEG2/VLC1 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0 < VLC1 < VLC2 < VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin have the same electric potential at 1/2 bias.

When SEG1 and SEG2 pin functions are selected, use the internal dividing resistor (L20 = "0"). In this time, VLC2 and VLC1 are connected to the generated dividing voltage.

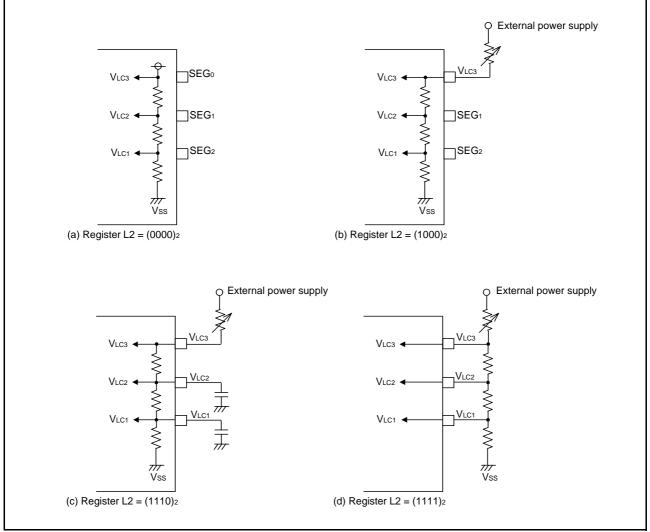


Fig 47. LCD power supply circuit example (1/3 bias condition selected)

(6) LCD control register

• LCD control register L1

Register L1 controls duty/bias selection, LCD operation, internal dividing resistor selection. Set the contents of this register through register A with the TL1A instruction. The TAL1 instruction can be used to transfer the contents of register L1.

• LCD control register L2

Register L2 controls internal dividing resistor operation, selection of pin functions; SEG0/VLC3, SEG1/VLC2, SEG2/VLC1. Set the contents of this register through register A with the TL2A instruction.

• LCD control register L3

Register L3 controls selection of pin functions; P20/SEG24 to P23/SEG27. Set the contents of this register through register A with the TL3A instruction.

• LCD control register C1

Register C1 controls selection of pin functions; P00/SEG16 to P03/SEG19. Set the contents of this register through register A with the TC1A instruction.

• LCD control register C2

Register C2 controls selection of pin functions; P10/SEG20 to P13/SEG23. Set the contents of this register through register A with the TC2A instruction.

LCD control register C3

Register C3 controls selection of pin functions; P30/SEG28 to P33/SEG31. The contents of this register through register A with the TC3A instruction.

Table 19	LCD	control	registers	(1)
----------	-----	---------	-----------	-----

	LCD control register L1	á	at rese	t : 00002	at power down	: state retained	R/W TAL1/TL1A	
L13	Internal dividing resistor for LCD power	0	2r × 3	8, 2r × 2				
L13	supply selection bit (Note 2)	1	r × 3,	r × 2				
L12	LCD control bit	0	0 Stop (OFF)					
		1	Operating					
		L11	L1		Duty	В	ias	
L11		0	0	Not available)	Not available		
	LCD duty and bias selection bits	0	1	1/2		1/2		
L10		1	0	1/3		1/3		
L10		1	1	1/4		1/3		

LCD control register L2			at reset : 00002	at power down : state retained	W TL2A
1.20	L23 SEG0/VLC3 pin function switch bit (Note 3)		SEG ₀		
LZS			VLC3		
1.20	L22 SEG1/VLC2 pin function switch bit (Note 4)		SEG1		
LZ2			VLC2		
1.0.	L21 SEG2/VLC1 pin function switch bit (Note 4)		SEG2		
LZ1			VLC1		
1.0-	Internal dividing resistor for LCD power	0 Internal dividing		sistor valid	
L20	supply control bit	1 Internal dividing resistor invalid			

	LCD control register L3		at reset : 11112	at power down : state retained	W TL3A
L33	P23/SEG27 pin function switch bit	0	SEG27		
L33	L33 P23/SEG2/ pin function switch bit		P23		
L32	P22/SEG26 pin function switch bit	0	SEG26		
L32		1	P22		
L31	P21/SEG25 pin function switch bit	0	SEG25		
LJI		1	P21		
L30	P20/SEG24 pin function switch bit	0	SEG24		
L30		1	P20		

Note 1."R" represents read enabled, and "W" represents write enabled.

Note 2."r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

Note 3.VLC3 is connected to VDD internally when SEG0 pin is selected. Note 4.Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Table 20 LCD control registers (2)

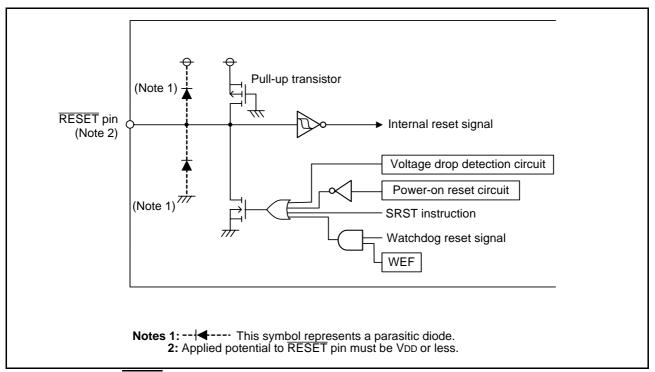
	LCD control register C1		at reset : 11112	at power down : state retained	W TC1A
C13	PO2/SEG10 pip function switch bit	0	SEG19		
013	C13 P03/SEG19 pin function switch bit		P03		
C12	C12 P02/SEG18 pin function switch bit		SEG18		
012	P02/SEG18 pin function switch bit	1	P02		
C11	P01/SEG17 pin function switch bit	0	SEG17		
Ch	P01/SEG17 pin function switch bit	1	P01		
C10	P00/SEG16 pin function switch bit	0	SEG16		
010	CT0 P00/SEG16 pin function switch bit		P00		

	LCD control register C2		at reset : 11112	at power down : state retained	W TC2A
C23	P13/SEG23 pin function switch bit	0	SEG23		
023	F 13/SEG23 pin function switch bit	1	P13		
C22	P12/SEG22 pin function switch bit	0	SEG22		
022	F12/SEG22 pill function switch bit	1	P12		
C21	P11/SEG21 pin function switch bit	0	SEG21		
021	P 11/SEG21 pin function switch bit	1	P11		
C20	P10/SEG20 pin function switch bit	0	SEG20		
020		1	P00		

	LCD control register C3		at reset : 11112	at power down : state retained	W TC3A
C33	P33/SEG31 pin function switch bit	0	SEG31		
033	F 53/3E G31 pin function switch bit	1	P33		
C32	P32/SEG30 pin function switch bit	0	SEG30		
0.32	F32/SEG30 pin function switch bit	1	P32		
C31	P24/SEC as pin function quitch hit	0	SEG29		
031	P31/SEG29 pin function switch bit	1	P31		
C30	P30/SEG28 pin function switch bit	0	SEG28		
030		1	P30		

Note 1."R" represents read enabled, and "W" represents write enabled.

RESET FUNCTION


- System reset is performed by the followings:
- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset
- Reset occurs by voltage drop detection circuit

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

(1) RESET pin input

System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

the value of supply voltage is the minimum value or more of the recommended operating conditions.

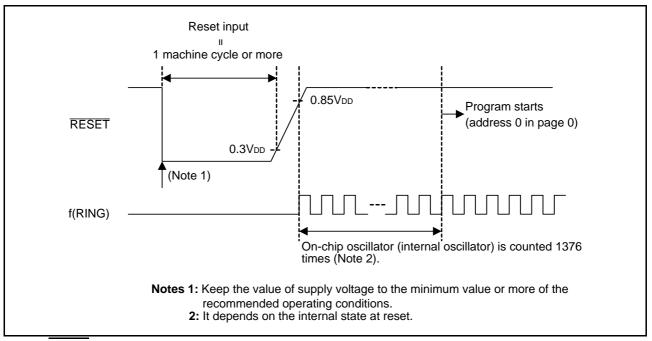


Fig 49. RESET pin input waveform and reset release timing

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the $\overline{\text{RESET} \text{ pin}}$ and Vss at the shortest distance, and input "L" level to **RESET** pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to RESET pin and system reset is performed.

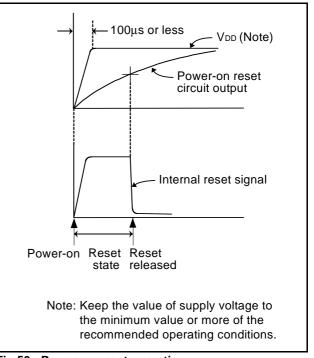


Fig 50. Power-on reset operation

Table 21 Port state at reset

Name	Function	State
D0-D4	D0-D4	High-impedance (Notes 1, 2)
D5/INT	D5	High-impedance (Notes 1, 2)
XCIN/D6, XCOUT/D7	XCIN, XCOUT	Sub-clock input
P00/SEG16-P03/SEG19	P00-P03	High-impedance (Notes 1, 2, 3)
P10/SEG20-P13/SEG23	P10-P13	High-impedance (Notes 1, 2, 3)
P20/SEG24-P23/SEG27	P20-P23	High-impedance (Notes 1, 2, 3)
P30/SEG28-P33/SEG31	P30-P33	High-impedance (Notes 1, 2, 3)
SEG0/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VDD) level
SEG3–SEG15	SEG3-SEG15	VLC3 (VDD) level
COM0–COM3	COM0–COM3	VLC3 (VDD) level
C/CNTR	C/CNTR	"L" (Vss) level

Note 1. Output latch is set to "1." Note 2. The output structure is N-channel open-drain. Note 3. Pull-up transistor is turned OFF.

(4) Internal state at reset

Figure 51 and 52 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 51 and 52 are undefined, so set the initial value to them.

Program counter (PC) Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	0
External 0 interrupt request flag (EXF0)	0
Interrupt control register V1	0 0 0 0 (Interrupt disabled)
Interrupt control register V2	0 0 0 0 (Interrupt disabled)
Interrupt control register I1	
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	
Watchdog timer flags (WDF1, WDF2)	•
Watchdog timer enable flag (WEF)	
Timer control register PA	
Timer control register W1	
Timer control register W1 Timer control register W2	
•Timer control register W3 ······	
Timer control register W4	
Clock control register MR	
Clock control register RG LCD control register L1	
LCD control register L1 LCD control register L2	
LCD control register L3	0 0 0 0
LCD control register C1	
LCD control register C2	
LCD control register C3	

Fig 51. Internal state at reset (1)

Key-on wakeup control register K0 O O O O O O	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Key-on wakeup control register K3 0 0 0 0 0	
Pull-up control register PU0 0 0 0 0	
Pull-up control register PU1 0 0 0 0	
Pull-up control register PU2 0 0 0 0	
Pull-up control register PU3 0 0 0 0	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR2	
Port output structure control register FR3	
High-order bit reference enable flag (UPTF)	
• Carry flag (CY)	
• Register A 0 0 0 0	
• Register B	
• Register D × × ×	
• Register E X X X X X X X X X X	
• Register X	
• Register Y	
• Register Z × ×	
• Stack pointer (SP) 1 1 1 1	
Operation source clock On-chip oscillator (oeprating)	
Ceramic resonator circuit Oeprating	
RC oscillation circuit Stop	
Quartz-crystal oscillator Oeprating	
	"X" represents undefined.

1

Fig 52. Internal state at reset (2)

VOLTAGE DROP DETECTION CIRCUIT (WITH SKIP JUDGMENT)

The built-in voltage drop detection circuit is used to set the voltage drop detection circuit flag (VDF) or to perform system reset.

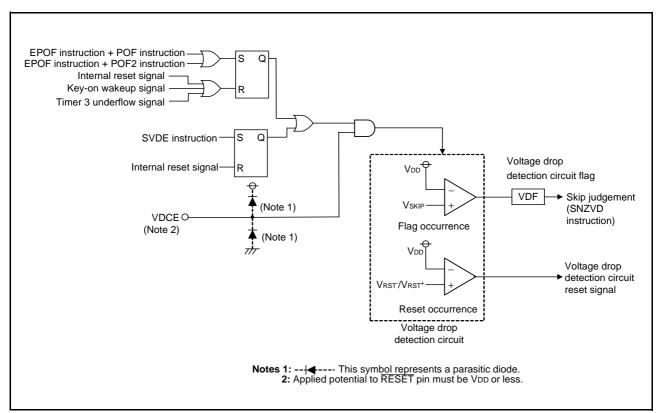


Fig 53. Voltage drop detection reset circuit

(1) Operating state of voltage drop detection circuit

The voltage drop detection circuit becomes valid by inputting "H" to the VDCE pin and it becomes invalid by inputting "L." When not executing the SVDE instruction under "H" level of the VDCE pin, the voltage drop detection circuit become invalid in power down state (RAM back-up, clock operating mode). As for this, the voltage drop detection circuit becomes valid at returning from power down, again.

When executing the SVDE instruction under "H" level of the VDCE pin, the voltage drop detection circuit becomes valid in power down state (RAM back-up, clock operating mode). The state of executing SVDE instruction can be cleared by system reset.

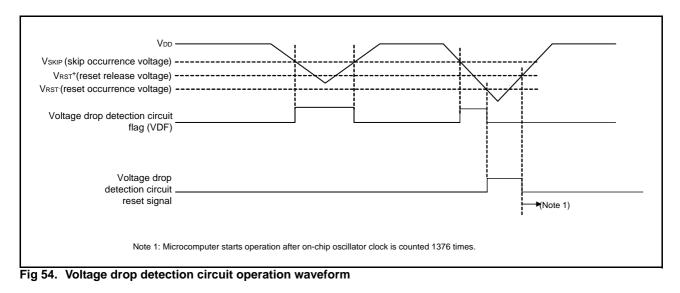
Table 22	Operating	state of voltage	drop	detection	circuit
----------	-----------	------------------	------	-----------	---------

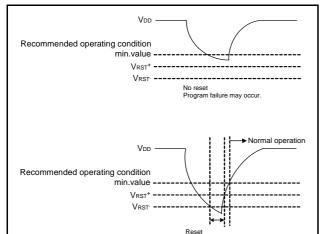
VDCE pin	SVDE instruction	at CPU operating	at power down
"I " No execute		×	×
L	Execute	×	×
"H"	No execute	0	×
п	Execute	0	0

Note. "O" indicates valid, "x" indicates invalid.

(2) Voltage drop detection circuit flag (VDF)

Voltage drop detection circuit flag (VDF) is set to "1" when the supply voltage goes the skip occurrence voltage (VSKIP) or less. Moreover, voltage drop detection circuit flag (VDF) is cleared to "0" when the supply voltage goes the skip occurrence voltage (VSKIP) or more. The state of the voltage drop detection circuit flag (VDF) can be examined with the skip instruction (SNZVD). Even when the skip instruction is executed, the voltage drop detection circuit flag is not cleared to "0".


Refer to the electrical characteristics for skip occurrence voltage value.


(3) Voltage drop detection circuit reset

System reset is performed when the supply voltage goes the reset occurrence voltage (VRST) or less.

When the supply voltage goes reset release voltage (VRST⁺) or more, the oscillation circuit goes to be in the operating enabled state and system reset is released.

Refer to the electrical characteristics for reset occurrence value and reset release voltage value.

(4) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up, depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 55);

supply voltage does not fall below to VRST, and its voltage regoes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

Fig 55. VDD and VRST

POWER DOWN FUNCTION

The 4559 Group has 2-type power down functions.

System enters into each power down state by executing the following instructions.

- Clock operating mode EPOF and POF instructions
- RAM back-up mode EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- LCD display
- Timer 3

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- · Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- · External wakeup signal is input
- Timer 3 underflow occurs

in the power down mode.

In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when:

- external "L" level is input to RESET pin,
- execute system reset instruction (SRST instruction)
- · reset by watchdog timer is performed
- · reset by internal power-on reset, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T3F flag.

Table 23 Functions and states retained at power down mode

	Power do	wn mode
Function	Clock	RAM
	operating	back-up
Program counter (PC), registers A, B,		
carry flag (CY), stack pointer (SP) (Note 2)	×	×
Contents of RAM	0	0
Interrupt control registers V1, V2	×	×
Interrupt control registers I1	0	0
Selected oscillation circuit	0	0
Clock control register MR, RG	0	0
Timer 1, Timer 2 functions	(Note 3)	(Note 3)
Timer 3 function	0	(Note 3)
Timer LC function	0	(Note 3)
Watchdog timer function	× (Note 4)	× (Note 4)
Timer control registers PA, WA	×	×
Timer control registers W1, W3, W4	0	0
LCD display function	0	(Note 5)
LCD control registers L1 to L3, C1 to	0	0
C3	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Key-on wakeup control registers K0 to K2	0	0
Pull-up control registers PU0, PU1	0	0
Port output structure control registers FR0 to FR2	0	0
External interrupt request flags (EXF0)	×	×
Timer interrupt request flags (T1F, T2F)	(Note 3)	(Note 3)
Timer interrupt request flag (T3F)	0	(Note 3)
Interrupt enable flag (INTE)	×	×
Voltage drop detection circuit flag (VDF)	×	×
Watchdog timer flags (WDF1, WDF2)	\times (Note 4)	\times (Note 4)
Watchdog timer enable flag (WEF)	× (Note 4)	× (Note 4)

Note 1. "O" represents that the function can be retained, and "x" represents that the function is initialized.

Registers and flags other than the above are undefined at Note 2. The stack pointer (SP) points the level of the stack register and is initialized to "7" at power down mode. Note 3. The state of the timer is undefined.

Initialize the WDF1 flag with the WRST instruction, and Note 4. then go into the power down state.

LCD is turned off. Note 5.

- Note 6. When the SVDE instruction is executed, this function is valid at power down.
- In the power down mode, C/CNTR pin outputs "L" level. However, when the CNTR input is selected (W11, Note 7. W10="11"), C/CNTR pin is in an input enabled state (output = high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 3 interrupt request flag (T3F) is used to return from the clock operating mode. An external wakeup signal is used to return from the RAM back-

up mode because the oscillation is stopped.

Table 24 shows the return condition for each return source.

(7) Control registers

• Key-on wakeup control register K0 Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

• Key-on wakeup control register K1 Register K1 controls the return condition and the selection of valid waveform/level of port P1. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K2 Register K2 controls the port P3 and INT pin key-on wakeup function and the selection of return condition of INT pin. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.
- Key-on wakeup control register K3 Register K3 controls the selection of return condition and valid waveform/level of port P3. Set the contents of this register through register A with the TK3A instruction. In addition, the TAK3 instruction can be used to transfer the contents of register K3 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

• Pull-up control register PU1

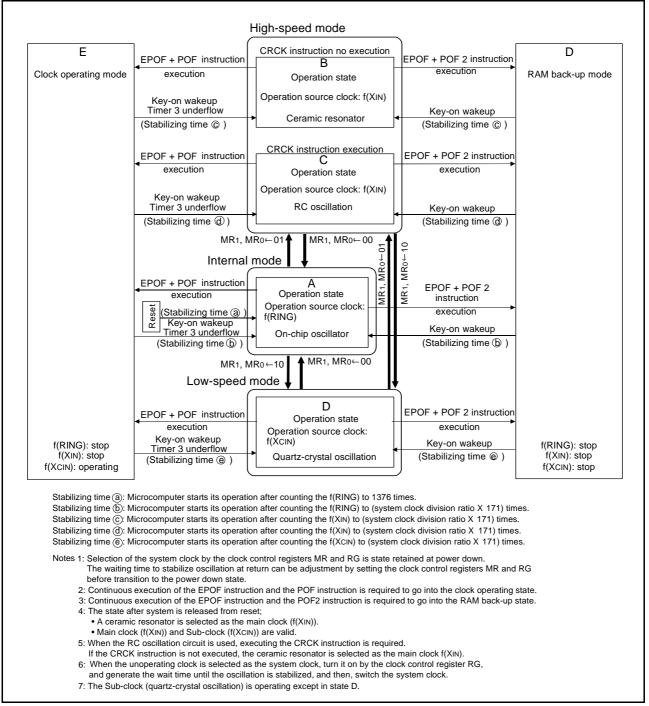
Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

• Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P2 pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.

• Pull-up control register PU3

Register PU3 controls the ON/OFF of the ports P3 pull-up transistor. Set the contents of this register through register A with the TPU3A instruction. In addition, the TAPU3 instruction can be used to transfer the contents of register PU3 to register A.


• External interrupt control register I1

Register I1 controls the input control and the selection of valid waveform/level of INT pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

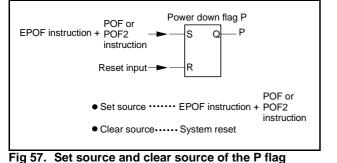

	Return source	Return condition	Remarks
al	Ports P00–P03 Ports P10–P13 Ports P20–P23	Return by an external falling edge ("H" \rightarrow "L").	For ports P0 and P1, the key-on wakeup function can be selected by two port unit, for port P2, it can be selected by a unit.
External wakeup signal	Ports P30–P33	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L"). Return by an external "L" level input,	The key-on wakeup function can be selected by two port unit. Select the return level ("L" level or "H" level) and return condition (return by level or edge) with register K3 according to the external state before going into the power down state.
External	INT pin	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L"). When the return level is input, the interrupt request flag (EXF0) is not set.	Select the return level ("L" level or "H" level) with register I1 and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
Time (T3F)	r 3 interrupt request flag	Return by timer 3 underflow or by setting T3F to "1". It can be used in the clock operating mode.	Clear T3F with the SNZT3 instruction before system enters into the power down state. When system enters into the power down state while T3F is "1", system returns from the state immediately because it is recognized as return condition.

Table 24 Return source and return condition

Page 56 of 146 **RENESAS**



Fig 58. Start condition identified example using the SNZP instruction

Table 25 Key-on wakeup control register

	Key-on wakeup control register K0	at reset : 00002		at power down : state retained	R/W TAK0/TK0A		
K03	Ports P12, P13 key-on wakeup	0	Key-on wakeup not	used			
1103	control bit		Key-on wakeup use	ed			
K02	Ports P10, P11 key-on wakeup	0 Key-on wakeup r		not used			
K02	Control bit	1	Key-on wakeup used				
K01	Ports P02, P03 key-on wakeup	0	Key-on wakeup not used				
KU1	control bit	1	Key-on wakeup used				
K00	Ports P00, P01 key-on wakeup	0	Key-on wakeup not	used			
KU 0	control bit		Key-on wakeup used				

	Key-on wakeup control register K1		at reset : 00002	at power down : state retained	R/W TAK1/TK1A		
K12	Port P22 kov on wakoun control hit	0	Key-on wakeup not	used			
N 13	K13 Port P23 key-on wakeup control bit		Key-on wakeup use	ed			
K1o	Kto Dort Dio koy on wokoun control hit		Key-on wakeup not	used			
K12	K12 Port P22 key-on wakeup control bit	1	Key-on wakeup used				
K14	K11 Port P21 key-on wakeup control bit		Key-on wakeup not	used			
N 11			Key-on wakeup used				
K10	K10 Port P20 key-on wakeup control bit		Key-on wakeup not	used			
K10			Key-on wakeup use	ed			

	Key-on wakeup control register K2		at reset : 00002	at power down : state retained	R/W TAK2/TK2A			
K23	Ports P32, P33 key-on wakeup	0	Key-on wakeup not	used				
1123	control bit (Note 3)	1	Key-on wakeup use	Key-on wakeup used				
K22	Ports P30, P31 key-on wakeup	0	0 Key-on wakeup not used					
1\22	K22 control bit (Note 2)	1	Key-on wakeup used					
K21	INT pin return condition selection bit	0	Return by level					
n 21	INT printeturn condition selection bit	1	Return by edge					
K20	K20 INT pin key-on wakeup control bit		Key-on wakeup inva	alid				
1120	int pinkey-on wakeup control bit	1	Key-on wakeup vali	d				

	Key-on wakeup control register K3	at reset : 00002		at power down : state retained	R/W TAK3/TK3A		
K33	Ports P32, P33 return condition selection bit	0	Return by level				
N33	(Note 3)	1	Return by edge	Return by edge			
K32	Ports P32, P33 valid waveform/level	0	Falling waveform/"L" level				
r.32	K32 selection bit (Note 3)		Rising waveform/"H" level				
K31	Ports P30, P31 return condition selection bit	0	Return by level				
r 31	(Note 2)		Return by edge				
1/20	Ports P30, P31 valid waveform/level	0	Falling waveform/"L	" level			
K30 selection bit (Note 2)		1	Rising waveform/"H	" level			

Note 1. "R" represents read enabled, and "W" represents write enabled.

Note 2. To be invalid (K22 = "0") key-on wakeup of ports P30 and P31, set the registers K30 and K31 to "0." Note 3. To be invalid (K23 = "0") key-on wakeup of ports P32 and P33, set the registers K32 and K33 to "0."

Table 26 Pull-up control register

	Pull-up control register PU0	at reset : 00002		at power down : state retained	R/W TAPU0/TPU0A
	Port PO2 null up transistor control hit	0	Pull-up transistor O	FF	
F003	PU03 Port P03 pull-up transistor control bit		Pull-up transistor O	N	
	PU02 Port P02 pull-up transistor control bit		Pull-up transistor O	FF	
F002			Pull-up transistor O	N	
	DUO, Dart DO, and an transistance to bit		Pull-up transistor O	FF	
F001	PU01 Port P01 pull-up transistor control bit		Pull-up transistor O	N	
	PU00 Port P00 pull-up transistor control bit		Pull-up transistor O	FF	
F000			Pull-up transistor O	N	

	Pull-up control register PU1	at reset : 00002		at power down : state retained	R/W TAPU1/TPU1A
DI 11a	Port P12 pull up transistor control hit	0	Pull-up transistor O	FF	
FU13	PU13 Port P13 pull-up transistor control bit		Pull-up transistor O	N	
DI 11a			Pull-up transistor O	FF	
PUIZ	PU12 Port P12 pull-up transistor control bit	1	Pull-up transistor O	N	
	RU4. Dest R4. see land states a state la bit		Pull-up transistor O	FF	
FUN	PU11 Port P11 pull-up transistor control bit		Pull-up transistor O	N	
DI 11a	PU10 Port P10 pull-up transistor control bit		Pull-up transistor O	FF	
FUIU			Pull-up transistor O	N	

	Pull-up control register PU2		at reset : 00002	at power down : state retained	R/W TAPU2/TPU2A		
	Port P23 pull-up transistor control bit	0	Pull-up transistor O	FF			
F UZ3		1	1 Pull-up transistor ON				
	Port P22 pull-up transistor control bit	0	Pull-up transistor O	FF			
F UZZ		1	Pull-up transistor O	N			
PU21	Port P21 pull-up transistor control bit	0	Pull-up transistor O	FF			
FUZI		1	Pull-up transistor O	N			
	Port P20 pull-up transistor control bit	0	Pull-up transistor O	FF			
F U Z0		1	Pull-up transistor O	N			

	Pull-up control register PU3		at reset : 00002	at power down : state retained	R/W TAPU3/TPU3A		
	Port P33 pull-up transistor control bit	0	Pull-up transistor O	FF			
FU33		1	1 Pull-up transistor ON				
	Port P32 pull-up transistor control bit	0	Pull-up transistor O	FF			
FU32	Fort F32 puil-up transistor control bit	1	Pull-up transistor O	N			
PU31	Port P31 pull-up transistor control bit	0	Pull-up transistor O	FF			
FU31	Fort F31 puil-up transistor control bit	1	Pull-up transistor O	N			
	Port P30 pull-up transistor control bit	0	Pull-up transistor O	FF			
FU30	Fort F30 pull-up transistor control bit	1	Pull-up transistor O	N			

Note 1."R" represents read enabled, and "W" represents write enabled.

Table 27 Interrupt control register

	Interrupt control register I1		at reset : 00002	at power down : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disabl	ed	
113		1	INT pin input enable	ed	
112	Interrupt valid waveform for INT pin/	0	Falling waveform instruction)/"L" leve	("L" level of INT pin is recognized I	d with the SNZI0
112	return level selection bit (Note 2)	1	Rising waveform instruction)/"H" leve	("H" level of INT pin is recognized	d with the SNZI0
111	INT pin edge detection circuit control bit	0	One-sided edge de	tected	
		1	Both edges detecte	d	
110	INT pin timer 1 count start synchronous	0	Timer 1 count start	synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start	synchronous circuit selected	

Note 1. "R" represents read enabled, and "W" represents write enabled. Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

CLOCK CONTROL

- The clock control circuit consists of the following circuits.
- On-chip oscillator (internal oscillator)
- Ceramic resonator
- RC oscillation circuit
- Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 59 shows the structure of the clock control circuit.

The 4559 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4559 Group.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

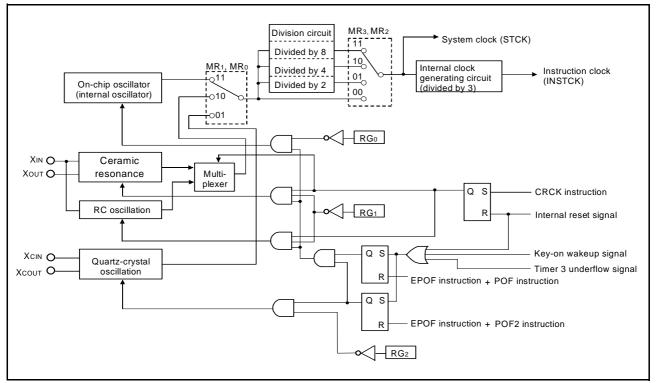


Fig 59. Clock control circuit structure

(1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

When the MCU operates by the ceramic resonator or the RC oscillator as the main clock (f(XIN)).

After system is released from reset, the ceramic oscillation is valid for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

The CRCK instruction can be executed only once.

Execute the CRCK instruction in the initial setting routine (executing it in address 0 in page 0 is recommended).

When the main clock (f(XIN)) is not used, connect XIN pin to VSS and leave XOUT pin open, and do not execute the CRCK instruction (Figure 61).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance.

A feedback resistor is built in between pins XIN and XOUT (Figure 62). Do not execute the CRCK instruction in program.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 63).

To select RC oscillation as the system clock, select the main clock (f(XIN) as the system clock by bits 0 and 1 of the clock control register MR.

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

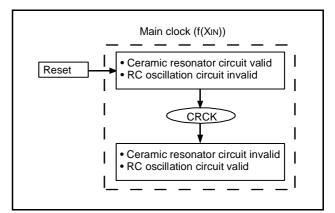
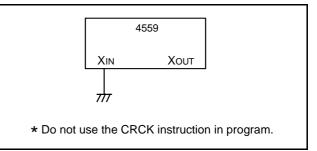
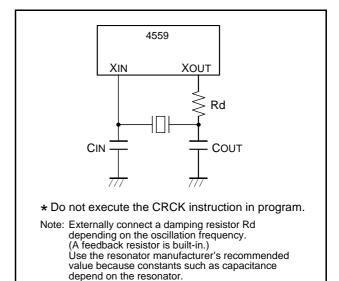




Fig 60. Switch to ceramic resonance/RC oscillation

Fig 61. Handling of XIN and XOUT when operating onchip oscillator

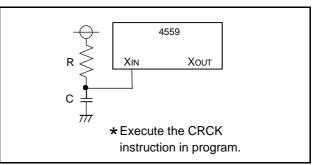
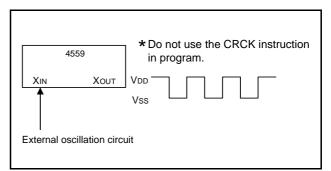


Fig 63. External RC oscillation circuit

(5) External clock


When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open (Figure 64). Do not execute the CRCK instruction.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(Xcin)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 65). XCIN pin and XCOUT pin are also used as ports D6 and D7, respectively. The sub-clock oscillation circuit is invalid and the function of ports D6 and D7 are valid by setting bit 2 of register RG to "1".

When sub-clock, ports D6 and D7 are not used, connect XCIN/D6 to VSs and leave XCOUT/D7 open.

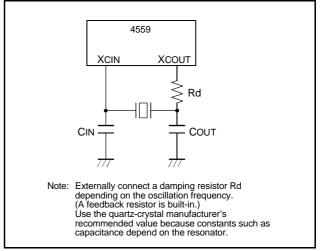


Fig 65. External quarts-crystal circuit

(7) Clock control register MR

Register MR controls system clock and operation mode (frequency division of system clock). Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

Table 28 Clock control registers

R/W Clock control register MR at reset : 11002 at power down : state retained TAMR/TMRA MRз MR₂ Operation mode MRз 0 0 Through mode Operation mode selection bits 0 1 Frequency divided by 2 mode MR₂ 1 0 Frequency divided by 4 mode Frequency divided by 8 mode 1 1 MR1 MRo System clock MR1 0 f(RING) 0 0 1 f(XIN) System clock selection bits (Note 2) MR₀ 1 0 f(XCIN) 1 1 Not available (Note 3)

	Clock control register RG	at r	eset : 0002	at power down : state retained	W TRGA
RG2	Sub-clock (f(Xcin)) control bit (Note 4)	0	Sub-clock (f(Xcin))	oscillation available, ports D6 and D7	not selected
KG2	Sub-clock (I(ACIN)) control bit (Note 4)	1	Sub-clock (f(Xcin))	oscillation stop, ports D6 and D7 sele	ected
RG1	Main-clock (f(XIN)) control bit (Note 4)	0	Main clock (f(XIN))	oscillation available	
KGI		1	Main clock (f(XIN))	oscillation stop	
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator	(f(RING)) oscillation available	
KG0	(Note 4)	1	On-chip oscillator	(f(RING)) oscillation stop	

Note 1. R" represents read enabled, and "W" represents write enabled. Note 2. The stopped clock cannot be selected for system clock. Note 3. "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR. Note 4. The oscillation circuit selected for system clock cannot be stopped.

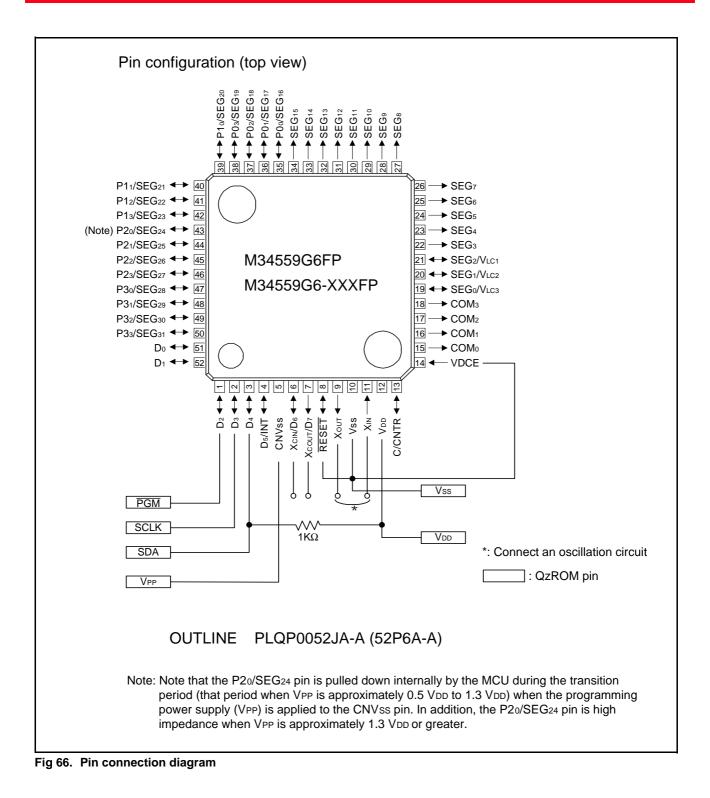
Rev.1.04 Aug 23, 2007 Page 64 of 146 **RENESAS** REJ03B0188-0104

(8) Clock control register RG

Register RG controls the start/stop of each oscillation circuit. Set the contents of this register through register A with the TRGA instruction.

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial pro-grammer which is applicable for this microcomputer. Table 29 lists the pin description (QzROM writing mode) and Figure 66 shows the pin connections.


Refer to Figure 67 for examples of a connection with a serial programmer.

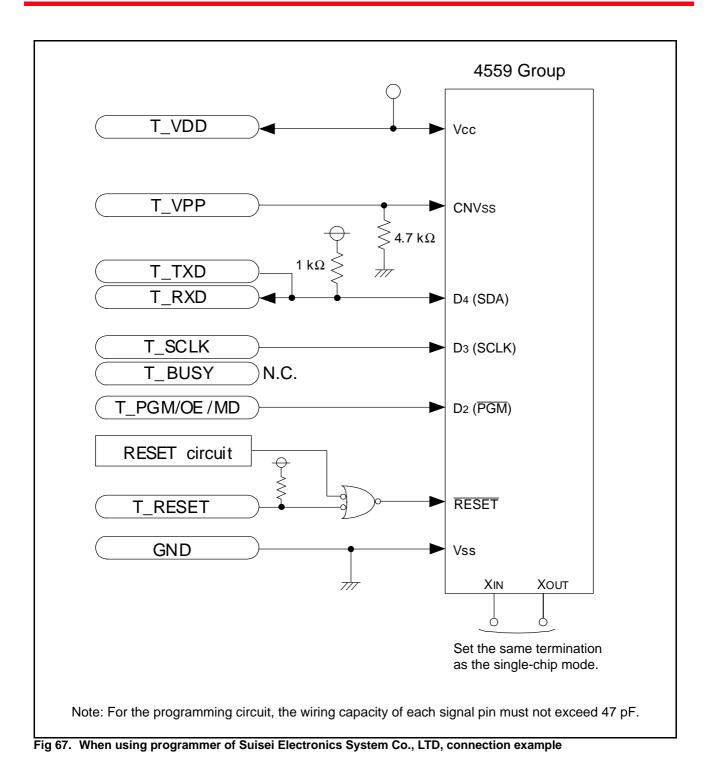

Contact the manufacturer of your serial programmer for serial pro-grammer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 29	Pin description (QzROM writing mode)	
----------	--------------------------------------	--

Pin	Name	I/O	Function
Vdd, Vss	Power source, GND		Apply 2.7 to 4.7V to Vcc, and 0V to Vss.
RESET	Reset input	input	Reset input pin for active "L". Reset occurs when RESET pin is hold at an "L" level for 16 cycles or more of XIN.
Xin, Xcin	Clock input	input	Either connect an oscillator circuit or connect XIN and XCIN to Vss
Хоит, Хсоит	Clock output	output	and leave Xout and Xcout open.
D0 – D5 P00/SEG16 – P03/SEG19 P10/SEG20 – P13/SEG23 P20/SEG24 (Note 1) – P23/SEG27 P30/SEG28 – P33/SEG31	I/O port	I/O	Input "H" or "L" level signal or leave the pin open.
CNVss	VPP input	input	QzROM programmable power source pin.
D4	SDA input/output	I/O	Serial data I/O pin.
D3	SCLK input	input	Serial clock input pin.
D2	PGM input	input	Read/program pulse input pin.
VDCE	Voltage drop detection circuit enable	input	Input "H" or "L" level signal
SEG0/VLC3 – SEG2/VLC1 SEG3 – SEG15 COM0 – COM3	Segment output/ LCD power source/ Common output	output	Either connect to an LCD panel or leave open.
C/CNTR	Output port C/ Timer I/O	output	C/CNTR pin outputs "L" level.

Note 1. Note that the P20/SEG24 pin is pulled down internally by the MCU during the transition period (the period when VPP is approximately 0.5 VDD to 1.3 VDD) when the programming power supply (VPP) is applied to the CNVss pin. In addition, the P20/SEG24 pin is high inpedance when VPP is approximately 1.3 VDD or grater.

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.1 \ \mu F$) between pins VDD and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- use relatively thick wire.

CNVss is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about $5k\Omega$ (connect this resistor to CNVss/VPP pin as close as possible).

(2) Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

(3) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(6) Stack registers (SKS)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

(7) Multifunction

- The input/output of D₅ can be used even when INT is used. Be careful when using inputs of both INT and D₅ since the input threshold value of INT pin is different from that of port D₅.
- "H" output function of port C can be used even when the CNTR (output) is used.

(8) Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the <u>RESET</u> pin and Vss at the shortest distance, and input "L" level to <u>RESET</u> pin until the value of supply voltage reaches the minimum operating voltage.

(9) POF, POF2 instruction

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF/POF2 instruction continuously.

(10)D5/INT pin

(1) Bit 3 of register I1

When the input of the D5/INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

• Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 68.) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 68.).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 68.).

LA 4	; (×××02)
TV1A	; The SNZ0 instruction is valid (1)
LA 8	; (1×××2)
TI1A	; Control of INT pin input is changed
NOP	
SNZ0	; The SNZ0 instruction is executed
	(EXF0 flag cleared)
NOP	
•	
•	

Fig 68. External 0 interrupt program example-1

(2) Bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the power down mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the INT pin input is disabled (register I13 = "0"), set the key-on wakeup of INT pin to be invalid (register K20 = "0") before system enters to the power down mode. (refer to (1) in Figure 69.).

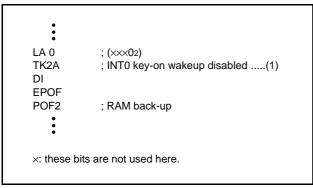


Fig 69. External 0 interrupt program example-2

(3) Bit 2 of register I1

When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 70.) and then, change the bit 2 of register I1 is changed.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 70.).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 70.).

LA 12 ; (×1××2) TI1A ; Interrupt valid waveform is change NOP SNZ0 ; The SNZ0 instruction is executed (EXF0 flag cleared)	2 ; (×1××2) ; Interrupt valid waveform is changed
---	--

Fig 70. External 0 interrupt program example-3

(11)Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

(12)Timer count source

Stop timer 1, 2 or LC counting to change its count source.

(13)Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(14)Writing to the timer

Stop timer 1, 2 or LC counting and then execute the T1AB, T2AB, T2R2L or TLCA instruction to write data to timer.

(15)Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T3HAB instruction except a timing of the timer 2 underflow.

(16)PWM signal

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.

When "H" interval expansion function of the PWM signal is used, set "1" or more to reload register R2H.

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

(17)Timer 3

Stop timer 3 counting to change its count source.

When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 2 of register W3 to "1" till executing the POF instruction.

(18)Prescaler, timer 1 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) in Figure 71 after prescaler and timer operations start (1) in Figure 71.

Time to first underflow (3) in Figure 71 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 71 by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer 1, timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

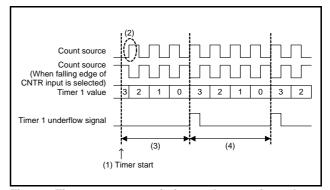


Fig 71. Timer count start timing and count time when operation starts (1)

(19)Timer 2, LC count start timing and count time when operation starts

Count starts from the first edge of the count source (2) in Figure 68 after timer 2 and LC operation start (1) in Figure 72.

Time to first underflow (3) in Figure 68 is different (for up to 1 period of the count source) from time among next underflow (4) in Figure 72 by the timing to start the timer and count source operations after count starts.

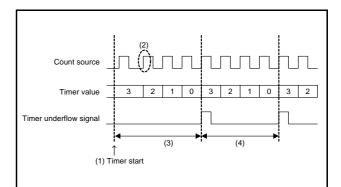


Fig 72. Timer count start timing and count time when operation starts (2)

(20)Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the power down.
- When using the watchdog timer and the power down, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down mode.

Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

(21)Voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 73);

supply voltage does not fall below to VRST, and its voltage regoes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

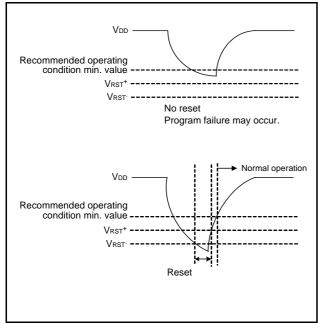


Fig 73. VDD and VRST

(22)On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(23)RC oscillation

The CRCK instruction can be executed only once after reset release.

Execute the CRCK instruction in the initial setting routine (executing it in address 0 in page 0 is recommended).

The frequency is affected by a capacitor, a resistor and a microcomputer.

So, set the constants within the range of the frequency limits.

(24)External clock

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).

Also, note that the power-down mode (POF or POF2 instruction) cannot be used when using the external clock.

(25)QzROM

- Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx. 0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

(26)Notes On ROM Code Protect (QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.

(27) Data Required for QzROM Writing Orders

The following are necessary when ordering a QzROM product shipped after writing:

1. QzROM Writing Confirmation Form*

- 2. Mark Specification Form*
- 3. ROM data.....Mask file

* For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).

Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

NOTES ON NOISE

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

(1) Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.

The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

 Wiring for RESET input pin Make the length of wiring which is connected to the RESET

input pin as short as possible. Especially, connect a capacitor across the $\overline{\text{RESET}}$ input pin and the Vss pin with the shortest possible wiring.

• Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the $\overline{\text{RESET}}$ pin is required.

If noise having a shorter pulse width than this is input to the $\overline{\text{RESET}}$ input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

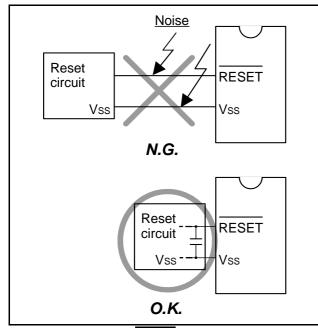


Fig 74. Wiring for the RESET input pin

(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the VSS pattern only for oscillation from other VSS patterns.

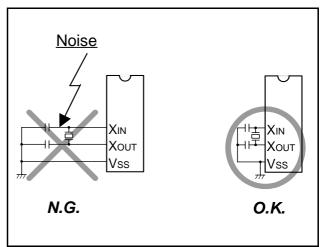


Fig 75. Wiring for clock I/O pins

Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway.

Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

(3) Wiring to CNVss pin

Connect an approximately 5 k Ω resistor to the VPP pin and also to the GND pattern supplied to the Vss pin with shortest possible wiring.

• Reason

The CNVss pin is the power source input pin for the built-in QzROM. When programming in the built-in QzROM, the impedance of the CNVss pin is low to allow the electric current for writing flow into the QzROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in QzROM, which may cause a program runaway.

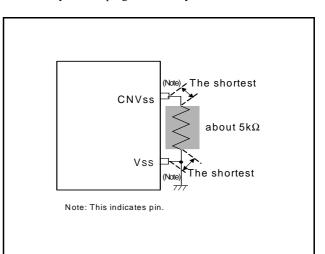


Fig 76. Wiring for CNVss pin

(2) Connection of bypass capacitor across Vss line and VDD line

Connect an approximately 0.1 μF bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the VSS pin and the VDD pin at equal length.
- Connect a bypass capacitor across the VSS pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

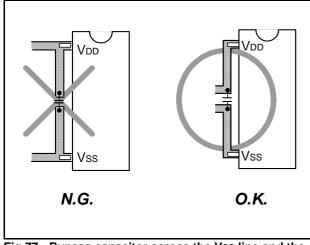


Fig 77. Bypass capacitor across the Vss line and the VDD line

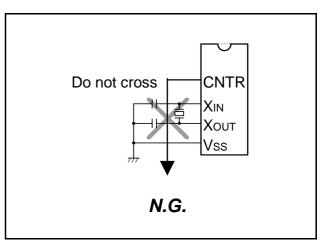
(3) Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

- Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.
- Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.



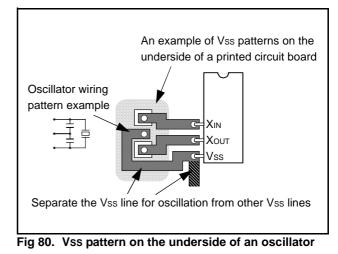

Fig 78. Wiring for a large current signal line

 (2) Installing oscillator away from signal lines where potential levels change frequently
 Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the

clock lines or the signal lines which are sensitive to noise.

Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.


Fig 79. Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern As for a two-sided printed circuit board, print a Vss pattern

on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring.

Besides, separate this Vss pattern from other Vss patterns.

(4) Setup for I/O ports Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.
- (5) Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

• Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \geq$

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

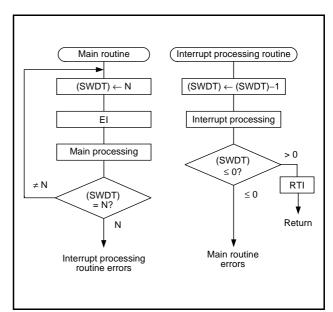


Fig 81. Watchdog timer by software

CONTROL REGISTERS

	Interrupt control register V1	at reset : 00002		at power down : 00002	R/W TAV1/TV1A			
V/1a	Timor 2 interrupt enable bit	0 Interrupt disabled (S		SNZT2 instruction is valid)				
V 13	V13 Timer 2 interrupt enable bit		Interrupt enabled (S	SNZT2 instruction is invalid)				
V12	Timor 1 interrupt enable hit		Interrupt disabled (S	Interrupt disabled (SNZT1 instruction is valid)				
V 12	Timer 1 interrupt enable bit	1	Interrupt enabled (S	SNZT1 instruction is invalid)				
V11	Not used	0	This hit has no fund	tion, but read/write is enabled.				
VII	Not used	1	This bit has no fund	tion, but lead/write is enabled.				
V/1o	External Q interrupt anable bit	0	Interrupt disabled (SNZ0 instruction is valid)					
VIU	V10 External 0 interrupt enable bit		Interrupt enabled (S	NZ0 instruction is invalid)				

	Interrupt control register V2	at reset : 00002		at power down : 00002	R/W TAV2/TV2A		
V23	/23 Not used		This bit has no function, but read/write is enabled.				
V 23		1	This bit has no func				
V22	Not used	0	This hit has no fund	ction, but read/write is enabled.			
V 22		1					
V21	Not used	0	This hit has no fund	ction, but read/write is enabled			
V 2 1		1		This bit has no function, but read/write is enabled.			
V/20	V20 Timer 3 interrupt enable bit		Interrupt disabled (S	SNZT3 instruction is valid)			
v 20			Interrupt enabled (S	SNZT3 instruction is invalid)			

	Interrupt control register I1		at reset : 00002	at power down : state retained	R/W TAI1/TI1A			
110	I13 INT pin input control bit (Note 2)		INT pin input disabl	INT pin input disabled				
113			INT pin input enable	ed				
112	Interrupt valid waveform for INT pin/		0 Falling waveform ("L" level of INT pin is recognized wit instruction)/"L" level					
112	return level selection bit (Note 2)	1	Rising waveform instruction)/"H" leve	("H" level of INT pin is recognized	d with the SNZI0			
111	INT his adds detection circuit control bit	0	One-sided edge de	tected				
111	INT pin edge detection circuit control bit	1	Both edges detected					
110	INT pin timer 1 count start synchronous		Timer 1 count start synchronous circuit not selected					
110	circuit selection bit	1	Timer 1 count start	synchronous circuit selected				

Note 1. "R" represents read enabled, and "W" represents write enabled. Note 2. When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

Clock control register MR			at rese	t : 11002	at power down : state retained	R/W TAMR/TMRA			
MR3	10.		MR2		Operation mode				
IVIR3		0	0	Through mod	e				
	Operation mode selection bits	0	1	Frequency div	vided by 2 mode				
MR2	_	1	0	Frequency divided by 4 mode					
		1	1	Frequency div	Frequency divided by 8 mode				
MR1		MR1	MR ₀		System clock				
IVIR 1		0	0	f(RING)					
	System clock selection bits (Note 2)	0	1	f(XIN)					
MR ₀		1	0	f(Xcin)					
		1	1	Not available	(Note 3)				

	Clock control register RG	at reset : 0002		at power down : state retained	W TRGA	
RG ₂	Sub-clock (f(Xcin)) control bit (Note 4)			oscillation available, ports D6 and D7 n	ot selected	
KG2				oscillation stop, ports D6 and D7 selected		
RG1	Main-clock (f(XIN)) control bit (Note 4)	0	Main clock (f(XIN)) oscillation available			
KGI		1	Main clock (f(XIN)) oscillation stop			
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f	(RING)) oscillation available		
KG0	(Note 4)	1	On-chip oscillator (i	f(RING)) oscillation stop		

Note 1. R" represents read enabled, and "W" represents write enabled. Note 2. The stopped clock cannot be selected for system clock. Note 3. "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR. Note 4. The oscillation circuit selected for system clock cannot be stopped.

Timer control register PA		at reset : 02		at power down : 02	W TAPP
PA ₀	Dresseler control hit	0	Stop (state retained)		
FA0	PA0 Prescaler control bit		Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A		
W13	Timer 1 count auto-stop circuit selection bit	0 Timer 1 count auto-st			circuit not selected			
VV 13	(Note 2)	1	Time	r 1 count auto-stop	circuit selected			
W12	Timer 1 control bit	0	Stop (state retained)					
VVIZ		1	Oper	Operating				
		W11	W10	V10 Count source				
W11		0	0	PWM signal (PWN	AOUT)			
	Timer 1 count source selection bits (Note 3)	0	1	Prescaler output (ORCLK)			
W10		1	0	Timer 3 underflow	signal (T3UDF)			
VV 10			1	CNTR input				

	Timer control register W2		at reset : 00002 at power down : 00002 T		R/W TAW2/TW2A			
W/2 2	W23 CNTR pin function control bit		CNTR pin output invali	d				
VVZ3			CNTR pin output valid					
W/20	W22 PWM signal "H" interval expansion function control bit		PWM signal "H" interval expansion function invalid					
VV Z Z			PWM signal "H" interval expansion function valid					
W21	Timer 2 control bit	0	Stop (state retained)					
VVZ1		1	Operating					
W/20	W20 Timer 2 count source selection bit		XIN input					
vv20			Prescaler output (ORCLK)/2					

	Timer control register W3			eset : 00002	at power down : state retained	R/W TAW3/TW3A		
W33	Timer 3 count source selection bit	0	XIN ir	Xıx input				
VV 33	Timer 3 count source selection bit	1	Prescaler output (ORCLK)					
W32	Timer 3 control bit	0	Stop	(initial state)				
VV 32	Timer 3 control bit	1	Operating					
		W31	W30 Count source					
W31		0	0	Underflow every 8	192 count			
	Timer 3 count value selection bits	0	1	Underflow every 1	6384 count			
W30		1	0	Underflow every 3	2768 count			
vv 30			1	Underflow every 65536 count				

Timer control register W4			at reset : 00002	at power down : state retained	R/W TAW4/TW4A			
W/40	W43 Timer LC control bit		Stop (state retained)					
VV43		1	Operating					
W/40	V42 Timer LC count source selection bit	0	0 Bit 4 (T34) of timer 3					
VV42		1	System clock (STCK)					
W41	CNTR pin output auto-control circuit	0	CNTR output auto-con	trol circuit not selected				
VV41	selection bit	1	CNTR output auto-control circuit selected					
W40			Falling edge					
VV40 C	CNTR pin input count edge selection bit	1	Rising edge					

Note 1. "R" represents read enabled, and "W" represents write enabled. Note 2. This function is valid only when the timer 1 count start synchronous circuit is selected (I10 ="1"). Note 3. Port C output is invalid when CNTR input is selected for the timer 1 count source.

LCD control register L1		at reset : 00002		t : 00002	at power down : state retained		R/W TAL1/TL1A		
L13	Internal dividing resistor for LCD power	0 2r × 3,		3, 2r × 2					
L13	supply selection bit (Note 2)		r × 3,	r × 2					
L12	LCD control bit	0	Stop	(OFF)					
			Oper	Operating					
		L11	L1		Duty	Bias			
L11		0	0	Not availabl	e	Not available			
	LCD duty and bias selection bits	0	1	1/2		1/2			
L10		1	0	1/3		1/3			
L10		1	1	1/4		1/3			

	LCD control register L2		at reset : 00002	at power down : state retained	W TL2A		
L23	SEG0/VLC3 pin function switch bit (Note 3)	0	SEG ₀				
225		1	VLC3				
L22	L22 SEG1/VLC2 pin function switch bit (Note 4)		SEG1				
	SEGI/VEC2 pir runction switch bit (Note 4)	1	VLC2				
L21	SEG2/VLC1 pin function switch bit (Note 4)	0	SEG2	SEG ₂			
LZI	SEG2/VECT pirtunction switch bit (Note 4)	1	VLC1				
1.0-	Internal dividing resistor for LCD power	0	D Internal dividing resistor valid				
L20	supply control bit	1	Internal dividing r	esistor invalid			

LCD control register L3		ä	at reset : 11112	at power down : state retained W TL3A
L33	P23/SEG27 pin function switch bit	0	SEG27	
L33	F23/SEG2/ pintunction switch bit	1	P23	
L32	P22/SEG26 pin function switch bit	0	SEG ₂₆	
L32		1	P22	
L31	P21/SEG25 pin function switch bit	0	SEG25	
LOI		1	P21	
L30	P20/SEG24 pin function switch bit	0	SEG24	
L30		1	P20	

Note 1. "R" represents read enabled, and "W" represents write enabled. Note 2. "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias. Note 3. VLc3 is connected to VDD internally when SEG₀ pin is selected. Note 4. Use internal dividing resistor when SEG₁ and SEG₂ pins are selected.

	LCD control register C1		at reset : 11112	at power down : state retained	W TC1A
C13	P03/SEG19 pin function switch bit	0	SEG19		
		1	P03		
C12	P02/SEG18 pin function switch bit	0	SEG18		
012		1	P02		
C11	Por/SEC 17 pip function quitch hit	0	SEG17		
CI	P01/SEG17 pin function switch bit	1	P01		
C10	Pos/SEC to pip function quitch hit	0	SEG16		
C10	P00/SEG16 pin function switch bit	1	P00		

LCD control register C2		at reset : 11112		at power down : state retained	W TC2A
C23	P13/SEG23 pin function switch bit	0	SEG23		
023		1	P13		
C22	P12/SEG22 pin function switch bit	0	SEG22		
022		1	P12		
C21	D14/SECou pin function quitch hit	0	SEG21		
021	P11/SEG21 pin function switch bit	1	P11		
C20	P10/SEG20 pin function switch bit	0	SEG20		
C20		1	P10		

	LCD control register C3		at reset : 11112	at power down : state retained	W TC3A
C33	P33/SEG31 pin function switch bit	0	SEG31		
U 33		1	P33		
C32	P32/SEG30 pin function switch bit	0	SEG30		
0.32		1	P32		
C31	P24/SEC on his function quitab bit	0	SEG29		
031	P31/SEG29 pin function switch bit	1	P31		
C30	P30/SEG28 pin function switch bit	0	SEG28		
030		1	P30		

Note 1."R" represents read enabled, and "W" represents write enabled. .

Key-on wakeup control register K0			at reset : 00002	at power down : state retained	R/W TAK0/TK0A
K03 Po	Ports P12, P13 key-on wakeup	0	Key-on wakeup not	used	
KU3	control bit	1	Key-on wakeup use	ed	
K02	Ports P10, P11 key-on wakeup control bit	0	Key-on wakeup not used		
K02		1	Key-on wakeup used		
K01	Ports P02, P03 key-on wakeup	0	Key-on wakeup not used		
K U1	control bit	1	Key-on wakeup used		
1/00	Ports P00, P01 key-on wakeup	0	Key-on wakeup not used		
K0 0	control bit	1	Key-on wakeup used		

	Key-on wakeup control register K1		at reset : 00002	at power down : state retained	R/W TAK1/TK1A	
K13	Port P23 key-on wakeup control bit	0	Key-on wakeup not	Key-on wakeup not used		
		1	Key-on wakeup use	ed		
K12	Port P22 key-on wakeup control bit	0	Key-on wakeup not used			
rx12		1	Key-on wakeup used			
K11	Port P21 key-on wakeup control bit	0	Key-on wakeup not	used		
N II	For F21 key-on wakeup control bit	1	Key-on wakeup used			
K10	Port P20 key-on wakeup control bit	0	Key-on wakeup not used			
N 10		1	Key-on wakeup used			

Key-on wakeup control register K2			at reset : 00002	at power down : state retained	R/W TAK2/TK2A	
1/20	K23 Ports P32, P33 key-on wakeup control bit (Note 3)	0	Key-on wakeup not	Key-on wakeup not used		
NZ3		1	Key-on wakeup use	ed		
K22	Ports P30, P31 key-on wakeup control bit (Note 2)	0	Key-on wakeup not used			
NZ2		1	Key-on wakeup used			
K21	INT his return condition coloction bit	0	Return by level			
NZ 1	INT pin return condition selection bit	1	Return by edge			
K20	INT pin key-on wakeup control bit	0	Key-on wakeup invalid			
1\20	in pin key-on wakeup control bit	1	Key-on wakeup valid			

	Key-on wakeup control register K3		at reset : 00002	at power down : state retained	R/W TAK3/TK3A	
1/2.	Ports P32, P33 return condition selection bit (Note 3)	0	Return by level	Return by level		
K33		1	Return by edge			
K32	Ports P32, P33 valid waveform/level selection bit (Note 3)	0	Falling waveform/"L	Falling waveform/"L" level		
N 32		1	Rising waveform/"H	Rising waveform/"H" level		
K 31	Ports P30, P31 return condition selection bit	0	Return by level			
N 31	(Note 2)	1	Return by edge			
K30	Ports P30, P31 valid waveform/level selection bit (Note 2)	0	Falling waveform/"L	" level		
r.30		1	Rising waveform/"H" level			

Note 1. "R" represents read enabled, and "W" represents write enabled.

Note 2. To be invalid (K22 = "0") key-on wakeup of ports P30 and P31, set the registers K30 and K31 to "0." Note 3. To be invalid (K23 = "0") key-on wakeup of ports P32 and P33, set the registers K32 and K33 to "0."

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/TPU0A
PU03	Port P03 pull-up transistor control bit	0	Pull-up transistor O	FF	
F 003		1	Pull-up transistor O	N	
PU02	Port P02 pull-up transistor control bit	0	Pull-up transistor OFF		
F 002		1	Pull-up transistor ON		
PU01	Port P01 pull-up transistor control bit	0	Pull-up transistor O	FF	
F 001	Port Por pull-up transistor control bit	1	Pull-up transistor ON		
PU00	Port P00 pull-up transistor control bit	0	Pull-up transistor O	FF	
F 000		1	Pull-up transistor O	Ν	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/TPU1A
PU13 I	Port P13 pull-up transistor control bit	0	Pull-up transistor O	FF	
		1	Pull-up transistor O	Pull-up transistor ON	
DI 11a	Port P12 pull-up transistor control bit	0	Pull-up transistor O	FF	
FUIZ		1	Pull-up transistor O	N	
PU11	Port B14 pull up transistor control bit	0	Pull-up transistor O	FF	
FUII	Port P11 pull-up transistor control bit	1	Pull-up transistor ON		
PU10	Port P10 pull-up transistor control bit	0	Pull-up transistor O	FF	
PU10		1	Pull-up transistor O	N	

Pull-up control register PU2		at reset : 00002		at power down : state retained	R/W TAPU2/TPU2A
PU23	Port P23 pull-up transistor control bit	0	Pull-up transistor O	FF	
r UZ3		1	Pull-up transistor O	N	
PU22	Port P22 pull-up transistor control bit	0	Pull-up transistor O	FF	
F UZ2		1	Pull-up transistor ON		
PU21	Port P21 pull-up transistor control bit	0	Pull-up transistor O	FF	
FUZI	Port P21 pull-up transistor control bit	1	Pull-up transistor ON		
PU20	Port P20 pull-up transistor control bit	0	Pull-up transistor O	FF	
PU20		1	Pull-up transistor O	N	

Pull-up control register PU3		at reset : 00002		at power down : state retained	R/W TAPU3/TPU3A
PU33	Port P33 pull-up transistor control bit	0	Pull-up transistor O	FF	
		1	Pull-up transistor O	N	
PU32	Port P32 pull-up transistor control bit	0	Pull-up transistor O	FF	
F 0.32		1	Pull-up transistor ON		
PU31	Port P31 pull-up transistor control bit	0	Pull-up transistor O	FF	
F 031	Port P31 puil-up transistor control bit	1	Pull-up transistor O	N	
PU30	Port P30 pull-up transistor control bit	0	Pull-up transistor O	FF	
F U30		1	Pull-up transistor O	N	

Note 1. "R" represents read enabled, and "W" represents write enabled.

F	Port output structure control register FR0	at reset : 00002		at power down : state retained	W TFR0A			
FR03	Ports P12, P13 output structure selection bit	0 N-channel open-drain output						
FR03	FR03 F015 F12, F13 output structure selection bit		CMOS output					
FR02	EDOs Dorto D1s D1 sutput structure selection bit		N-channel open-drain output					
FR02	Ports P10, P11 output structure selection bit	1	CMOS output					
FR01	Ports P02, P03 output structure selection bit	0	N-channel open-drain output					
FRUI	Ports P02, P03 output structure selection bit	1	CMOS output					
FR00	FD0. Dente D0. D0. extend etmosture colorities bit		N-channel open-drain output					
FR00	Ports P00, P01 output structure selection bit	1	CMOS output					

F	Port output structure control register FR1		at reset : 00002	at power down : state retained	W TFR1A			
ED1a	FR13 Ports D3 output structure selection bit		N-channel open-dra	ain output				
FK13			CMOS output					
FR12	FR12 Ports D2 output structure selection bit		N-channel open-drain output					
FK12	Forts D2 output structure selection bit	1	CMOS output					
FR11	Ports D1 output structure selection bit	0	N-channel open-drain output					
FK11	Ports D1 output structure selection bit	1	CMOS output					
FR10			N-channel open-drain output					
FR 10	Ports D ₀ output structure selection bit	1	CMOS output					

F	Port output structure control register FR2		at reset : 00002	at power down : state retained	W TFR2A			
FR23	Porte P22 P22 output structure selection bit	0	N-channel open-dra	ain output				
FRZ3	FR23 Ports P32, P33 output structure selection bit		CMOS output					
FR22	FR22 Ports P30, P31 output structure selection bit		N-channel open-drain output					
FRZ2		1	CMOS output					
FR21	Ports D5 output structure selection bit	0	N-channel open-drain output					
FNZI	Ports D ₅ output structure selection bit	1	CMOS output					
FR20	FD2. Dante Dy autout atmusture calentian hit		N-channel open-drain output					
FRZ0	Ports D4 output structure selection bit	1	CMOS output					

F	Port output structure control register FR3	at reset : 00002		at power down : state retained	W TFR3A			
ED20	FR33 Ports P23 output structure selection bit		N-channel open-dra	ain output				
гкоз			CMOS output					
FR32	FR32 Ports P22 output structure selection bit		N-channel open-drain output					
FK32	Forts F22 output structure selection bit	1	1 CMOS output					
FR31	Ports P21 output structure selection bit	0	N-channel open-drain output					
LK21	Forts F21 output structure selection bit	1	CMOS output					
FR30			N-channel open-drain output					
FK30	Ports P20 output structure selection bit	1	CMOS output					

Note 1. "W" represents write enabled.

INSTRUCTIONS

Each instruction is described as follows;

- 1. Index list of instruction function
- 2. Machine instructions (index by alphabet)
- 3. Machine instructions (index by function)4. Instruction code table

SYMBOL

A Register A (4 bits) R2H Timer 2 reload register (8 bits) B Register B (4 bits) RLC Timer LC reload register (4 bits) DR Register D (3 bits) PS Prescaler E Register E (8 bits) T1 Timer 1 V1 Interrupt control register V1 (4 bits) T2 Timer 2. V2 Interrupt control register V1 (4 bits) T1F Timer 1 PA Timer control register V1 (4 bits) T1F Timer 1 interrupt request flag W1 Timer control register W1 (4 bits) T3F Timer 3 interrupt request flag W2 Timer control register W2 (4 bits) WDF1 Watchdog timer flag W3 Timer control register W4 (4 bits) WDF1 Watchdog timer flag W4 Timer control register W4 (4 bits) WDF Vatchdog timer flag RG Clock control register M4 (4 bits) WDF Voltage drop detection circuit flag RG Clock control register M4 (4 bits) P Power down flag L2 LCD control register M2 (4 bits) P Power down flag L3 LCD control register M2 (4 bits) P1 Port P1 (4 bits) C4 LCD control register M2 (4 bits) P3 Port P2 (4 bits) C3 LCD contro	
DR Register DR (3 bits) PS Prescaler E Register E (8 bits) T1 Timer 1 V1 Interrupt control register V1 (4 bits) T2 Timer 2 V2 Interrupt control register V2 (4 bits) TLC Timer 1 PA Timer control register V1 (4 bits) T3F Timer 2 interrupt request flag PA Timer control register V2 (4 bits) T2F Timer 3 interrupt request flag W1 Timer control register W3 (4 bits) WDF1 Watchdog timer able flag W2 Timer control register W4 (4 bits) WDF1 Watchdog timer able flag W4 Timer control register W4 (4 bits) EXF0 External 0 interrupt request flag RG Clock control register K4 (4 bits) VDF Voltage drop detection circuit flag L1 LCD control register L3 (4 bits) P0 Port P0 (4 bits) L2 LCD control register C1 (4 bits) P1 Port P1 (4 bits) C3 LCD control register C3 (4 bits) P3 Port P3 (4 bits) C4 Key-on wakeup control register K1 (4 bits) P1 Port P3 (4 bits) C5 LCD control register C3 (4 bits) P3 Port P3 (4 bits) K4 Key-on wakeup control register K3 (4 bits) x Hexadecimal variable	
ERegister E (8 bits)T1Timer 1V1Interrupt control register V1 (4 bits)T2Timer 1V2Interrupt control register V2 (4 bits)TLCTimer LCI1Interrupt control register V2 (4 bits)TJFTimer 1PATimer control register W1 (4 bits)TJFTimer 2 interrupt request flagW1Timer control register W2 (4 bits)WDF1Watchdog timer flagW3Timer control register W3 (4 bits)WFFWatchdog timer flagW4Timer control register W3 (4 bits)INTEInterrupt enable flagW4Timer control register W3 (4 bits)VDFVoltage drop detection circuit flagW4Timer control register KG (3 bits)VDFVoltage drop detection circuit flagRGClock control register L2 (4 bits)PPower down flagL2LCD control register L3 (4 bits)P1Port P1 (4 bits)C3LCD control register C3 (4 bits)P2Port P2 (4 bits)C3LCD control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU1Pull-up control register PU2 (4 bits)zHexadecimal variablePU2Pull-up control register F01 (4 bits)pHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR4Port output structure control register FR3 (4 bits)iHexadecimal constantFR4Port output structure control register FR3	
V1Interrupt control register V1 (4 bits)T2Timer 2V2Interrupt control register V2 (4 bits)TLCTimer 1.C11Interrupt control register V1 (4 bits)T1FTimer 1 interrupt request flagPATimer control register V1 (4 bits)T3FTimer 3 interrupt request flagW1Timer control register W2 (4 bits)WDF1Watchdog timer flagW2Timer control register W3 (4 bits)WEFWatchdog timer flagW3Timer control register W4 (4 bits)INTEInterrupt enable flagW4Timer control register W3 (4 bits)EXF0External 0 interrupt request flagRGClock control register RG (3 bits)VDFVoltage drop detection circuit flagL1LCD control register L1 (4 bits)PPower down flagL2LCD control register L2 (4 bits)DPort P0 (4 bits)C1LCD control register C2 (4 bits)P1Port P1 (4 bits)C2LCD control register C2 (4 bits)P3Port P2 (4 bits)C3LCD control register C2 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K2 (4 bits)xHexadecimal variablePU0Pull-up control register P2 (4 bits)zHexadecimal variablePU1Pull-up control register P3 (4 bits)iHexadecimal constantFR0Port output structure control register FR1 (4 bits)jHexadecimal constantFR1Port output structu	
V2Interrupt control register V2 (4 bits)TLCTimer L11Interrupt control register PA (1 bit)T2FTimer 1 interrupt request flagPATimer control register PA (1 bit)T2FTimer 1 interrupt request flagW1Timer control register W2 (4 bits)T3FTimer 3 interrupt request flagW2Timer control register W3 (4 bits)WDF1Watchdog timer flagW3Timer control register W3 (4 bits)INTEInterrupt request flagW4Timer control register W3 (4 bits)INTEInterrupt request flagW4Timer control register W3 (4 bits)EXF0External 0 interrupt request flagW4Timer control register K3 (3 bits)VDFVoltage drop detection circuit flagRGClock control register L2 (4 bits)DPort P0 (4 bits)L1LCD control register L2 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P3Port P2 (4 bits)C3LCD control register C3 (4 bits)INTINTK4Key-on wakeup control register K3 (4 bits)INTINT Int T in (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU1Pull-up control register PU3 (4 bits)yHexadecimal constantFR0Port output structure control register FR1 (4 bits)iHexadecimal constantFR1Port output structure control register FR3 (4 bits)iHexadecimal constantFR2Port output structure control register FR3 (4 bits)iHexadeci	
11Interrupt control register 11 (4 bits)T1FTimer 1 interrupt request flagPATimer control register PA (1 bit)T2FTimer 2 interrupt request flagW1Timer control register W2 (4 bits)WDF1Watchdog timer enable flagW2Timer control register W3 (4 bits)WEFWatchdog timer enable flagW4Timer control register W4 (4 bits)INTEInterrupt request flagW4Timer control register W4 (4 bits)WEFWatchdog timer enable flagRGClock control register K3 (4 bits)EXF0External 0 interrupt request flagRGClock control register L2 (4 bits)PPower down flagL2LCD control register C1 (4 bits)PPower down flagL3LCD control register C2 (4 bits)P1Port P1 (4 bits)C3LCD control register C3 (4 bits)P3Port P2 (4 bits)C4Key-on wakeup control register K1 (4 bits)INTINTK1Key-on wakeup control register K3 (4 bits)INTINTK2Key-on wakeup control register K3 (4 bits)YHexadecimal variablePU0Pull-up control register K3 (4 bits)YHexadecimal variablePU1Pull-up control register PU2 (4 bits)YHexadecimal constantFR0Port output structure control register FR2 (4 bits)YHexadecimal constantFR1Port output structure control register FR2 (4 bits)IHexadecimal constantFR2Port output structure control register FR3 (4 bits)IHexadecimal constant <td></td>	
PATimer control register PA (1 bit)T2FTimer 2 interrupt request flagW1Timer control register W1 (4 bits)T3FTimer 3 interrupt request flagW2Timer control register W2 (4 bits)WDF1Watchdog timer flagW3Timer control register W3 (4 bits)WEFWatchdog timer flagW4Timer control register W3 (4 bits)INTEInterrupt neable flagMRClock control register AG (3 bits)VDFVoltage drop detection circuit flagL2LCD control register L3 (4 bits)PPower down flagL2LCD control register C1 (4 bits)P1Port D (8 bits)L3LCD control register C3 (4 bits)P1Port P1 (4 bits)C3LCD control register C3 (4 bits)P3Port P2 (4 bits)C4LCD control register C3 (4 bits)P3Port P3 (4 bits)K4Key-on wakeup control register K3 (4 bits)INTINTK4Key-on wakeup control register K3 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU2 (4 bits)yHexadecimal variablePU1Pull-up control register PU3 (4 bits)pHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bit	
W1Timer control register W1 (4 bits)T3FTimer 3 interrupt request flagW2Timer control register W2 (4 bits)WDF1Watchdog timer flagW3Timer control register W3 (4 bits)WEFWatchdog timer flagW4Timer control register W4 (4 bits)INTEInterrupt enable flagRGClock control register RG (3 bits)VDFVoltage drop detection circuit flagL1LCD control register L1 (4 bits)DPort D (8 bits)L3LCD control register L3 (4 bits)P0Port P0 (4 bits)C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P2Port P1 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)C3LCD control register K1 (4 bits)INTINT pin (1 bit)K4Key-on wakeup control register K3 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K3 (4 bits)NNK2Key-on wakeup control register F0 (4 bits)xHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal constantFR0Port output structure control register FR1 (4 bits)iHexadecimal constantFR1Port output structure control register FR3 (4 bits)iHexadecimal constantFR0Port output structure control register FR3 (4 bits)iHexadecimal constantFR1Port output structure control register FR3 (4 bits)iHexadecimal constantFR2	
W2Timer control register W2 (4 bits)WDF1Watchdog timer flagW3Timer control register W3 (4 bits)WEFWatchdog timer enable flagM4Timer control register W4 (4 bits)INTEInterrupt enable flagRGClock control register RG (3 bits)VDFVoltage drop detection circuit flagL1LCD control register L1 (4 bits)PPower down flagL2LCD control register L3 (4 bits)PPower down flagL3LCD control register C1 (4 bits)P1Port P1 (4 bits)C3LCD control register C3 (4 bits)P2Port P2 (4 bits)C4LCD control register C3 (4 bits)P3Port P3 (4 bits)K6Key-on wakeup control register K1 (4 bits)RINTEK1Key-on wakeup control register K3 (4 bits)INTINTK2Key-on wakeup control register K2 (4 bits)XHexadecimal variablePU1Pull-up control register PU1 (4 bits)YHexadecimal variablePU2Pull-up control register PU3 (4 bits)YHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)iA 3 A2 A1 A0FR3Port output structure control register FR3 (4 bits)iFR2Port output structure control register FR3 (4 bits)iFR3Port output structure control register FR3 (4 bits)iFR4Port output structure control register FR3 (4 bits)iFR	
W3Timer control register W3 (4 bits)WEFWatchdog timer enable flagW4Timer control register W4 (4 bits)INTEInterrupt enable flagMRClock control register MR (4 bits)EXF0External 0 interrupt request flagVDFVoltage drop detection circuit flagVDFVoltage drop detection circuit flagL1LCD control register L2 (4 bits)DPort D (8 bits)L2LCD control register L2 (4 bits)DPort P0 (4 bits)C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P2Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)C4Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K3 (4 bits)INTINTK2Key-on wakeup control register K3 (4 bits)yHexadecimal variablePU1Pull-up control register PU0 (4 bits)yHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR0 (4 bits)jHexadecimal constantFR1Port output structure control register FR3 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecima	
W4Timer control register W4 (4 bits)INTEInterrupt enable flagMRClock control register MR (4 bits)EXF0External 0 interrupt request flagRGClock control register L1 (4 bits)PPower down flagL1LCD control register L2 (4 bits)DPort D (8 bits)L3LCD control register C1 (4 bits)P1Port P (4 bits)C2LCD control register C2 (4 bits)P1Port P1 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)C4Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K3 (4 bits)INTINTK2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR1 (4 bits)iHexadecimal constantFR2Port output structure control register FR2 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR4POT output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constant	
W4Timer control register W4 (4 bits)INTEInterrupt enable flagMRClock control register MR (4 bits)EXF0External 0 interrupt request flagRGClock control register L1 (4 bits)PPower down flagL1LCD control register L2 (4 bits)DPort D (8 bits)L3LCD control register C1 (4 bits)P1Port P0 (4 bits)C1LCD control register C2 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P2Port P3 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)C4Key-on wakeup control register K0 (4 bits)INTINTK1Key-on wakeup control register K3 (4 bits)INTINTK2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR1 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)K3 A2 A1 A0Binary notation of he	
MRClock control register MR (4 bits)EXF0External 0 interrupt request flagRGClock control register RG (3 bits)VDFVoltage drop detection circuit flagL1LCD control register L1 (4 bits)PPower down flagL2LCD control register L2 (4 bits)DPort D (4 bits)L3LCD control register C1 (4 bits)P1Port P0 (4 bits)C1LCD control register C2 (4 bits)P2Port P2 (4 bits)C2LCD control register C3 (4 bits)P3Port P3 (4 bits)C3LCD control register C3 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K3 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal constantFR0Port output structure control register FR1 (4 bits)jHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)iHexadecimal constantFR3Port output structure control register FR3 (4 bits)iNa 2A 2A 1 A0Register X (4 bits)KContents of registers and memories <td></td>	
RGClock control register RG (3 bits)VDFVoltage drop detection circuit flagL1LCD control register L1 (4 bits)PPower down flagL2LCD control register L2 (4 bits)DPort D (8 bits)L3LCD control register L3 (4 bits)P0Port P0 (4 bits)C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P3Port P3 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K3 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU1 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal variablePU2Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR1 (4 bits)jHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)KAs A2 A1 A0Binary notation of hexadecimal variableYRegister X (4 bits)K-Negate, Flag unchanged after execYRegister X (4 bits)K-Negate,	
L1LCD control register L1 (4 bits)PPower down flagL2LCD control register L2 (4 bits)DPort D (8 bits)L3LCD control register C1 (4 bits)P0Port P0 (4 bits)C1LCD control register C2 (4 bits)P1Port P1 (4 bits)C2LCD control register C3 (4 bits)P3Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)xHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)jHexadecimal constantFR1Port output structure control register FR3 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variFR3Port output structure control register FR3 (4 bits) \leftarrow Direction of data movementYRegister Z (2 bits) $-$ Negate, Flag unchanged after execDPData pointer (10 bits) $(h 0DP)$ RAM address pointed by the data pqProgram counter (14 bits)paLabel indicating address as as 4 as </td <td></td>	
L2LCD control register L2 (4 bits)DPort D (8 bits)L3LCD control register L3 (4 bits)P0Port P0 (4 bits)C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C2 (4 bits)P2Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINTK2Key-on wakeup control register K2 (4 bits)INTINTK3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR1 (4 bits)jHexadecimal constantFR1Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variFR3Port output structure control register FR3 (4 bits)-Negate, Flag unchanged after execVRegister X (4 bits)()Contents of registers and memoriesXRegister Z (2 bits)-Negate, Flag unchanged after execDPData pointer (10 bits)-Negate, Flag unchanged after exec <td< td=""><td></td></td<>	
L3LCD control register L3 (4 bits)P0Port P0 (4 bits)C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C2 (4 bits)P2Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K2 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)KSinary notation of hexadecimal variFR3Port output structure control register FR3 (4 bits)KCDirection of data movementYRegister X (4 bits)KKNegate, Flag unchanged after execDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3 p6 p5 p4 p3 p2 p1 p0	
C1LCD control register C1 (4 bits)P1Port P1 (4 bits)C2LCD control register C2 (4 bits)P2Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)XHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU2Pull-up control register PU2 (4 bits)zHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variableFR2Port output structure control register FR3 (4 bits) \leftarrow Direction of data movementYRegister X (4 bits) \leftarrow Negate, Flag unchanged after execDPData pointer (10 bits) (It consists of registers X, Y, and Z) $=$ Negate, Flag unchanged after execPCProgram counter (14 bits) p_0 p5 p4 p3 p2 p1 p0 p_0 p5 p4 p3 p2 p1 p0	
C2LCD control register C2 (4 bits)P2Port P2 (4 bits)C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K3 (4 bits)INTINT pin (1 bit)K3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)zHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits) \leftarrow Direction of data movementYRegister Y (4 bits) \leftarrow Direction of data movementYRegister Z (2 bits) $-$ Negate, Flag unchanged after exectDPData pointer (10 bits) $(1 consists of registers X, Y, and Z)$ aLabel indicating address a6 a5 a4 a3PCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3p6 p5 p4 p3 p2 p1 p0	
C3LCD control register C3 (4 bits)P3Port P3 (4 bits)K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K2 (4 bits)INTINT pin (1 bit)K3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)∠Direction of data movementYRegister X (4 bits)∠-Negate, Flag unchanged after exectDPData pointer (10 bits)()Contents of registers and memoriesPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 asPCHHigh-order 7 bits of program counterp, aLabel indicating address a6 as a4 asPCHHigh-order 7 bits of program counterp, aLabel indicating address a6 as a4 as	
K0Key-on wakeup control register K0 (4 bits)CPort C (1 bit)K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K2 (4 bits)INTINT pin (1 bit)K3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)Kay A2 A1 A0Binary notation of hexadecimal variation of	
K1Key-on wakeup control register K1 (4 bits)INTINT pin (1 bit)K2Key-on wakeup control register K2 (4 bits)INTINT pin (1 bit)K3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR1 (4 bits)jHexadecimal constantFR1Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variableFR3Port output structure control register FR3 (4 bits)KContents of registers and memoriesYRegister X (4 bits)K-Negate, Flag unchanged after exectDPData pointer (10 bits)M (DP)RAM address pointed by the data pQCHProgram counter (14 bits)p, aLabel indicating address as as 4 as p6 p5 p4 p3 p2 p1 p0	
K2Key-on wakeup control register K2 (4 bits)xHexadecimal variableK3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU2 (4 bits)pHexadecimal variablePU2Pull-up control register PU3 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)jHexadecimal constantFR3Port output structure control register FR3 (4 bits)∠Direction of data movementYRegister X (4 bits)∠Negate, Flag unchanged after exectDPData pointer (10 bits)M (DP)RAM address pointed by the data pIt consists of registers X, Y, and Z)aLabel indicating address a6 a5 a4 a3PCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3PCHHigh-order 7 bits of program counterpp	
K3Key-on wakeup control register K3 (4 bits)xHexadecimal variablePU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variableFR3Port output structure control register FR3 (4 bits)∠Direction of data movementYRegister X (4 bits)∠Negate, Flag unchanged after exectDPData pointer (10 bits)M (DP)RAM address pointed by the data pLabel indicating address a6 a5 a4 acp, aLabel indicating address a6 a5 a4 acPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 acPCHHigh-order 7 bits of program counterp, aLabel indicating address a6 a5 a4 ac	
PU0Pull-up control register PU0 (4 bits)yHexadecimal variablePU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)pHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR3 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variableFR3Port output structure control register FR3 (4 bits)✓Direction of data movementYRegister X (4 bits)✓Contents of registers and memoriesZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3 p6 p5 p4 p3 p2 p1 p0	
PU1Pull-up control register PU1 (4 bits)zHexadecimal variablePU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR2 (4 bits)jHexadecimal constantFR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal vari (same for others)FR3Port output structure control register FR3 (4 bits)✓Direction of data movementYRegister X (4 bits)✓Negate, Flag unchanged after exectPVData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 a3 P6 P5 P4 P3 P2 P1 P0	
PU2Pull-up control register PU2 (4 bits)pHexadecimal variablePU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR1 (4 bits)jHexadecimal constantFR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variableFR3Port output structure control register FR3 (4 bits)✓Direction of data movementYRegister X (4 bits)✓Direction of data movementYRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 a3 P6 P5 P4 P3 P2 P1 P0	
PU3Pull-up control register PU3 (4 bits)nHexadecimal constantFR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR1 (4 bits)jHexadecimal constantFR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal varie (same for others)FR3Port output structure control register FR3 (4 bits)A3 A2 A1 A0Direction of data movementYRegister X (4 bits)←Direction of data movementYRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 a3 P6 P5 P4 P3 P2 P1 P0	
FR0Port output structure control register FR0 (4 bits)iHexadecimal constantFR1Port output structure control register FR1 (4 bits)jHexadecimal constantFR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal varie (same for others)FR3Port output structure control register FR3 (4 bits)A3 A2 A1 A0Direction of data movementYRegister X (4 bits)←Direction of data movementYRegister Z (2 bits)←Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3 P6 P5 P4 P3 P2 P1 P0	
FR1Port output structure control register FR1 (4 bits)jHexadecimal constantFR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal variesFR3Port output structure control register FR3 (4 bits)A3 A2 A1 A0Direction of data movementXRegister X (4 bits)←Direction of data movementYRegister Y (4 bits)()Contents of registers and memoriesZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p Label indicating address a6 a5 a4 as PCHPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 as P6 P5 P4 P3 P2 P1 P0	
FR2Port output structure control register FR2 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal varial (same for others)FR3Port output structure control register FR3 (4 bits)A3 A2 A1 A0Binary notation of hexadecimal varial (same for others)XRegister X (4 bits)←Direction of data movementYRegister Y (4 bits)()Contents of registers and memoriesZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits)(It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data pPCProgram counter (14 bits)p, aLabel indicating address a6 a5 a4 a3p6 p5 p4 p3 p2 p1 p0	
FR3Port output structure control register FR3 (4 bits)(same for others)XRegister X (4 bits)←Direction of data movementYRegister Y (4 bits)()Contents of registers and memoriesZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits)M (DP)RAM address pointed by the data pIt consists of registers X, Y, and Z)PCProgram counter (14 bits)p, aPCHHigh-order 7 bits of program counterP6 p5 p4 p3 p2 p1 p0	ıble A
X Register X (4 bits) ← Direction of data movement Y Register Y (4 bits) () Contents of registers and memories Z Register Z (2 bits) – Negate, Flag unchanged after exect DP Data pointer (10 bits) (It consists of registers X, Y, and Z) M (DP) RAM address pointed by the data p PC Program counter (14 bits) p, a Label indicating address a6 as a4 as PCH High-order 7 bits of program counter p6 p5 p4 p3 p2 p1 p0	
YRegister Y (4 bits)()Contents of registers and memoriesZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP)RAM address pointed by the data p aPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 as p6 p5 p4 p3 p2 p1 p0	
ZRegister Z (2 bits)–Negate, Flag unchanged after exectDPData pointer (10 bits)M (DP)RAM address pointed by the data p(It consists of registers X, Y, and Z)aLabel indicating address a6 as a4 asPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 asPCHHigh-order 7 bits of program counterp6 p5 p4 p3 p2 p1 p0	
DPData pointer (10 bits) (It consists of registers X, Y, and Z)M (DP) aRAM address pointed by the data p Label indicating address a6 as a4 as p, aPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 as PCHPCHHigh-order 7 bits of program counterp, aLabel indicating address a6 as a4 as PCH	uting instruction
(It consists of registers X, Y, and Z)aLabel indicating address a6 as a4 asPCProgram counter (14 bits)p, aLabel indicating address a6 as a4 asPCHHigh-order 7 bits of program counterp6 p5 p4 p3 p2 p1 p0	•
PCProgram counter (14 bits)p, aLabel indicating address a6 as a4 asPCHHigh-order 7 bits of program counterp6 p5 p4 p3 p2 p1 p0	
PCH High-order 7 bits of program counter P6 p5 p4 p3 p2 p1 p0	
PCL Low-order 7 bits of program counter	
SK Stack register (14 bits \times 8) C+x Hex. C + Hex. number x (also same	for others)
SP Stack pointer (3 bits) ? Decision of state shown before "?"	
CY Carry flag $\leftarrow \rightarrow$ Data exchange between a register a	ind memory
UPTF High-order bit reference enable flag	
RPS Prescaler reload register (8 bits)	
R1 Timer 1 reload register (8 bits)	
R2L Timer 2 reload register (8 bits)	

Note 1. The 4559 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

The symbols shown below are used in the following list of instruction function and the machine instructions.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Pa	age
	ТАВ	$(A) \gets (B)$	103 122		LA n	$(A) \leftarrow n$	92	124
	ТВА	(B) ← (A)	110 122		TABP p	n = 0 to 15 (SP) ← (SP) + 1	104	124
	TAY	$(A) \leftarrow (Y)$	110 122			$(SF) \leftarrow (SF) + F$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	104	124
	ΤΥΑ	$(Y) \gets (A)$	119 122			$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$ (UPTF) = 1,		
ransfer	TEAB	$(E_7-E_4) \leftarrow (B)$ $(E_3-E_0) \leftarrow (A)$	112 122			$(DR_2) \leftarrow 0$ $(DR_1, DR_0) \leftarrow (ROM(PC))_{9, 8}$		
Register to register transfer	TABE	$\begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array}$	104 122			$\begin{array}{l} (B) \leftarrow (ROM(PC))_{7-4} \\ (A) \leftarrow (ROM(PC))_{3-0} \\ (PC) \leftarrow (SK(SP)) \\ (CD) \leftarrow (SK) \end{array}$		
r to r	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	111 122			$(SP) \leftarrow (SP) - 1$	07	404
giste	TAD	$(A_2 - A_0) \leftarrow (DR_2 - DR_0)$	105 122	ation	AM	$(A) \leftarrow (A) + (M(DP))$		124
Re	TAZ	$(A3) \leftarrow 0$ $(A1, A0) \leftarrow (Z1, Z0)$	110 122	c oper	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	87	124
		(A3, A2) ← 0		Arithmetic operation	A n	(A) ← (A) + n n = 0 to 15	87	124
	TAX	$(A) \leftarrow (X)$ $(A_2 - A_0) \leftarrow (SP_2 - SP_0)$	110 122 108 122	Ari	AND	$(A) \leftarrow (A)AND(M(DP))$	87	124
	1A01	$(A3) \leftarrow 0$	100 122		OR	$(A) \gets (A)OR(M(DP))$	94	124
Se	LXY x, y	$\begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 15 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array}$	93 122		SC	(CY) ← 1	98	124
RAM addresses	LZ z	$(Z) \leftarrow z, z = 0 \text{ to } 3$	93 122		RC	$(CY) \leftarrow 0$	96	124
.M ad	INY	$(Y) \gets (Y) + 1$	92 122		SZC	(CY) = 0 ?	102	124
RA	DEY	$(Y) \gets (Y) - 1$	90 122		СМА	(A) (A)	89	124
	TAM j	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	106 122		RAR	CY A3A2A1A0	95	124
	XAM j	$(A) \longleftrightarrow (M(DP))$	120 122	c	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	97	124
ansfer		(X) ← (X)EXOR(j) j = 0 to 15		operation	RB j	(Mj(DP)) ← 0 j = 0 to 3	95	124
RAM to register tra	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ (X) $\leftarrow (X)EXOR(j)$ j = 0 to 15	120 122	Bit o	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	101	124
to reç		$(Y) \leftarrow (Y) - 1$		uos	SEAM	(A) = (M(DP)) ?	99	126
RAM to	XAMI j	$\begin{array}{l} (A) \longleftrightarrow (M(DP))\\ (X) \leftarrow (X)EXOR(j)\\ j=0 \text{ to } 15\\ (Y) \leftarrow (Y) + 1 \end{array}$	120 122	Comparison operation	SEA n	(A) = n ? n = 0 to 15	98	126
	TMA j	$(M(DP)) \leftarrow (A)$	115 122	ion	Ва	(PCL) ← a6–a0	88	126
	,	$(X) \leftarrow (X) E X O R(j)$ j = 0 to 15		operat	BL p, a	(РСн)	88	126
p=0 to 47	7	1	I	Branch operation	BLA p	(РСн) ← р (РС∟) ← (DR2–DR0, А3–А0)	88	126

Group- ing	Mnemonic	Function	Pa	ige	Group- ing	Mnemonic	Function	Pa	ge
Ę	BM a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$	88	126		TPAA TAW1	$(PA) \leftarrow (A)$ $(A) \leftarrow (W1)$	116 109	128 128
Subroutine operation	BML p, a	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	89	126		TW1A	$(W1) \leftarrow (A)$	118	
outine o		$(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$				TAW2 TW2A	(A) ← (W2) (W2) ← (A)	109 118	
Subr	BMLA p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	89	126		TAW3	(A) ← (W3)	109	128
		$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$				ТѠЗА	$(W3) \gets (A)$	119	128
Б	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	97	126		TAW4	$(A) \gets (W4)$	109	128
peratio	RT	$(PC) \leftarrow (SK(SP))$	96	126		TW4A	(W4) ← (A)	119	128
Return operation	DTO	$(SP) \leftarrow (SP) - 1$		100		TABPS	$(B) \leftarrow (TPS_{TPS4})$ $(A) \leftarrow (TPS_{TPS0})$	104	130
Ret	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	97	126	ы	TPSAB	(RPS7–RPS4) ← (B)	116	130
	DI	$(INTE) \leftarrow 0$	90	128	Timer operation		(TPS7–TPS4) ← (B) (RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)		
	EI SNZ0	(INTE) ← 1 V1o = 0 : (EXF0) = 1 ?	91 99	128 128	Timer	TAB1	(B) ← (T17–T14)	103	130
	SNZO	$(EXF0) \leftarrow 0$ V10 = 1 : SNZ0 = NOP	99	120		T1AB	(A) ← (T13–T10) (R17–R14) ← (B)	102	130
ration	SNZI0	l12 = 0 : (INT) = "L" ? l12 = 1 : (INT) = "H" ?	99	128			(T17–T14) ← (B) (R13–R10) ← (A) (T13–T10) ← (A)		
Interrupt operation	TAV1	(A) ← (V1)	108	128		TR1AB	$(R17-R14) \leftarrow (B)$	117	130
nterru	TV1A	$(V1) \leftarrow (A)$	118	128		TAB2	(R13–R10) ← (A) (B) ← (T27–T24)	104	130
-	TAV2	$(A) \gets (V2)$	108	128			$(A) \leftarrow (T23 - T20)$		
	TV2A	(V2) ← (A)	118	128		T2AB	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$	102	130
	TAI1	(A) ← (I1)	105	128			$(R2L_3-R2L_0) \leftarrow (A)$ $(T2_3-T2_0) \leftarrow (A)$		
	TI1A	$(I1) \leftarrow (A)$	113	128		T2R2L	(T27–T20) ← (R2L7–R2L0)	103	130
L						T2HAB	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)	103	130

p=0 to 47

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page	٦
	TLCA	$(RLC) \leftarrow (A)$ $(TLC) \leftarrow (A)$	115 130		TPU3A	$(PU3) \gets (A)$	117 132	2
	SNZT1	$V_{12} = 0 : (T1F) = 1 ?$	100 130		TAK0	(A) ← (K0)	105 134	4
ation		$(T1F) \leftarrow 0$ V12 = 1 : SNZT1=NOP		ç	TK0A	(K0) ← (A)	113 134	4
opera	SNZT2	V13 = 0 : (T2F) = 1 ?	100 130	eratic	TAK1	(A) ← (K1)	105 134	4
Timer operation		$(T2F) \leftarrow 0$ V13 = 1 : SNZT2=NOP		Input/Output operation	TK1A	(K1) ← (A)	113 134	4
	SNZT3	V20 = 0 : (T3F) = 1 ?	100 130	t/Outp	TAK2	(A) ← (K2)	106 134	4
		(T3F) ← 0 V20 = 1 : SNZT3=NOP		ndul	TK2A	(K2) ← (A)	114 134	4
	IAP0	$(A) \leftarrow (P0)$	91 132		ТАКЗ	(A) ← (K3)	106 134	4
	OP0A	(P0) ← (A)	93 132		ТКЗА	(K3) ← (A)	114 134	4
	IAP1	(A) ←(P1)	91 132		TAL1	(A) ← (L1)	106 134	4
	OP1A	(P1) ← (A)	94 132		TL1A	$(L1) \leftarrow (A)$	114 134	4
	IAP2	(A) ← (P2)	92 132	u	TL2A	(L2) ← (A)	114 134	4
	OP2A	(P2) ← (A)	94 132	LCD operation	TL3A	$(L3) \leftarrow (A)$	115 134	4
	IAP3	(A) ← (P3)	92 132	CD	TC1A	$(C1) \leftarrow (A)$	111 134	4
	ОРЗА	(P3) ← (A)	94 132		TC2A	(C2) ← (A)	111 134	4
	CLD	(D) ← 1	89 132		ТСЗА	$(C3) \leftarrow (A)$	111 134	4
	RD	$(D(Y)) \leftarrow 0, (Y) = 0 \text{ to } 7$	96 132		CRCK	RC oscillation selected	90 134	4
۲	SD	$(D(Y)) \leftarrow 1$, $(Y) = 0$ to 7	98 132	Clock operation	TAMR	$(A) \leftarrow (MR)$	107 134	4
eratio	SZD	(D(Y)) = 0 ?, (Y) = 0 to 5	102 132	k ope	TMRA	$(MR) \leftarrow (A)$	115 134	4
Input/Output operation	RCP	$(C) \leftarrow 0$	96 132	Cloc	TRGA	$(RG_2-RG_0) \leftarrow (A_2-A_0)$	117 134	4
t/Out	SCP	(C) ← 1	98 132		NOP	$(PC) \leftarrow (PC)+1$	93 136	6
ndul	TFR0A	$(FR0) \leftarrow (A)$	112 132		POF	Transition to clock operating	95 136	6
	TFR1A	$(FR1) \leftarrow (A)$	112 132		POF2	Transition to RAM back-up	95 136	6
	TFR2A	$(FR2) \leftarrow (A)$	112 132		EPOF	POF or POF2 instruction	91 136	
	TFR3A	(FR3) ← (A)	113 132		SNZP	(P) = 1 ? (VDF) = 1?	99 136	
	TAPU0	$(A) \gets (PU0)$	107 132	ation	SNZVD WRST	(WDF1) = 1 ?	100 130 119 130	
	TPU0A	(PU0) ← (A)	116 132	Other operation		$(WDF1) \leftarrow 0$	110 100	Ŭ
	TAPU1	(A) ← (PU1)	107 132	Other	DWDT	Stop of watchdog timer func- tion enabled	90 136	6
	TPU1A	(PU1) ← (A)	116 132		SRST	System reset	101 136	6
	TAPU2	(A) ← (PU2)	107 132		RUPT	(UPTF) ←0	97 136	
	TPU2A	(PU2) ← (A)	117 132		SUPT	(UPTF) ←1	101 136	
	TAPU3	(A) ← (PU3)	108 132		SVDE	At power down mode, volt- age drop detection circuit valid	101 136	D

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

	ld n and accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 0 n n n n 2 0 6 n 16	1	1	-	Overflow = 0
Opera-	$(A) \leftarrow (A) + n$	Grouping: A	Arithmetic opera	ation	
tion:	n = 0 to 15	Description: A	Adds the value	n in the immed	liate field to register A, and
			stores a result i		
					remains unchanged. n there is no overflow as the
			esult of operati		
					when there is overflow as the
		r	esult of operati	on.	
AM (Ad	d accumulator and Memory)				
Instruc-		Number of	Number of		Clvin condition
tion	D9 D0	words	cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 2 0 0 A 16	1	1	-	-
Opera-	$(A) \leftarrow (A) \mathring{A} \{ (M(DP))$		Arithmetic opera		
tion:		Description: A	Adds the conter	nts of M(DP) to	register A.
			Stores the resul		The contents of carry flag
				nangea.	
Instruc-	Add accumulator, Memory and Carry)	Number of	Number of		
tion	D9 D0	words	cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 1 2 0 0 B 16	1	1	0/1	-
Opera-	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A	Arithmetic opera	ation	
tion:	$(CY) \leftarrow Carry$				nd carry flag CY to register
		ļ A	A. Stores the re	sult in register	A and carry flag CY.
·					
	ogical AND between accumulator and memory)	Nu una la como f	Numerican of		
Instruc-	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 2 0 1 8 16	1	1	-	-
Opera-	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping: A	Arithmetic opera	ation	
tion:				•	veen the contents of register and stores the result in regis-
			er A.		and stores the result in regis-

Ba(Br	anch to address a)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	1	1	-	-
Opera-	(PCL) ← a6 to a0	Grouping: E	Branch operatio	n	
tion:				page : Branch	es to address a in the identi-
			al page.	ach addroce wi	thin the page including this
			nstruction.		and the page including this
BL p,a	(Branch Long to address a in page p)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code		words	cycles	- 5 -	
0000	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 E p 16	2	2	-	-
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 a a 16	Grouping: E	Branch operatio	n	
Opera-	 (РСн) ← р		Branch out of a $0 = 0$ to 47	page : Branch	es to address a in page p.
tion:	$(PCL) \leftarrow a_6 \text{ to } a_0$	Note.	0 = 0 10 47		
	(Branch Long to address (D)+(A) in page p)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0000100201016	2	2	_	
			Branch operatic	n	
			•		es to address (DR2 DR1 DR0
Opera- tion:	(РСн) ← р (РСL) ← (DR2–R0, А3–А0)		A3 A2 A1 A0)2 s p		isters D and A in page p.
uon.	$(FGL) \leftarrow (DR_2 - R_0, R_3 - R_0)$	Note: p	0 = 0 to 47		
BM a (F	Branch and Mark to address a in page 2)				
Instruc-		Number of	Number of		Olin condition
tion	D9 D0	words	cycles	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	1	1	-	-
Opera-	$(SP) \leftarrow (SP) + 1$	Grouping:	Subroutine call	operation	
tion:	(SK(SP)) ← (PC) (РСн) ← 2				Calls the subroutine at
	$(PCL) \leftarrow a_{6}-a_{0}$		address a in pag		ge 2 to another page can
					truction when it starts on
			bage 2.	a over the at	k haaruga tha maximum
			evel of subrouti		k because the maximum
				Ŭ	

BML p	a (Branch and Mark Long to address a in page p)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 c p 16	2	2	-	-
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 a a 16	1 0	Subroutine call	•	
Opera-	$(SP) \leftarrow (SP) + 1$		Call the subrout bage p.	tine : Calls the	subroutine at address a in
tion:	(SK(SP)) ← (PC) (РСн) ← р	Note: p	p = 0 to 47		
	$(PCL) \leftarrow ae-ao$		Be careful not to evel of subrout		k because the maximum
				ine needing ie e	
BMLA	p (Branch and Mark Long to address (D)+(A) in p	bage p)			
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ 0 0 0 0 1 1 0 0 0 0 2 0 3 0 16	words	cycles		
		2	2	-	-
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16		Subroutine call		autorities at address (DDs
Opera-	$(SP) \leftarrow (SP) + 1$				subroutine at address (DR ₂ ied by registers D and A in
tion:	(SK(SP)) ← (PC) (РСн) ← р		bage p. b = 0 to 47		
	$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$			o over the stac	k because the maximum
		l.	evel of subrout	ine nesting is 8	3.
CLD (C	CLear port D)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 2 0 1 1 16	1	1	-	-
Opera-	(D) ← 1		nput/Output op		
tion:		Description: S	Sets (1) to port	D.	
CMA ((CoMplement of Accumulator)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	T lag O I	
		1	1	-	-
Opera- tion:	$(A) \leftarrow (\overline{A})$		Arithmetic opera		
			Stores the one's register A.	s complement	for register A's contents in
			-		

CRCK	(Clock select: Rc oscillation ClocK)						
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 1 0 0 1 1 0 1 1 <u>2</u> 2 9 B 16	1	1	-	-		
Opera-	RC oscillation circuit selected	Grouping: 0	Clock control op	peration			
tion:		Description: \$	Selects the RC	oscillation circu	uit for main clock f(Xın).		
DEY (D	Ecrement register Y)						
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 0 1 0 1 1 1 2 0 1 7 16	1	1	-	(Y) = 15		
Opera- tion:	$(Y) \leftarrow (Y) - 1$		RAM addresses				
		Description: Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.					
DI (Disa	able Interrupt)	•					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	-		
tion:		Description: (i Note: I	nterrupt.	errupt enable f	lag INTE, and disables the		
DWDT	(Disable WatchDog Timer)						
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 1 0 0 1 1 1 0 0 2 2 9 C 16	1	1	-	-		
Opera- tion:	Stop of watchdog timer function enabled	Description: S	Other operation Stops the watch after executing	dog timer funct	tion by the WRST instruction ruction.		

	ble Interrupt)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 1 2 0 0 5 16	1	1	-	-
Opera-	$(INTE) \leftarrow 1$	Grouping: I	nterrupt control	operation	
tion:		Description: S	Sets (1) to interr	upt enable flag	INTE, and enables the
		Note: I	nterrupt. nterrupt is enab executing 1 mac		ng the EI instruction after
EPOF (Enable POF instruction)				
Instruc-	,	Number of	Number of		Cluin condition
tion	D9 D0	words	cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 2 0 5 B 16	1	1	-	-
Opera- tion:	POF instruction or POF2 instruction valid	Grouping: C	Other operation		
uon.					F instruction or POF2 ne EPOF instruction.
IAP0 (I	nput Accumulator from port P0)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16	1	1	-	-
Opera- tion:	$(A) \leftarrow (P0)$		nput/Output ope		
	nput Accumulator from port P1)		Fransfers the inp		
Instruc-		Number of	Number of		
tion code		words	cycles	Flag CY	Skip condition
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	-	-
Opera- tion:	$(A) \leftarrow (F^{-1})$		nput/Output ope		

	nput Accumulator from port P2)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 2 2 6 2 16	1	1	-	-
Opera-	(A) ← (P2)	Grouping: I	nput/Output op	eration	
tion:		Description: 1	Fransfers the in	put of port P2 t	to the register A.
IAP3 (I	nput Accumulator from port P3)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 1 2 2 6 3 16	1	1	-	-
Opera- tion:	(A) ← (P3)		nput/Output op		to the register A.
	crement register Y)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
Opera-	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 Grouping: F	1 RAM addresses	-	(Y) = 0
tion:		Description: A v	when the conter	nts of register V	ter Y. As a result of addition, Y is 0, the next instruction is register Y is not 0, the next
LA n (l	oad n in Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 1 n n n 2 0 7 n 16	1	1	-	Continuous description
Opera- tion:	(A) ← n n = 0 to 15	Description: L	When the LA in	e n in the imme structions are c irst LA instructi	diate field to register A. continuously coded and exe- ion is executed and other LA y are skipped.

LXY x,y	I (Load register X and Y with x and y)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 1 x ₃ x ₂ x ₁ x ₀ y ₃ y ₂ y ₁ y ₀ 2 3 x y 16	1	1	-	Continuous description
Opera-	$(X) \leftarrow x x = 0$ to 15	Grouping: F	RAM addresses	;	
tion:	(Y) ← y y = 0 to 15	ti L	he value y in th XY instructions	e immediate fi are continuou Y instruction is	diate field to register X, and eld to register Y. When the isly coded and executed, executed and other LXY y are skipped.
LZ z (Lo	oad register Z with z)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 Z1 Z0 2 0 4 ⁸ _{+z} 16	1	1	-	-
Opera- tion:	$(Z) \leftarrow z z = 0 \text{ to } 3$		RAM addresses		diate field to register Z.
NOP (N					
Instruc-	lo OPeration)	Number of	Number of		
tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	Flag CY	Skip condition
Opera-	$(PC) \leftarrow (PC) + 1$	1 Grouping: C	1 Dther operation	-	-
tion:			No operation; Ademain unchang		m counter value, and others
	Output port P0 from Accumulator)		,,		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code		1	1	-	-
Opera- tion:	$(P0) \leftarrow (A)$		nput/Output ope		
		Description: C	Dutputs the con	tents of registe	er a to port PU.

	Output port P1 from Accumulator)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 0 0 0 1 2 2 1 16	1	1	-	-	
Opera-	$(P1) \leftarrow (A)$	Grouping: I	nput/Output ope	eration		
tion:		Description: C	Dutputs the con	tents of registe	r A to port P1.	
	Output port P2 from Accumulator)					
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Opera- tion:	$(P2) \leftarrow (A)$		nput/Output ope		ister A to port P2.	
0834 (Output port P3 from Accumulator)					
	Output port P3 from Accumulator)	Number of	Number of			
Instruc- tion code	D ₉ D ₀ D ₀ 1 0 0 0 1 0 0 0 1 1 2 2 2 3 16	words	Number of cycles	Flag CY	Skip condition	
Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Grouping: I	1 nput/Output ope	-	-	
tion:		Description: C	Dutputs the con	tents of the reg	ister A to port P3.	
-	ical OR between accumulator and memory)	Number	h h un h a n a f			
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	-	-	
Opera-	$(A) \leftarrow (A) \text{ OR } (M(DP))$	Grouping: Arithmetic operation				
tion:		a			en the contents of register A I stores the result in register	

POF (P	Power OFf)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 0 0 1 0 2 0 0 2 16	1	1	-	-	
Opera-	Transition to clock operating mode	Grouping:	Other operation			
tion:					ting mode by executing the	
					ng the EPOF instruction.	
					executed just before this quivalent to the NOP instruc-	
			tion.			
POF2 (Power OFf2)					
Instruc-		Number of	Number of		Clin condition	
tion	D9 D0	words	cycles	Flag CY	Skip condition	
code	0 0 0 0 0 1 0 0 2 0 8 16	1	1	-	-	
Opera- tion:	Transition to RAM back-up mode		Other operation			
					up state by executing the	
					ng the EPOF instruction. executed before executing	
			this instruction,		is equivalent to the NOP	
			instruction.			
RAR (F	Rotate Accumulator Right)					
Instruc-		Number of	Number of	Flag CY	Skip condition	
tion code		words	cycles	_		
	0 0 0 0 0 1 1 1 0 1 2 0 1 D 16	1	1	0/1	-	
Opera- tion:		Grouping: Arithmetic operation				
		Description: Rotates 1 bit of the contents of register A including the con- tents of carry flag CY to the right.				
			terns of early he		n	
	eset Bit)					
Instruc-		Number of	Number of	Flag CY	Skip condition	
tion code		words	cycles	0		
_	0 0 0 1 0 0 1 1 j j 2 0 4 ^C _{+j} 16	1	1	-	-	
Opera-	$(Mj(DP)) \leftarrow 0$		Bit operation			
tion:	j = 0 to 3				bit specified by the value j in	
			the immediate f	ield) of M(DP).		
		I				

RC (Re	set Carry flag)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 0 2 0 0 6 16	1	1	0	-
Opera-	$(CY) \leftarrow 0$	Grouping: A	Arithmetic opera	ation	
tion:		Description: (Clears (0) to car	ry flag CY.	
RCP (R	leset Port C)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 0 1 1 0 0 2 2 8 C 16	1	1	-	-
Opera- tion:	$(C) \leftarrow 0$		nput/Output ope		
	set port D specified by register Y)	Niver la ser of	No. and a second		
Instruc- tion code	D ₉ D ₀ 0 0 0 0 0 1 0 1 0 2 0 1 4 16	Number of words	Number of cycles	Flag CY	Skip condition
Opera-	$(D(Y)) \leftarrow 0$	1 Grouping: I	1 nput/Output ope	-	-
tion:	(Y) = 0 to 7	Description: 0 Note: (Clears (0) to a b Y) = 0 to 7.	it of port D spe this instruction	cified by register Y.
RT (Re	Turn from subroutine)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 0 0 2 0 4 4 16	1	2	-	-
Opera-	$(PC) \leftarrow (SK(SP))$		Return operatio		
tion:	(SP) ← (SP) –1		Returns from su ine.	broutine to the	routine called the subrou-

RTI (Re	eTurn from Interrupt)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 1 0 2 0 4 6 16	1	1	-	-
Opera-	$(PC) \leftarrow (SK(SP))$	Grouping: F	Return operatio	n	
tion:	(SP) ← (SP) – 1	Re sta	eturns each val atus, NOP mod	ue of data poir le status by th ruction, regis	routine to main routine. hter (X, Y, Z), carry flag, skip he continuous description of ter A and register B to the
RTS (R	eTurn from subroutine and Skip)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 0 1 0 1 2 0 4 5 16	1	2	-	Skip at uncondition
Opera- tion:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		Return operatio		
					e routine called the subrou- tion at uncondition.
RUPT (Reset UPT flag)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code		1	1	-	-
Opera- tion:	$(UPTF) \leftarrow 0$		Other operation		
		Note: E	Even when the	table reference order 2 bits of	reference enable flag UPTF. e instruction (TABP p) is exe- ROM reference data is not
SB j (S	et Bit)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 j j 2 0 5 ^C _{+j} 16	1	1	-	-
Opera-	$(Mj(DP)) \leftarrow 1$	Grouping: E	Bit operation		
tion:	j = 0 to 3		Sets (1) the con he immediate fi		it specified by the value j in
		1			

SC (Se	t Carry flag)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 2 0 0 7 16	1	1	1	-
Opera-	(CY) ← 1	Grouping: A	Arithmetic opera	ation	
tion:		Description: S	Sets (1) to carry	/ flag CY.	
SCP (S	et Port C)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 1 2 2 8 D 16	1	1	-	-
Opera-	$(C) \leftarrow 1$	Grouping: I	nput/Output op	eration	
tion:		Description: S	Sets (1) to port	C.	
SD (Se Instruc-	t port D specified by register Y)	Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ D ₀ D ₀ D ₀ D ₁ D ₁ D ₁ D ₂ D ₁ 5 16	words	cycles	Flag C f	
		1	1	-	-
Opera-	$\begin{array}{l} (D(Y)) \leftarrow 1 \\ (Y) = 0 \text{ to } 7 \end{array}$		nput/Output op		
tion:	(1) = 0.007			of port D spec	ified by register Y.
			Y) = 0 to 7.	this instruction	if values except above are
			set to register Y		
			-		
	(Skip Equal, Accumulator with immediate data n)		1		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 1 2 0 2 5 16	2	2	-	(A) = n n = 0 to 15
	0 0 0 1 1 1 n n n n <u>2</u> 0 7 n <u>16</u>		Comparison ope		
Opera- tion:	(A) = n ? n = 0 to 15	Ē	equal to the value Executes the ne	ue n in the imm ext instruction v	n the contents of register A is nediate field. when the contents of register the immediate field.
		÷			

SEAM	(Skip Equal, Accumulator with Memory)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 0 0 1 1 0 2 0 2 6 16	1	1	-	(A) = (M(DP))	
Opera-	(A) = (M(DP)) ?	Grouping: Comparison operation				
tion:		Ē	equal to the cor	tents of M(DP)	when the contents of register	
	Skip if Non Zero condition of external interrupt 0					
Instruc- tion		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 1 1 0 0 0 2 0 3 8 16	1	1	-	V10 = 0 : (EXF0) = 1	
Opera- tion:	V10 = 0 : (EXF0) = 1 ? (EXF0) $\leftarrow 0$		nterrupt operat			
	V10 = 1 : SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Description: When V10 = 0 : Clears (0) to the EXF0 flag and next instruction when external 0 interrupt reques EXF0 is "1". When the EXF0 flag is "0", execute instruction. When V10 = 1 : This instruction is equivalent to instruction.				
SN7I0	(Skip if Non Zero condition of external Interrupt 0	innut nin)				
Instruc-	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 1 1 0 1 0 2 0 3 A 16	1	1	-	l12 = 0 : (INT0) = "L" l12 = 1 : (INT0) = "H"	
Opera- tion:	I12 = 0 : (INT) = "L" ? I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Description: \ I C	NT pin is "L". E of INT pin is "H" When I12 = 1 : \$	Skips the next xecutes the ne Skips the next xecutes the ne	instruction when the level of xt instruction when the level instruction when the level of ext instruction when the level	
SNZP	Skip if Non Zero condition of Power down flag)					
Instruc-	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 0 0 0 1 1 2 0 0 3 16	1	1	-	(P) = 1	
Opera- tion:	(P) = 1 ?	Description: S	After skipping, t	nstruction whe he P flag rema	n the P flag is "1". ins unchanged. when the P flag is "0".	

SNZT1	(Skip if Non Zero condition of Timer 1 interrupt re	equest flag)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 0 2 2 8 0 16	1	1	-	V12 = 0 : (T1F) = 1
Opera- tion:	V12 = 0 : (T1F) = 1 ? (T1F) \leftarrow 0 V12 = 1 : SNZT1 = NOP (V12 = bit 2 of interrupt control register V1)	Description: V r "	next instruction 1". When the T	Clears (0) to the when timer 1 in the flag is "0," e	he T1F flag and skips the nterrupt request flag T1F is executes the next instruction. n is equivalent to the NOP
SNZT2	(Skip if Non Zero condition of Timer 2 interrupt re	equest flag)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 1 2 2 8 1 16	1	1	-	V13 = 0 : (T2F) = 1
Opera-	V13 = 0 : (T2F) = 1 ?	Grouping: 1	Timer operation	l	
tion:	$(T2F) \leftarrow 0$ V13 = 1 : SNZT2 = NOP (V13 = bit 3 of interrupt control register V1)	r "	next instruction 1". When the T	when timer 2 i 2F flag is "0", e	he T2F flag and skips the nterrupt request flag T2F is executes the next instruction. n is equivalent to the NOP
SNZT3	(Skip if Non Zero condition of Timer 3 interrupt re	equest flag)			
Instruc- tion	D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code Opera-	1 0 1 0 0 0 1 0 2 2 8 2 16 V20 = 0 : (T3F) = 1 ?	1	1	-	V20 = 0 : (T3F) = 1
tion:	$(T3F) \leftarrow 0$ V20 = 1 : SNZT3 = NOP	Description: V r "	next instruction 1". When the T	Clears (0) to the when timer 3 in 3F flag is "0", e	he T3F flag and skips the nterrupt request flag T3F is executes the next instruction. n is equivalent to the NOP
SNZVD	(Skip if Non Zero condition of Voltage Detector f	lag)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 0 1 0 2 2 8 A 16	1	1	-	V23 = 0 : (VDF) = 1
Opera-	(VDF) = 1?	Grouping: C	Other operation		
tion:		, c	uit flag VDF is	"1". Execute in	n voltage drop detection cir- nstruction when VDF is "0". VDF remains unchanged.

SRST (System ReSet)							
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 16	1	1	-	-			
Opera-	System reset	Grouping:	Other operation					
tion:		Description:	System reset oc	curs.				
SUPT (Set UPT flag)							
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code		1	1	-	-			
Opera- tion:	(UPTF) ←1		Other operation					
		Description: Sets (1) to the high-order bit reference enable flag UPTF. When the table reference instruction (TABP p) is executed, the high-order 2 bits of ROM reference data is transferred to the low-order 2 bits of register D.						
SVDE (Set Voltage Detector Enable flag)							
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code Opera-	1 0 1 0 0 1 1 2 2 9 3 16 Voltage drop detection circuit valid at powerdown	1 Grouping: (1 Other operation	-	-			
tion:	mode.	Description:	Voltage drop de (clock operating	tection circuit is mode, RAM b	s valid at powerdown mode ack-up mode) nly for H version.			
SZB j (Skip if Zero, Bit)							
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	0 0 0 0 1 0 0 j j 2 0 2 j 16	1	1	-	(Mj(DP)) = 0 j = 0 to 3			
Opera- tion:	(Mj(DP)) = 0 ? j = 0 to 3	Description:	specified by the "0".	value j in the i	n the contents of bit j (bit mmediate field) of M(DP) is vhen the contents of bit j of			

010 (0	kip if Zero, Carry flag)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 1 0 1 1 1 1 2 0 2 F 16	1	1	-	(CY) = 0	
Opera-	(CY) = 0 ?	. –	Arithmetic opera			
tion:				nstruction whe	n the contents of carry flag	
			CY is "0". After skipping t	he CY flag ren	nains unchanged.	
					when the contents of the CY	
		f	lag is "1".			
SZD (S	kip if Zero, port D specified by register Y)					
Instruc-		Number of	Number of	Flag CY	Skip condition	
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles			
	0 0 0 0 1 0 0 1 0 0 2 0 2 4 16	2	2	-	(D(Y)) = 0	
	0 0 0 0 1 0 1 0 1 1 2 0 2 B 16	Grouping: In	nput/Output op	eration		
Opera-	(D(Y)) = 0 ?				n a bit of port D specified by	
tion:	(Y) = 0 to 5		egister Y is "0". s "1".	. Executes the	next instruction when the bit	
			Y) = 0 to 5.			
					if values except above are	
		S	et to register Y			
T1AB (Transfer data to timer 1 and register R1 from Acc	cumulator and	d register B)			
Instruc-		Number of	Number of	Flag CY	Skip condition	
tion code	$\begin{array}{c} D_9 \\ \hline 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1$	words	cycles			
		1	1	-		
Opera- tion:	(T17–T14) ← (B) (R17–R14) ← (B)		Timer operation		ten Dite (her bisk soulen Albite	
	$(T13-T10) \leftarrow (A)$				ter B to the high-order 4 bits	
		Description: Transfers the contents of register B to the high-order 4 of timer 1 and timer 1 reload register R1. Transfers the				
	(R13–R10) ← (A)					
	(R13–R10) ← (A)	c		ster A to the lo	egister R1. Transfers the	
	(R13–R10) ← (A)	c	contents of regi	ster A to the lo	egister R1. Transfers the	
	(R13–R10) ← (A)	c	contents of regi	ster A to the lo	egister R1. Transfers the	
	(R13–R10) ← (A)	c	contents of regi	ster A to the lo	egister R1. Transfers the	
		c ti	contents of regi	ster A to the lo	egister R1. Transfers the	
	$(R13-R10) \leftarrow (A)$ Transfer data to timer 2 and register R2L from A	c ti ccumulator ar	contents of regi imer 1 reload re nd register B)	ster A to the lo	egister R1. Transfers the	
Instruc-	Transfer data to timer 2 and register R2L from A	c ti ccumulator an Number of	contents of regi imer 1 reload re nd register B) Number of	ster A to the lo	egister R1. Transfers the	
		c ti ccumulator ar	contents of regi imer 1 reload re nd register B)	ster A to the lo egister R1.	egister R1. Transfers the w-order 4 bits of timer 1 and	
Instruc- tion code	D9 D0 1 0 0 1 1 0 0 1 <td>ccumulator ar Number of words</td> <td>nd register B) Number of cycles 1</td> <td>ster A to the lo egister R1. Flag CY</td> <td>egister R1. Transfers the w-order 4 bits of timer 1 and</td>	ccumulator ar Number of words	nd register B) Number of cycles 1	ster A to the lo egister R1. Flag CY	egister R1. Transfers the w-order 4 bits of timer 1 and	
Instruc- tion	Transfer data to timer 2 and register R2L from A	ccumulator ar Number of words 1 Grouping: T	ontents of regi imer 1 reload register B) Number of cycles 1	ster A to the lo egister R1. Flag CY	egister R1. Transfers the w-order 4 bits of timer 1 and Skip condition	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from Ad D9 D0 1 0 0 1 1 0 0 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (T23-T20) \leftarrow (A) (A)	ccumulator ar Number of words 1 Grouping: 1 Description: 1	ontents of regi imer 1 reload register B) Number of cycles 1 Timer operation	ster A to the lo egister R1. Flag CY - ontents of regis	egister R1. Transfers the w-order 4 bits of timer 1 and	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from A D_9 D_0 1 0 0 1 1 0 0 1 2 2 3 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (B)	ccumulator ar Number of words 1 Grouping: 1 Description: 1 (c	and register B) Number of cycles 1 Timer operation Transfers the co T27–T24) of tim f timer 2 reload	Flag CY - - - - - - - - - - - - - - - - - - -	Skip condition - ter B to the high-order 4 bits gh-order 4 bits (R2L7–R2L4) Transfers the contents of	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from Ad D9 D0 1 0 0 1 1 0 0 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (T23-T20) \leftarrow (A) (A)	ccumulator ar Number of words 1 Grouping: 1 Description: 1 (cr	and register B) Number of cycles 1 Timer operation Transfers the co T27–T24) of tim of timer 2 reload egister A to the	Flag CY 	Skip condition 	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from Ad D9 D0 1 0 0 1 1 0 0 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (T23-T20) \leftarrow (A) (A)	ccumulator ar Number of words 1 Grouping: 1 Description: 1 (c r t	and register B) Number of cycles 1 Timer operation Transfers the co T27–T24) of tim of timer 2 reload egister A to the	Flag CY 	Skip condition - ter B to the high-order 4 bits gh-order 4 bits (R2L7–R2L4) Transfers the contents of	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from Ad D9 D0 1 0 0 1 1 0 0 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (T23-T20) \leftarrow (A) (A)	ccumulator ar Number of words 1 Grouping: 1 Description: 1 (c r t	and register B) Number of cycles 1 Transfers the co T27–T24) of tim of timer 2 reload egister A to the he low-order 4	Flag CY 	Skip condition 	
Instruc- tion code Opera-	Transfer data to timer 2 and register R2L from Ad D9 D0 1 0 0 1 1 0 0 1 16 (T27-T24) \leftarrow (B) (R2L7-R2L4) \leftarrow (B) (T23-T20) \leftarrow (A) (A)	ccumulator ar Number of words 1 Grouping: 1 Description: 1 (c r t	and register B) Number of cycles 1 Transfers the co T27–T24) of tim of timer 2 reload egister A to the he low-order 4	Flag CY 	Skip condition 	

Number of words	Number of		
Wordd	cycles	Flag CY	Skip condition
1	1	-	-
Description:	Transfers the co of timer 2 and ti contents of regi	ontents of regis mer 2 reload r ster A to the lo	egister R2H. Transfers the
Number of words	Number of cycles	Flag CY	Skip condition
	1	-	-
Number of	Number of		
words	cycles		Skip condition
Crouning, I		ator transfor	
Description:	Transfers the co	ontents of regis	ster B to register A.
n timer 1)			
Number of words	Number of cycles	Flag CY	Skip condition
	1	-	-
i	ster B. Transfers the lo	-	· · · ·
	1 Grouping: Description: 0 1 Grouping: 1 Grouping: 1 Grouping: Description: Grouping: 1 Grouping: 1 Grouping: 1 Grouping: 1 Description: 1 Description: 1 Grouping: 1 Grouping: 1 Description: 1 Description: 1 Grouping: 1 Bescription:	1 1 Grouping: Timer operation Description: Transfers the component of timer 2 and timer 2 reload religions Number of words Number of cycles 1 1 Grouping: Timer operation Description: Transfers the component of cycles 1 1 Grouping: Timer operation Description: Transfers the component of cycles 1 1 Grouping: Register to regis Description: Transfers the component of cycles 1 1 Grouping: Register to regis Description: Transfers the component of cycles 1 1 Grouping: Timer operation Description: Transfers the hild of cycles 1 1 Grouping: Timer operation Description: Transfers the hild of cycles 1 1 Grouping: Timer operation Description: Transfers the hild of cycles 1 1	1 1 - Grouping: Timer operation Description: Transfers the contents of regist of timer 2 and timer 2 reload r contents of register A to the lot timer 2 reload register R2H. Number of words Number of cycles Flag CY 1 1 - Grouping: Timer operation Flag CY 1 1 - Grouping: Timer operation Description: Description: Transfers the contents of reload Number of words Number of cycles Flag CY 1 1 - Grouping: Register to register transfer Description: Transfers the contents of register n timer 1) Number of cycles Flag CY 1 1 - Grouping: Register to register transfer Description: Transfers the contents of register n timer 1) Number of cycles Flag CY 1 1 - Grouping: Timer operation Flag CY 1 1 - Grouping: Timer operation To

TAB2 (Transfer data to Accumulator and register B from timer 2)						
Instruc- tion	D9 D0	· · · · · · · · · · · · · · · · · · ·	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1	2 2 7 1 16	1	1	-	-
Opera-	(B) ← (T27–T24)		Grouping: T	Timer operation		
tion:	(A) ← (T23–T20)		-		gh-order 4 bits	(T27–T24) of timer 2 to reg-
				ster B. Transfers the lo	w-order 4 hits	(T23–T20) of timer 2 to regis-
				er A.		
TADE	- - - - - - - - - -		· · ·>			
IABE (Transfer data to Accumulator and	d register B from	Number of	Number of		
tion	D9 D0		words	cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0	2 0 2 A 16	1	1	-	-
Opera- tion:	(B) ← (E7–E4) (A) ← (E3–E0)			Register to regi		
uon.	(A) ← (L3-L0)					(E7–E4) of register E to reg- register E to register A.
TABP p	(Transfer data to Accumulator a	and register B fro	om Program r	nemory in pa	ge p)	
Instruc- tion	D9 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 0 p5 p4 p3 p2 p1 p0	2 0 8 p 16	1	3	-	-
Opera-	$(SP) \leftarrow (SP) + 1$	Grouping: Arith	metic operatio	n		
tion:	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$					to register A. These bits 7 to 0 A3 A2 A1 A0)2 specified by
	$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	regis	sters A and D ii	n page p. Whe	n UPTF is 1, T	ransfers bits 9, 8 to the low-
	$(B) \leftarrow (ROM(PC))_{7-4}$ $(A) \leftarrow (ROM(PC))_{3-0}$	bit (I	DR2) of register	r D.		stored to the least significant
	$(UPTF) \leftarrow 1$		en this instruction 1 to 47	on is executed,	1 stage of sta	ck register (SK) is used.
	(DR1, DR0) ← (ROM(PC))9, 8 (DR2) ← 0			on is executed,	be careful not	to over the stack because 1
	$(PC) \leftarrow (SK(SP))$	stag	e of stack regis	ster is used.		
TARPS	$(SP) \leftarrow (SP) - 1$ (Transfer data to Accumulator a	nd register R fro	m Pre-Scaler	·)		
Instruc-			Number of	/ Number of	Flog CV	Skip condition
tion	D9 D0	, <u> </u>	words	cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 1 0 1	2 2 7 5 16	1	1	-	-
Opera-	$(B) \leftarrow (TPS_7 - TPS_4)$		Grouping: T	Timer operation		
tion:	$(A) \leftarrow (TPS_{3} – TPS_{0})$					of prescaler to register B.
			1	ransfers the lo	w-order 4 bits	of prescaler to register A.

	ransfer data to Accumulator from register D)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 1 2 0 5 1 16	1	1	-	-
Opera- tion:	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$	Grouping: Register to register transfer Description: Transfers the contents of register D to the low-order 3 bits (A ₂ –A ₀) of register A. "0" is stored to the bit 3 (A ₃) of register A.			
TAI1 (T	ransfer data to Accumulator from register I1)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 1 2 2 5 3 16	1	1	-	-
Opera- tion:	$(A) \leftarrow (I1)$	Grouping: I	nterrupt operati	on	
			ster A.		rupt control register I1 to reg-
	Transfer data to Accumulator from register K0)				
Instruc- tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Grouping: Ii	1 nput/Output op	-	-
tion:		Description: T		ontents of key-	on wakeup control register
	Transfer data to Accumulator from register K1)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 0 1 2 2 5 9 16	1	1	-	-
Opera-	$(A) \leftarrow (K1)$	Grouping: Input/Output operation			
tion:			ransfers the co		on wakeup control register

TAK2 (TAK2 (Transfer data to Accumulator from register K2)						
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 0 1 0 1 1 0 1 0 2 2 5 A 16	1	1	-	-		
Opera- tion:	(A) ← (K2)	Grouping: Input/Output operation Description: Transfers the contents of key-on wakeup control register K2 to register A.					
		r					
TAK2 (Transfer data to Accumulator from register K3)						
Instruc-	Transier data to Accumulator nonn register KS)	Number of	Number of				
tion code	D ₉ D ₀ 1 0 0 1 0 1 1 0 1 1 2 2 5 B 16	words	cycles	Flag CY	Skip condition		
Opera-	$(A) \leftarrow (K3)$	1 Grouping: I	1 nput/Output op	-	-		
tion:					on wakeup control register		
			(3 to register A		on wakeup control register		
TAI 1 (Transfer data to Accumulator from register L1)				<u> </u>		
Instruc-		Number of	Number of	=	011		
tion code	D9 D0 1 0 0 1 0 1 0 1 0 2 2 4 A 16	words 1	cycles 1	Flag CY	Skip condition		
Opera-	$(A) \leftarrow (L1)$		CD operation				
tion:		Description: Transfers the contents of LCD control register L1 to register A.					
TAM j (Transfer data to Accumulator from Memory)						
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 1 1 0 0 j j j j 2 2 C j 16	1	1	-	-		
Opera-	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) \in X \cap P(i)$	Grouping: RAM to register transfer					
tion:	(X) ← (X)EXOR(j) j = 0 to 15	Description: After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.					

	(Transfer data to Accumulator from register MR)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 0 2 2 5 2 16	1	1	-	-
Opera-	$(A) \leftarrow (MR)$	Grouping: C	lock operation		
tion:				ontents of clock	control register MR to reg-
		is	ster A.		
TAPU0	(Transfer data to Accumulator from register PU0)			
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	5	•
		1	1	-	-
Opera-	$(A) \leftarrow (PU0)$	Grouping: I	nput/Output op	eration	
tion:				ontents of pull-u	up control register PU0 to
		ſ	egister A.		
	(Transfer data to Accumulator from register PU1				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 1 1 0 2 2 5 E 16	1	1	-	<u> </u>
Opera-	$(A) \leftarrow (PU1)$	Grouping: I	nput/Output op	eration	
tion:					up control register PU1 to
			egister A.		
TAPU2	(Transfer data to Accumulator from register PU2)			
Instruc-	· • • •	Number of	Number of	Flag CY	Skip condition
tion code		words	cycles	T lug O T	
coue	1 0 0 1 0 1 1 1 1 1 2 2 5 F 16	1	1	-	-
Opera-	$(A) \leftarrow (PU2)$		nput/Output op		
tion:				ontents of pull-u	up control register PU2 to
		r	egister A.		

TAPU3	(Transfer data to Accumulator from register PU3)				
Instruc- tion	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 1 1 1 0 1 2 2 5 D 16	1	1	-	-	
Opera-	$(A) \leftarrow (PU3)$		nput/Output ope			
tion:				ontents of pull-u	up control register PU3 to	
		r	egister A.			
	Transfer data to Accumulator from Stack Pointer)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 0 0 0 2 0 5 0 16	1	1	-	-	
Opera-	$(A_2-A_0) \leftarrow (SP_2-SP_0)$	Grouping: F	Register to regis	ster transfer		
tion:	(A3) ← 0				c pointer (SP) to the low-	
			order 3 bits (A ₂₋ 0" is stored to t			
	Transfer data to Accumulator from register V1)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 1 0 2 0 5 4 16	1	1	-	-	
Opera-	$(A) \leftarrow (V1)$	Grouping: I	nterrupt operati	on		
tion:		Description: Transfers the contents of interrupt control register V1 to				
		register A.				
TAV2 (Transfer data to Accumulator from register V2)	Number of	Number of			
tion	D9 D0	words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 1 0 1 2 0 5 5 16	1	1	-	-	
Opera-	$(A) \leftarrow (V2)$	Grouping: Interrupt operation				
tion:				ontents of inter	rupt control register V2 to	
		r r	egister A.			

TAW1 (Transfer data to Accumulator from register W1)				
Instruc- tion D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code 1 0 0 1 0 1 0 1 1 2 2 4 B 16	1	1	-	-
Opera- (A) \leftarrow (W1)		Timer operation		
tion:			ntents of timer	control register W1 to regis-
	t	er A.		
TAW2 (Transfer data to Accumulator from register W2) Instruc-	Number of	Number of		
tion D ₉ D ₀	words	cycles	Flag CY	Skip condition
code 1 0 1 0 1 1 0 0 2 2 4 C 16	1	1	-	-
Opera- (A) \leftarrow (W2) tion:		Timer operation		
uon.		Transfers the co er A.	ntents of timer	control register W2 to regis-
TAW3 (Transfer data to Accumulator from register W3)				
Instruc-	Number of	Number of		
tion D ₉ D ₀	words	cycles	Flag CY	Skip condition
code 1 0 0 1 0 1 1 0 1 2 2 4 D 16	1	1	-	-
Opera- (A) \leftarrow (W3) tion:		Timer operation		
		ransters the co	intents of timer	control register W3 to regis-
TAW4 (Transfer data to Accumulator from register W4)	L			
Instruc-	Number of	Number of	Flag CY	Skip condition
tion D ₉ D ₀ code 1 0 0 1 0 0 1 1 0 2 2 4 E 16	words	cycles	-	
	1	1	-	-
Opera- $(A) \leftarrow (W4)$ tion:		Timer operation	ntanta of timos	control register W/4 to regis
		er A.	intents of timer	control register W4 to regis-
	1			

	ransfer data to Accumulator from register X)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 1 0 2 0 5 2 16	1	1	-	-
Opera- tion:	$(A) \leftarrow (X)$		Register to regis		
		Description: T	ransfers the co	intents of regis	ter X to register A.
IAT (II Instruc-	ansfer data to Accumulator from register Y)	Number of	Number of		<u> </u>
tion code	D ₉ D ₀ D ₀ D ₀ D ₀ D ₀ D ₁ 1 1 1 1 2 0 1 F 16	words	cycles	Flag CY	Skip condition
		1	1	-	-
Opera-	$(A) \leftarrow (Y)$	Grouping: F	Register to regis	ster transfer	
tion:	repeter data to Accumulator from register 7)	Description: T	ransfers the co	ntents of regis	ter Y to register A.
IAZ (II	ransfer data to Accumulator from register Z)	Number of	Number of		
tion code	D ₉ D ₀ 0 0 0 1 0 1 0 0 1 1 ₂ 0 5 3 16	words	cycles	Flag CY	Skip condition
		1	1	-	-
Opera- tion:	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	Description: T		ntents of regis ter A. "0" is sto	ter Z to the low-order 2 bits red to the high-order 2 bits
	ransfer data to register B from Accumulator)	Ni wali an af	No. 10	r	
Instruc- tion code	D_9 D_0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Opera-	$(B) \gets (A)$		Register to regis		
tion:		Description: T	ransfers the co	ntents of regis	ter A to register B.

	Transfer data to register C1 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 0 0 0 2 2 A 8 16	1	1	-	-
Opera-	$(C1) \leftarrow (A)$		CD control ope		
tion:			ransfers the co ster C1.	ontents of regis	ter A to the LCD control reg-
	Transfer data to register C2 from Accumulator)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 1 0 1 0 0 1 2 2 A 9 16	1	1	-	-
Opera-	$(C2) \leftarrow (A)$		CD control ope		
tion:			Transfers the coster C2.	ontents of regis	ter A to the LCD control reg-
TC3A (Transfer data to register C3 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	-
tion:		Description: 1	CD control ope Fransfers the co ster C3.		ster A to the LCD control reg-
TDA (T	ransfer data to register D from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 2 0 2 9 16	1	1	-	-
Opera-	$(DR_2-DR_0) \leftarrow (A_2-A_0)$		Register to regis		
tion:			Transfers the co egister A to reg		ow-order 3 bits (A2–A0) of

TEAB (EAB (Transfer data to register E from Accumulator and register B)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A 16	1	1	-	-	
Opera-	$(E_7-E_4) \leftarrow (B)$		Register to regis			
tion:	(E3–E0) ← (A)	((c		ter E, and the	ter B to the high-order 4 bits contents of register A to the ister E.	
	(Transfer data to register FR0 from Accumulator					
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Opera- tion:	$(FR0) \leftarrow (A)$		nput/Output op			
		c	control register		ter A to port output structure	
	(Transfer data to register FR1 from Accumulator					
Instruc- tion code	D ₉ D ₀ 1 0 0 0 1 0 1 0 1 2 2 2 9 16	Number of words	Number of cycles	Flag CY	Skip condition	
Opera-	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 Grouping: Ii	1 nput/Output op	- eration	-	
tion:		Description: T		ontents of regis	ter A to port output structure	
	(Transfer data to register FR2 from Accumulator					
Instruc- tion		Number of words	Number of cycles	Flag CY	Skip condition	
code		1	1	-	-	
Opera- tion:	$(FR2) \leftarrow (A)$		nput/Output op			
			ransfers the cc		ter A to port output structure	

TFR3A	(Transfer data to register FR3 from Accumulator)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 1 2 2 B 16	1	1	-	-
Opera-	$(FR3) \leftarrow (A)$	Grouping: I	nput/Output ope	eration	
tion:		Description: 1	Fransfers the co	ntents of regis	ter A to port output structure
		C	control register l	FR3.	
TI1A (T	ransfer data to register I1 from Accumulator)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code		words	cycles	5	•
	1 0 0 0 0 1 0 1 1 1 2 2 1 7 16	1	1	-	-
Opera-	$(I1) \leftarrow (A)$	Grouping: I	nterrupt operati	on	
tion:				ntents of regis	ster A to interrupt control reg-
		i	ster I1.		
TKOA (
INSTRUC-	Transfer data to register K0 from Accumulator)	Number of	Number of		
tion	D9 D0	words	cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 0 1 1 2 2 1 B 16	1	1	-	-
Opera-	$(K0) \leftarrow (A)$	Grouping: I	nput/Output ope	eration	
tion:					ster A to key-on wakeup con-
			rol register K0.	0	
	Transfer data to register K1 from Accumulator)	Nu una la arriga f	Numerican of		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 2 2 1 4 16				
		1	1	-	-
Opera- tion:	(K1) ← (A)		nput/Output ope		
uon.			Fransfers the co rol register K1.	ntents of regis	ster A to key-on wakeup con-
		ı	TOI TEGISTEI KT.		
		1			

	Transfer data to register K2 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5 16	1	1	-	-
Opera-	$(K2) \leftarrow (A)$	Grouping: I	nput/Output ope	eration	
tion:			Fransfers the cc rol register K2.	ntents of regis	ter A to key-on wakeup con-
	Transfer data to register K3 from Accumulator)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Opera- tion:	$(K3) \leftarrow (A)$		nput/Output ope		
uon.			Fransfers the co rol register K3.	ntents of regis	ter A to key-on wakeup con-
TL1A (Transfer data to register L1 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code		1	1	-	-
Opera- tion:	$(L1) \leftarrow (A)$		CD control ope		
			ster L1.		ter A to the LCD control reg-
	Transfer data to register L2 from Accumulator)				
Instruc- tion		Number of words	Number of cycles	Flag CY	Skip condition
code		1	1	-	-
Opera- tion:	$(L2) \leftarrow (A)$		CD control ope		
			Fransfers the co ster L2.	ntents of regis	ter A to the LCD control reg-

TL3A (Transfer data to register L3 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 0 0 2 2 0 C 16	1	1	-	-
Opera- tion:	$(L3) \leftarrow (A)$		CD control ope		
uon.			Fransfers the co ster L3.	ontents of regis	ster A to the LCD control reg-
TLCA (Transfer data to timer LC and register RLC from	Accumulator)		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1000001101220D16	1	1	_	
Opera-	$(LC) \leftarrow (A)$	Grouping: 1	Timer control op	peration	
tion:	$(RLC) \leftarrow (A)$				ster A to timer LC and reload
		r	egister RLC.		
TMA i (Transfer data to Memory from Accumulator)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ 1 0 1 0 1 1 j j j 2 2 B j 16	words 1	cycles 1	-	-
Opera-	$(M(DP)) \leftarrow (A)$		RAM to register	transfer	
tion:	$(X) \leftarrow (X) EXOR(j)$	Description: A	After transferrin	g the contents	of register A to M(DP), an
	j = 0 to 15				formed between register X te field, and stores the result
			n register X.		
TMRA	(Transfer data to register MR from Accumulator)	I			
Instruc-	· · · · · · · · · · · · · · · · · · ·	Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ 1 0 0 0 1 0 1 1 0 2 2 1 6 16	words 1	cycles 1	_	
Opera-	$(MR) \leftarrow (A)$	Grouping: (Clock operation		
tion:					ter A to clock control register
		Ν	/IR.		

	Transfer data to register PA from Accumulator)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	1	1	-	-	
Opera- tion:	(PA₀) ← (A₀)	Description: T	Timer operation Transfers the lea	ast significant	bit of register A (Ao) to timer	
TPSAB	(Transfer data to Pre-Scaler and register RPS fr		ator and regis	ter B)		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 1 0 1 0 1 2 2 3 5 16	1	1	-	-	
Opera-	$(RPS7-RPS4) \leftarrow (B)$	Grouping: T	imer operation			
tion:	$(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$	Description: Transfers the contents of register B to the high-order of prescaler and prescaler reload register RPS. Tra the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.				
TPU0A	(Transfer data to register PU0 from Accumulator	·)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Grouping: Ii	1 nput/Output op	-	-	
tion:		Description: T			ter A to pull-up control regis-	
TPU1A	(Transfer data to register PU1 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 0 1 1 1 0 2 2 E 16	1	1	-	-	
Opera-	$(PU1) \leftarrow (A)$		nput/Output op			
tion:			ransfers the co er PU1.	ontents of regis	ster A to pull-up control regis-	

	m Accumulator)			
Instruction D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code 1 0 0 0 1 0 1 1 1 1	2 2 2 F 16 1	1	-	-
Opera- (PU2) \leftarrow (A)	Grouping:	Input/Output op	eration	
tion:	Description	Transfers the co	ontents of regis	ster A to pull-up control regis-
		ter PU2.		
TPU3A (Transfer data to register PU3 fro	-			
Instruc-	Number of		Flag CY	Skip condition
tion D_9 D_0 code $1 0 0 0 1 0 0 0$	words	cycles	-	
code 1 0 0 0 0 1 0 0 0	2 2 0 8 16 1	1	-	-
Opera- (PU3) \leftarrow (A)	Grouping:	Input/Output op	eration	
tion:	Description		ontents of regis	ster A to pull-up control regis-
		ter PU3.		
TR1AB (Transfer data to register R1 from	-			
Instruc- tion D9 D0	Number o words	Number of cycles	Flag CY	Skip condition
	2 2 3 F 16 1	1		
			-	-
			aration	
Opera- (R17–R14) \leftarrow (B) tion: (R13–R10) \leftarrow (A)	Grouping:	Timer control of		
Opera- $(R17-R14) \leftarrow (B)$ tion: $(R13-R10) \leftarrow (A)$		Transfers the co	ontents of regis	ster B to the high-order 4 bits
		Transfers the co (R17–R14) of tir	ontents of regis ner 1 reload re	gister R1, and the contents
		Transfers the co (R17–R14) of tir	ontents of regis ner 1 reload re the low-order 4	
		Transfers the co (R17–R14) of tir of register A to	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
		Transfers the co (R17–R14) of tir of register A to	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
		Transfers the co (R17–R14) of tir of register A to	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
		Transfers the co (R17–R14) of tir of register A to	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
tion: (R13–R10) ← (A)	Description	Transfers the co (R17–R14) of tir of register A to	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
	Description	Transfers the co (R17–R14) of tir of register A to reload register I	ontents of regis ner 1 reload re the low-order 4 R1.	gister R1, and the contents t bits (R13–R10) of timer 1
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0	Accumulator)	Transfers the co (R17–R14) of tir of register A to reload register I	ontents of regis ner 1 reload re the low-order 4	gister R1, and the contents
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc-	Accumulator)	Transfers the co (R17–R14) of tir of register A to reload register I	ontents of regis ner 1 reload re the low-order 4 R1.	gister R1, and the contents t bits (R13–R10) of timer 1
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 code 1 0 0 0 0 1 0 0 1	Accumulator) 2 2 0 9 16 1	Transfers the comparison of the com	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY	gister R1, and the contents t bits (R13–R10) of timer 1
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents t bits (R13–R10) of timer 1
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition
tion: $(R13-R10) \leftarrow (A)$ TRGA (Transfer data to register RG from Instruc- tion D9 D0 Code 1 0 0 0 0 1 0 0 1 Opera- $(RG2-RG0) \leftarrow (A2-A0)$	Accumulator) 2 2 0 9 16 1 Grouping:	Transfers the comparison of register A to register A to reload register Number of cycles 1 Clock control op	ontents of regis ner 1 reload re the low-order 4 R1. Flag CY - peration	gister R1, and the contents bits (R13–R10) of timer 1 Skip condition

TV1A (Transfer data to register V1 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 2 0 3 F 16	1	1	-	-
Opera-	$(V1) \leftarrow (A)$	Grouping: I	nterrupt operati	on	
tion:		Description: T			ster A to interrupt control reg-
	Transfer data to register V2 from Accumulator)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 1 0 2 0 3 E 16	1	1	-	-
Opera- tion:	$(V2) \leftarrow (A)$		nterrupt operati		ster A to interrupt control reg-
			ster V2.		
TW1A	(Transfer data to register W1 from Accumulator)				
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition
Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Grouping: T	1 Timer operation	-	-
tion:		Description: T			ter A to timer control register
TW2A	(Transfer data to register W2 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 1 1 2 2 0 F 16	1	1	-	-
Opera- tion:	$(W2) \leftarrow (A)$		Timer operation		
			ransfers the co V2.	ntents of regis	ter A to timer control register

TW3A	(Transfer data to register W3 from Accumulator)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 0 1 0 0 0 0 2 2 1 0 16	1	1	-	-	
Opera-	$(W3) \leftarrow (A)$	Grouping:	Timer operation			
tion:			Fransfers the co W3.	ntents of regist	er A to timer control register	
TW4A	(Transfer data to register W4 from Accumulator)					
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	-	-	
Opera- tion:	$(W4) \leftarrow (A)$		Timer operation		er A to timer control register	
			N4.			
	ransfer data to register Y from Accumulator)					
Instruc- tion code		Number of words	Number of cycles	Flag CY	Skip condition	
Opera-	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 Grouping: F	1 Register to regis	-	-	
tion:		Description:	Fransfers the co	intents of regist	er A to register Y.	
WRST	(Watchdog timer ReSeT)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code		1	1	-	(WDF1) = 1	
Opera-	$\begin{array}{l} (WDF1) = 1 \ ? \\ (WDF1) \leftarrow 0 \end{array}$		Other operation			
tion:	vuur i) ← U	Description: Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1". When the WDF1 flag is "0", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.				

XAM j	(eXchange Accumulator and Memory data)					
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 1 1 0 1 j j j <u>j</u> 2 2 D j 16	1	1	-	-	
Opera-	$(A) \leftarrow \rightarrow (M(DP))$	Grouping: F	RAM to register	transfer		
tion:	(X) ← (X)EXOR(j) j = 0 to 15	, c	of register A, ar	exclusive OR or X and the va	of M(DP) with the contents operation is performed lue j in the immediate field, or X.	
XAMD	j (eXchange Accumulator and Memory data and	Decrement re	egister Y and	skip)		
Instruc- tion	D9	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 1 1 1 1 j j j j 2 2 F j 16	1	1	-	(Y) = 15	
Opera- tion:	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array}$	Grouping: F	RAM to register	transfer		
	j = 0 to 15 (Y) \leftarrow (Y) -1	Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.				
XAMI i	(eXchange Accumulator and Memory data and I	ncrement rea	ister Y and sl	(ip)		
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code		1	1	-	(Y) = 0	
Opera- tion:	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array}$	Grouping: F	RAM to register	transfer		
u011.	$(x) \leftarrow (x) \text{EXOR}(j)$ j = 0 to 15 $(Y) \leftarrow (Y) + 1$	Grouping: RAM to register transfer Description: After exchanging the contents of M(DP) w of register A, an exclusive OR operation is between register X and the value j in the ii and stores the result in register X. Adds 1 to the contents of register Y. As a r when the contents of register Y is 0, the n skipped. When the contents of register Y i instruction is executed.				

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Para						Ir	nstru	ction		le					of	of	
Type of instructi ons	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D0		kade notat		Number	Number of cycles	Function
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \gets (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \gets (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \gets (Y)$
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \gets (A)$
ısfer	ТЕАВ	0	0	0	0	0	1	1	0	1	0	0	1	A	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$\begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array}$
to re(TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
Register	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$
	LXY x, y	1	1	Х3	X 2	X 1	X 0	уз	y 2	y 1	y 0	3	x	у	1	1	$\begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array}$
RAM addresses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z \ z = 0 \text{ to } 3$
RAM ad	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
sfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$
RAM to	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
	TMA j	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$\begin{array}{l} (M(DP)) \leftarrow (A) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E_3-E_0) of register E, and the contents of register A to the low-order 4 bits (E_3-E_0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
_	-	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.
-	-	Transfers the contents of register X to register A.
_	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A ₂ –A ₀) of register A. "0" is stored to the bit 3 (A ₃) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of $M(DP)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

l

Para						Ir	nstru	ctior		le					of	of	
Type of instructi	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		kade notat		Number of words	Number of cycles	Function
ons	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	- 1	$(A) \leftarrow n$
																	n = 0 to 15
	TABP p	0	0	1	0	p5	р4	рз	p2	pı	ро	0	8 +p	p	1	3	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \ (Note \ 1) \\ (PCL) \leftarrow (DR2-DR0, \ A3-A0) \\ (B) \leftarrow (ROM(PC))7-4 \\ (A) \leftarrow (ROM(PC))3-0 \\ (UPTF) = 1 \\ (DR1, \ DR0) \leftarrow (ROM(PC))9, \ 8 \\ (DR2) \leftarrow 0 \\ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$
	AM	0	0	0	0	0	0	1	0	1	0	0	0	А	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \; AND \; (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \; OR \; (M(DP))$
	SC	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \gets 0$
	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow \overline{(A)}$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit op	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note 1.M34571G4: p=0 to 31, M34571G6: p=0 to 47 and M34571GD: p=0 to 127.

Skip condition	Carry flag CY	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When UPTF is 1, Transfers bits 9, 8 to the low-order 2 bits (DR1, DR0) of register D, and "0" is stored to the least significant bit (DR2) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	_	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0". Executes the next instruction when the contents of carry flag CY is "1". The contents of carry flag CY remains unchanged.
_	_	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0". Executes the next instruction when the contents of bit j of M(DP) is "1".

Para						Ir	nstru	ctior		le					of	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		xade notat		Number o words	Number c cycles	Function
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ? n = 0 to 15
		0	0	0	1	1	1	n	n	n	n	0	7	n			
	Ва	0	1	1	a 6	a5	a4	аз	a2	a1	ao	1	8 +a	а	1	1	(PCL) ← a6–a0
Branch operation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0	Е +р	р	2	2	(РСн) ←р (Note 1) (РСL) ← a6–a0
h ope		1	0	p5	a 6	a 5	a4	аз	a 2	aı	a 0	2	а	а			
Branch	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCн) ← p (Note 1) (PCL) ← (DR2–DR0, A3–A0)
		1	0	p5	p4	0	0	рз	p2	p1	p0	2	р	р			
Ę	BM a	0	1	0	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	а	а	1	1	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow 2 \\ (PCL) \leftarrow a6\text{-}a0 \end{array}$
Subroutine operation	BML p, a	0	0	1	1	0	р4	рз	p2	p1	p 0	0	С +р	р	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note 1)$
orouti		1	0	p 5	a 6	a 5	a4	аз	a 2	a 1	a 0	2	а	а			(PCL) ← a6–a0
Sul	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note 1)$
		1	0	p5	p4	0	0	рз	p2	p1	p0	2	р	р			$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$
uo	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Retu	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$

Note 1.M34571G4: p=0 to 31, M34571G6: p=0 to 47 and M34571GD: p=0 to 127.

Skip condition	Carry flag CY	Detailed description
(A) = (M(DP))	_	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. field.
	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Para						Ir	nstru	ction	coc	le					of	of	
Type of instructi ons	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		kade notat		Number of words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	$(INTE) \leftarrow 0$
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	$(INTE) \leftarrow 1$
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0 : (EXF0) = 1 ? (EXF0) ← 0 V10 = 1 : SNZ0 = NOP
c.	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	А	1	1	l12 = 0 : (INT) = "L"?
Interrupt operation																	l12 = 1 : (INT) = "H"?
errupt	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
Inte	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	$(V1) \leftarrow (A)$
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	$(V2) \leftarrow (A)$
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	А	А	1	1	$(PA) \leftarrow (A)$
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	(W1) ← (A)
tion	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
operat	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
Timer operation	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	$(A) \leftarrow (W3)$
Ē	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	$(W3) \leftarrow (A)$
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	(A) ← (W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)

Skip condition	Carry flag CY	Detailed description
_	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
-	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0 : (EXF0) = 1	_	When $V10 = 0$: Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is "1". When the EXF0 flag is "0", executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	-	When I12 = 0 : Skips the next instruction when the level of INT pin is "L". Executes the next instruction when the level of INT0 pin is "H".
(INT) = "H" However, I12 = 1		When I12 = 1 : Skips the next instruction when the level of INT pin is "H". Executes the next instruction when the level of INT0 pin is "L". (I12: bit 2 of interrupt control register I1)
-	-	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	-	Transfers the contents of interrupt control register V2 to register A.
-	_	Transfers the contents of register A to interrupt control register V2.
_	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
_	-	Transfers the contents of register A (A ₀) to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
-	-	Transfers the contents of register A to timer control register W3.
-	-	Transfers the contents of timer control register W4 to register A.
-	_	Transfers the contents of register A to timer control register W4.

Para		Instruction code								le					of	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		kade notat		Number o words	Number c cycles	Function
UIIS	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	-	$(B) \leftarrow (TPS7-TPS4)$
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$(A) \leftarrow (TPS3-TPS0)$ $(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17–R14) ← (B) (R13–R10) ← (A)
c	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	$\begin{array}{l} (B) \leftarrow (T27\text{-}T24) \\ (A) \leftarrow (T23\text{-}T20) \end{array}$
Timer operation	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$\begin{array}{l} (\text{R2L7}-\text{R2L4}) \leftarrow (\text{B}) \\ (\text{T27}-\text{T24}) \leftarrow (\text{B}) \\ (\text{R2L3}-\text{R2L0}) \leftarrow (\text{A}) \\ (\text{T23}-\text{T20}) \leftarrow (\text{A}) \end{array}$
	T2HAB	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	(T27) ← (R2L)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(RLC) \leftarrow (A)$ $(TLC) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0 : (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1 : SNZT1=NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0 : (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1 : SNZT2=NOP
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0 : (T3F) = 1 ? After skipping, (T3F) ← 0 V20 = 1 : SNZT3=NOP

	≻	
Skip condition	Carry flag CY	Detailed description
_	-	Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
-	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
-	-	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits (R2L7–R2L4) of timer 2 and timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits (R2L3–R2L0) of timer 2 and timer 2 reload register R2L.
-	_	Transfers the contents of register B to the high-order 4 bits (R2H7–R2H4) of timer 2 and timer 2 reload register R2H. Transfers the contents of register A to the low-order 4 bits (R2H3–R2H0) of timer 2 and timer 2 reload register R2H.
-	-	Transfers the contents of timer 2 reload register R2L to timer 2.
-	_	Transfers the contents of register A to timer LC and reload register RLC.
V12 = 0 : (T1F) = 1	_	When $V12 = 0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1". When the T1F flag is "0", executes the next instruction. When $V12 = 1$: This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0 : (T2F) = 1	_	When $V13 = 0$: Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1". When the T2F flag is "0", executes the next instruction. When $V13 = 1$: This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
V20 = 0 : (T3F) = 1	_	When $V_{20} = 0$: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is "1". When the T3F flag is "0", executes the next instruction. When $V_{20} = 1$: This instruction is equivalent to the NOP instruction. (V20: bit 0 of interrupt control register V2)

Para		Instruction code													of	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		kade notat		Number o words	Number of cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	$(P0) \leftarrow (A)$
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	$(A) \leftarrow (P1)$
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	$(P1) \leftarrow (A)$
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A) \leftarrow (P2)$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P2) ← (A)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	$(A) \leftarrow (P3)$
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	$(P3) \leftarrow (A)$
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	$(D) \leftarrow 1$
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
tion	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0? (Y) = 0 to 5
pera		0	0	0	0	1	0	1	0	1	1	0	2	в			
Itput o	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	(C) ← 0
Input/Output operation	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	$(C) \leftarrow 1$
<u>du</u>	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	$(FR0) \leftarrow (A)$
	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	$(FR1) \leftarrow (A)$
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	А	1	1	$(FR2) \leftarrow (A)$
	TFR3A	1	0	0	0	1	0	1	0	1	1	2	2	В	1	1	$(FR3) \leftarrow (A)$
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	$(A) \leftarrow (PU0)$
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	$(PU0) \leftarrow (A)$
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	$(A) \leftarrow (PU1)$
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	$(PU1) \leftarrow (A)$
	TAPU2	1	0	0	1	0	1	1	1	1	1	2	5	F	1	1	$(A) \leftarrow (PU2)$
	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	$(PU2) \leftarrow (A)$
	TAPU3	1	0	0	1	0	1	1	1	0	1	2	5	D	1	1	$(A) \leftarrow (PU3)$
	TPU3A	1	0	0	0	0	0	1	0	0	0	2	0	8	1	1	$(PU3) \leftarrow (A)$

Skip condition	Carry flag CY	Detailed description
_	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the register A.
_	-	Outputs the contents of the register A to port P2.
-	_	Transfers the input of port P3 to the register A.
-	-	Outputs the contents of the register A to port P3.
-	-	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
_	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 Y = 0 to 4	-	Skips the next instruction when a bit of port D specified by register Y is "0". Executes the next instruction when a bit of port D specified by register Y is "1".
-	-	Clears (0) to port C.
-	_	Sets (1) to port C.
-	_	Transfers the contents of register A to port output structure control register FR0.
-	_	Transfers the contents of register A to port output structure control register FR1.
-	_	Transfers the contents of register A to port output structure control register FR2.
-	-	Transfers the contents of register A to port output structure control register FR3.
-	-	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	-	Transfers the contents of pull-up control register PU3 to register A.
_	_	Transfers the contents of register A to pull-up control register PU3.

Para meter						Ir	nstru	ctior	l cod	le					r of s	r of S	
Type of instructi ons	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		xade notat		Number (words	Number of cycles	Function
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	в	1	1	(K0) ← (A)
tion	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
opera	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
utput	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	А	1	1	(A) ← (K2)
Input/Output operation	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
<u> </u>	TAK3	1	0	0	1	0	1	1	0	1	1	2	5	в	1	1	(A) ← (K3)
	ткза	1	0	0	0	1	0	1	1	0	0	2	2	С	1	1	(K3) ← (A)
	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	А	1	1	(A) ← (L1)
	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	А	1	1	(L1) ← (A)
uo	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	в	1	1	(L2) ← (A)
LCD operation	TL3A	1	0	0	0	0	0	1	1	0	0	2	0	С	1	1	(L3) ← (A)
CD o	TC1A	1	0	1	0	1	0	1	0	0	0	2	А	8	1	1	(C1) ← (A)
	TC2A	1	0	1	0	1	0	1	0	0	1	2	А	9	1	1	(C2) ← (A)
	ТСЗА	1	0	0	0	1	0	0	1	1	0	2	2	6	1	1	$(C3) \leftarrow (A)$
	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	(A) ← (MR)
sk ope	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$
Cloc	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	$(RG_2-RG_0) \leftarrow (A_2-A_0)$
Clock	TRGA	1		0	0		0	1	0	0	1		0		1		

Skip condition	Carry flag CY	Detailed description
_	-	Transfers the contents of key-on wakeup control register K0 to register A.
-	_	Transfers the contents of register A to key-on wakeup control register K0.
-	-	Transfers the contents of key-on wakeup control register K1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K2 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
-	-	Transfers the contents of key-on wakeup control register K3 to register A.
-	_	Transfers the contents of register A to key-on wakeup control register K3.
-	-	Transfers the contents of the LCD control register L1 to register A.
-	-	Transfers the contents of register A to the LCD control register L1.
-	-	Transfers the contents of register A to the LCD control register L2.
-	-	Transfers the contents of register A to the LCD control register L3.
-	-	Transfers the contents of register A to the LCD control register C1.
-	-	Transfers the contents of register A to the LCD control register C2.
-	-	Transfers the contents of register A to the LCD control register C3.
_	-	Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).
-	-	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.
-	-	Transfers the contents of register A to clock control register RG.

Para meter						Ir	nstru	ctior	n cod	le					r of s	r of s	
Type of instructi ons	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		xade notat		Number of words	Number of cycles	Function
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	в	1	1	POF or POF2 instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ? (WDF1) ← 0
	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(UPTF) \leftarrow 0$
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	$(UPTF) \leftarrow 1$
	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At power down mode, voltage drop detection circuit valid
	SNZVD	1	0	1	0	0	0	1	0	1	0	2	8	A	1	1	(VDF) = 1?

Skip condition	Carry flag CY	Detailed description
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
_	-	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
-	-	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
-	-	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0".
(WDF1) = 1		Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1". When the WDF1 flag is "0", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	-	System reset occurs.
_	-	Clears (0) to the high-order bit reference enable flag UPTF.
-	-	Sets (1) to the high-order bit reference enable flag UPTF.
(VDF) = 1	_	Skips the next instruction when voltage drop detection circuit flag VDF is "1". Execute instruction when VPF is "0". After skipping, the contents of VDF remains unchanged.
_	_	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode).

INSTRUCTION CODE TABLE

	D9– D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 to 010111	011000 to 011111
D3- D0	Hex, notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–F
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32	_	BML	BML	BL	BL	BM	В
0001	1	SRST	CLD	SZB 1	_	-	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33	-	BML	BML	BL	BL	BM	В
0010	2	POF	-	SZB 2	_	-	ТАХ	A 2	LA 2	TABP 2	TABP 18	TABP 34	-	BML	BML	BL	BL	BM	В
0011	3	SNZP	INY	SZB 3	_	-	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35	-	BML	BML	BL	BL	BM	В
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36	-	BML	BML	BL	BL	BM	В
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37	-	BML	BML	BL	BL	BM	В
0110	6	RC	-	SEAM	_	RTI	-	A 6	LA 6	TABP 6	TABP 22	TABP 38	-	BML	BML	BL	BL	BM	В
0111	7	SC	DEY	-	_	-	-	A 7	LA 7	TABP 7	TABP 23	TABP 39	-	BML	BML	BL	BL	BM	В
1000	8	POF2	AND	_	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	TABP 40	-	BML	BML	BL	BL	BM	В
1001	9	-	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	TABP 41	-	BML	BML	BL	BL	BM	В
1010	А	AM	TEAB	TABE	SNZI 0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42	-	BML	BML	BL	BL	BM	В
1011	В	AMC	-	_	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43	-	BML	BML	BL	BL	BM	В
1100	С	TYA	СМА	-	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44	-	BML	BML	BL	BL	BM	В
1101	D	-	RAR	-	-	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45	-	BML	BML	BL	BL	BM	В
1110	Е	TBA	TAB	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46	-	BML	BML	BL	BL	BM	В
1111	F	-	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47	-	BML	BML	BL	BL	BM	В

The above table shows the relationship between machine language codes and machine language instructions. D₃-D₀ show the low-order 4 bits of the machine language code, and D₉-D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 pp00 pppp
BMLA	10 pp00 pppp
SEA	00 0111 nnnn
SZD	00 0010 1011

INSTRUCTION CODE TABLE

D9– D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 to 111111
Hex, notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0	_	ТW3A	OP0A	T1AB	-	-	IAP0	TAB1	SNZT 1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
1	_	TW4A	OP1A	T2AB	-	-	IAP1	TAB2	SNZT 2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
2	_	_	OP2A	_	-	TAMR	IAP2	-	SNZT 3	-	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
3	_	_	ОРЗА	_	-	TAI1	IAP3	-	-	SVDE	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
4	_	TK1A	_	_	-	-		-	-	T2HA B	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
5	_	TK2A	_	TPSAB	-	-	-	TABPS	-	T2R2 L	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
6	_	TMRA	тсза	_	-	TAK0	-	-	-	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
7	_	TI1A	_	_	-	TAPU0	-	-	-	_	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
8	TPU3A	_	TFR0A	_	-	-	-	-	-	-	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
9	TRGA	_	TFR1A	_	-	TAK1		-	-	-	TC2A	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
А	TL1A	_	TFR2A	_	TAL1	TAK2		-	SNZV D	_	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
В	TL2A	TK0A	TFR3A	_	TAW1	ТАКЗ	_	_	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
С	TL3A	_	ТКЗА	_	TAW2	_	_	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
D	TLCA	_	TPU0A	_	TAW3	TAPU3	_	-	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
Е	TW1A	_	TPU1A	_	TAW4	TAPU1	_	-	-	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
F	TW2A	_	TPU2A	TR1AB	_	TAPU2	_	_	_	_	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY
	D4 Hex, notation 0 1 2 3 4 5 6 7 8 9 A B C D E	D4 100000 Hex, notation 20 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 TPU3A 9 TRGA A TL1A B TL2A C TL3A D TLCA E TW1A	Hex, notation 20 21 notation - TW3A 1 - TW3A 1 - TW3A 1 - TW3A 2 - - 3 - - 4 - TK1A 5 - TK2A 6 - TMRA 7 - TI1A 8 TPU3A - 9 TRGA - A TL1A - B TL2A TK0A C TL3A - D TLCA - E TW1A -	D4 100000 100001 100010 Hex, notation 20 21 22 0 - TW3A OP0A 1 - TW3A OP0A 1 - TW3A OP0A 1 - TW3A OP0A 2 - - OP3A 3 - TK1A - 5 - TK1A - 6 - TMRA TC3A 7 - TI1A - 6 - TMRA TC3A 7 - TI1A - 8 TPU3A - TFR0A 9 TRGA - TFR1A A TL1A - TFR3A C TL3A - TK3A D TLCA - TPU0A E TW1A - TPU1A	D4 100000 100001 100010 100011 Hex, notation 20 21 22 23 0 - TW3A OP0A T1AB 1 - TW4A OP1A T2AB 2 - - OP2A - 3 - - OP3A - 4 - TK1A - - 5 - TK2A - TPSAB 6 - TMRA TC3A - 7 - TI1A - - 8 TPU3A - TFR0A - 9 TRGA - TFR1A - 9 TL2A TK0A TFR3A - G TL2A TK0A TFR3A - D TLCA - TPU0A -	D4 100000 100010 100010 100011 100100 Hex, notation 20 21 22 23 24 0 - TW3A OP0A T1AB - 1 - TW3A OP0A T1AB - 2 - TW4A OP1A T2AB - 3 - OP2A - - - 3 - OP3A - - - 4 - TK1A - - - 5 - TK2A - TPSAB - 6 - TMRA TC3A - - 7 - TI1A - - - 8 TPU3A - TFR0A - - 9 TRGA - TFR2A - TAU1 A TL1A - TK3A - TAW2 D TLCA <t< td=""><td>D4 100000 100001 100010 100011 100100 100101 Hex, rotation 20 21 22 23 24 25 0 - TW3A OP0A T1AB - - 1 - TW4A OP1A T2AB - - 2 - - OP2A - - TAMR 3 - - OP3A - - TAI1 4 - TK1A - - - - 5 - TK2A - TPSAB - - 6 - TMRA TC3A - - TAK0 7 - TI1A - - - TAK0 7 - TI1A - - - - 6 - TMRA TC3A - - - 9 TRGA - TFR2A -<!--</td--><td>D4 100000 100011 100010 100010 100100 100101 100101 100101 Hex, notation 20 21 22 23 24 25 26 0 - TW3A OP0A T1AB - - IAP0 1 - TW4A OP1A T2AB - - IAP1 2 - - OP2A - - TAMR IAP2 3 - - OP3A - - TAMR IAP3 4 - TK1A - - - TAI1 IAP3 4 - TK2A - TPSAB - - - 5 - TK2A - TPSAB - - - 6 - TMRA TC3A - IAP00 - - 6 - TMRA TC3A - IAP00 - - 7 - TI1A - TFR0A - IA - -</td></td></t<> <td>D4 100000 100001 100010 100101 100110 100100 100100</td> <td>Incomo Incomo <thincomo< th=""> <thincomo< t<="" td=""><td>Image: Construct of the sector is a sector is construct of the sector is constr</td><td>Image: Decay information Image: Decay information Image:</td><td>D_4 100000 100011 100101<</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Le 100000 100001 100001 10010 10010 10010 10100 101001 10101 101101 101101 101101 101101 101101 101101 101111 1010111</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></thincomo<></thincomo<></td>	D4 100000 100001 100010 100011 100100 100101 Hex, rotation 20 21 22 23 24 25 0 - TW3A OP0A T1AB - - 1 - TW4A OP1A T2AB - - 2 - - OP2A - - TAMR 3 - - OP3A - - TAI1 4 - TK1A - - - - 5 - TK2A - TPSAB - - 6 - TMRA TC3A - - TAK0 7 - TI1A - - - TAK0 7 - TI1A - - - - 6 - TMRA TC3A - - - 9 TRGA - TFR2A - </td <td>D4 100000 100011 100010 100010 100100 100101 100101 100101 Hex, notation 20 21 22 23 24 25 26 0 - TW3A OP0A T1AB - - IAP0 1 - TW4A OP1A T2AB - - IAP1 2 - - OP2A - - TAMR IAP2 3 - - OP3A - - TAMR IAP3 4 - TK1A - - - TAI1 IAP3 4 - TK2A - TPSAB - - - 5 - TK2A - TPSAB - - - 6 - TMRA TC3A - IAP00 - - 6 - TMRA TC3A - IAP00 - - 7 - TI1A - TFR0A - IA - -</td>	D4 100000 100011 100010 100010 100100 100101 100101 100101 Hex, notation 20 21 22 23 24 25 26 0 - TW3A OP0A T1AB - - IAP0 1 - TW4A OP1A T2AB - - IAP1 2 - - OP2A - - TAMR IAP2 3 - - OP3A - - TAMR IAP3 4 - TK1A - - - TAI1 IAP3 4 - TK2A - TPSAB - - - 5 - TK2A - TPSAB - - - 6 - TMRA TC3A - IAP00 - - 6 - TMRA TC3A - IAP00 - - 7 - TI1A - TFR0A - IA - -	D4 100000 100001 100010 100101 100110 100100 100100	Incomo Incomo <thincomo< th=""> <thincomo< t<="" td=""><td>Image: Construct of the sector is a sector is construct of the sector is constr</td><td>Image: Decay information Image: Decay information Image:</td><td>D_4 100000 100011 100101<</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Le 100000 100001 100001 10010 10010 10010 10100 101001 10101 101101 101101 101101 101101 101101 101101 101111 1010111</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></thincomo<></thincomo<>	Image: Construct of the sector is a sector is construct of the sector is constr	Image: Decay information Image:	D_4 100000 100011 100101<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Le 100000 100001 100001 10010 10010 10010 10100 101001 10101 101101 101101 101101 101101 101101 101101 101111 1010111	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

The above table shows the relationship between machine language codes and machine language instructions. D_3 - D_0 show the low-order 4 bits of the machine language code, and D_9 - D_4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 pp00 pppp
BMLA	10 pp00 pppp
SEA	00 0111 nnnn
SZD	00 0010 1011

Electrical characteristics

Absolute maximum ratings

Table 30 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage	-	-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, D0-D5, RESET, XIN, XCIN, INT, CNTR	-	-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D7, RESET	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C/CNTR, XOUT, XCOUT	-	-0.3 to VDD+0.3	V
Vo	Output voltage SEG0 to SEG31, COM0 to COM3	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range	-	-20 to 85	°C
Tstg	Storage temperature range	-	-40 to 125	°C

Recommended operating conditions

Table 31 Recommended operating conditions 1 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Sumbol	Deremeter	Conditions			Unit		
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Uni
Vdd	Supply voltage	$f(STCK) \le 6MHz$		4		5.5	V
	(with a ceramic resonator)	$f(STCK) \le 4.4MHz$		2.7		5.5	
		$f(STCK) \le 2.2MHz$		2		5.5	
		f(STCK) ≤ 1.1MHz	1.8		5.5		
Vdd	Supply voltage	$f(STCK) \le 4.8MHz$	4		5.5	V	
	(when an external clock is	$f(STCK) \le 3.2MHz$		2.7		5.5	
	used)	$f(STCK) \le 1.6MHz$	2		5.5		
		$f(STCK) \le 0.8MHz$	1.8		5.5		
Vdd	Supply voltage (when RC oscillation is used)	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
Vdd	Supply voltage (when quartz-crystal oscillation is used)	f(STCK) ≤ 50 kHz	1.8		5.5	V	
Vdd	Supply voltage (when on-chip oscillation is used)		1.8		5.5	V	
Vram	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V
Vss	Supply voltage			0		V	
VLC3	LCD power supply (Note 1)		1.8		Vdd	V	
Vih	"H" level input voltage	P0, P1, P2, P3, D0–D5	0.8Vdd		Vdd	V	
		Xin, Xcin		0.7Vdd		Vdd	
		RESET		0.85Vdd		Vdd	
		INT		0.85Vdd		Vdd	-
		CNTR		0.8VDD		VDD	
VIL	"L" level input voltage	P0, P1, P2, P3, D0–D5	0.0700		0.2VDD	V	
		Xin, Xcin		0		0.2VDD	v
		RESET	0		0.3VDD		
			_				
		INT	0		0.15Vdd		
		CNTR	0		0.15Vdd		
IOH(peak)	"H" level peak output current	P0, P1, P2, P3, D0–D5	VDD = 5V			-20	mA
			Vdd = 3V			-10	
		C/CNTR	VDD = 5V			-30	
			VDD = 3V			-15	
OH(avg)	"H" level average output current	P0, P1, P2, P3, D0–D5	VDD = 5V			-10	mA
	(Note 2)		Vdd = 3V			-5	
		C/CNTR	VDD = 5V			-20	
			VDD = 3V			-10	
OL(peak)	"L" level peak output current	P0, P1, P2, P3, D0–D7, C/CNTR	VDD = 5V			24	mA
			VDD = 3V			12	
		RESET	VDD = 5V			10	
			VDD = 3V			4	
IOL(avg)	"L" level average output current	P0, P1, P2, P3, D0-D7, C/CNTR	VDD = 5V			15	mA
	(Note 2)		VDD = 3V			7	
		RESET	VDD = 5V			5	
			VDD = 3V			2	
Σ IOH(avg)	"H" level total average current	P0, C/CNTR				-40	mA
		P1, P2, P3, D0–D5				-40	1
ΣIOL(avg)	"L" level total average current	P0, C/CNTR			40	mA	
	-	P1, P2, P3, D0–D7, RESET			40	1	

REJ03B0188-0104

Note 1. At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3 At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3 Note 2. The average output current is the average value during 100ms.

Rev.1.04 Aug 23, 2007 Page 141 of 146 RENESAS

Symbol	Parameter	Conditio	20		Limits		Unit
Symbol	Parameter	Conditio	ns .	Min.	Тур.	Max.	Unit
f(XIN)	Oscillation frequency	f(STCK) = f(XIN)	VDD = 4.0 V to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 V to 5.5 V			4.4	
			VDD = 2 V to 5.5 V			2.2	
			VDD = 1.8 V to 5.5 V			1.1	
		f(STCK) = f(XIN)/2	VDD = 2.7 V to 5.5 V			6	
			VDD = 2 V to 5.5 V			4.4	
			VDD = 1.8 V to 5.5 V			2.2	
		f(STCK) = f(XIN)/4, f(XIN)/8	VDD = 2 V to 5.5 V			6	
			VDD = 1.8 V to 5.5 V			4.4	
f(XIN)	Oscillation frequency	f(STCK) = f(XIN)	VDD = 4 V to 5.5 V			4.8	MHz
	(with an external clock input)		VDD = 2.7 V to 5.5 V			3.2	
			VDD = 2 V to 5.5 V			1.6	
			VDD = 1.8 V to 5.5 V			0.8	
		f(STCK) = f(XIN)/2	VDD = 2.7 V to 5.5 V			4.8	
			VDD = 2 V to 5.5 V			3.2	
			VDD = 1.8 V to 5.5 V			1.6	
		f(STCK) = f(XIN)/4, f(XIN)/8	VDD = 2 V to 5.5 V			4.8	
			VDD = 1.8 V to 5.5 V			3.2	
f(Xin)	Oscillation frequency (at RC oscillation) (Note 1)	VDD = 2.7 to 5.5 V				4.4	MHz
f(Xcin)	Oscillation frequency (at quarts-crystal oscillation)	Quartz-crystal oscillator				50	kHz
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR		3/f(STCK)			S
TPON	Power-on reset circuit valid supply voltage rising time (Note 2)	$VDD = 0 \rightarrow 1.8V$				100	μs

Table 32 Recommended operating conditions 2 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Note 1. The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

Note 2. If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

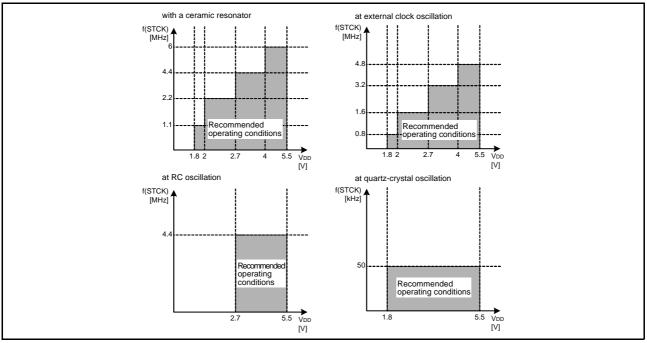


Fig 82. System clock (STCK) operating condition map

Electrical characteristics

Table 33 Electrical characteristics 1 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Pa	rameter	Te	st conditions		Limits		Unit
Cymbol					Min.	Тур.	Max.	
Vон	"H" level output voltage	P0, P1, P2, P3, D0–D5	VDD = 5V	Iон = -10mA	3			V
				Iон = -3mA	4.1			
			Vdd = 3V	Iон = -5mA	2.1			
				Iон = –1mA	2.4			
Vон	"H" level output voltage	C/CNTR	VDD = 5V	Iон = -20mA	3			V
				Iон = -6mA	4.1			
			Vdd = 3V	Іон =-10mA	2.1			
				Iон = -3mA	2.4			
Vol	"L" level output voltage		VDD = 5V	Io∟ = 15mA			2	V
		C/CNTR		Io∟ = 5mA			0.9	
			Vdd = 3V	Io∟ = 9mA			1.4	
				IoL = 3mA			0.9	
Vol	"L" level output voltage	RESET	VDD = 5V	Io∟ = 5mA			2	V
				lo∟ = 1mA			0.6	
			Vdd = 3V	IoL = 2mA			0.9	
Іін	"H" level input current	<u>P0, P1,</u> P2, P3, D0–D5 RESET, XIN, XCIN, INT CNTR	VI = VDD				2	μA
lıL	"L" level input current	P0, P1, P2, P3, D0–D5 RESET, XIN, XCIN, INT CNTR	VI = 0V P0, P1, P2, P3 No pull-up	3			-2	μA
Rpu	Pull-up resistor value	P0, P1, P2, P3	$V_I = 0V$	Vdd = 5V	30	60	125	kΩ
		RESET		VDD = 3V	50	120	250	
VT+-VT-	Hysteresis	RESET	Vdd = 5V			1		V
		REGET	VDD = 3V			0.4		
VT+-VT-	Hysteresis	INT	VDD = 5V			0.6		V
			VDD = 3V			0.3		
VT+-VT-	Hysteresis	CNTR	VDD = 5V			0.2		V
	,		VDD = 3V			0.2		
f(RING)	On-chip oscillator clock f	requency	VDD = 5V		200	500	700	kHz
(-)			VDD = 3V		100	250	400	
∆f(Xin)	Frequency error (with RC oscillation, error	r of external RC not included)		%, Ta = center 25 °C			± 17	%
	(Note 1)			%, Ta = center 25 °C			± 17	
Rсом	COM output impedance		VDD = 5V			1.5	7.5	kΩ
	(Note 2)		Vdd = 3V			2	10	
Rseg			Vdd = 5V			1.5	7.5	kΩ
	(Note 2)		Vdd = 3V		300	2	10	
Rvlc	Internal resistor for LCD	power supply	When dividing resistor $2r \times 3$ selected			600	1200	kΩ
			-	resistor $2r \times 2$ selected	200	400	800	
			-	resistor $r \times 3$ selected	150	300	600	
			When dividing	resistor $r \times 2$ selected	100	200	400	

Note 1. When RC oscillation is used, use the external 33 pF capacitor (C). Note 2. The impedance state is the resistor value of the output voltage. at VLc3 level output: Vo = 0.8 VLc3 at VLc2 level output: Vo = 0.8 VLc2 at VLc1 level output: Vo = 0.2 VLc2 + VLc1 at Vss level output: Vo = 0.2 VLc1

Symbol	Parameter		Test conditions		Limits		Unit	
Symbol					Min.	Тур.	Max.	Unit
IDD	Supply current	at active mode	VDD = 5V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic oscillator)	f(XIN) = 6MHz	f(STCK) = f(XIN)/4		1.3	2.6	
		(1, 2)	f(RING) = stop $f(X_{CIN}) = stop$	f(STCK) = f(XIN)/2		1.6	3.2	
			I(XCIN) = Stop	f(STCK) = f(XIN)		2.2	4.4	
			Vdd = 5V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4MHz f(RING) = stop f(XCIN) = stop	f(STCK) = f(XIN)/4		1	2	-
				f(STCK) = f(XIN)/2		1.2	2.4	
				f(STCK) = f(XIN)		1.6	3.2	
			Vdd = 3V	f(STCK) = f(XIN)/8		0.3	0.6	mA
			f(XIN) = 4MHz f(RING) = stop f(XCIN) = stop	f(STCK) = f(XIN)/4		0.4	0.8	
				f(STCK) = f(XIN)/2		0.5	1	
				f(STCK) = f(XIN)		0.7	1.4	
	(with a qua	at active mode	Vdd = 5V	f(STCK) = f(XCIN)/8		7	14	μA
		(with a quartz-crystal	f(XIN) = stop f(RING) = stop f(XCIN) = 32 kHz	f(STCK) = f(XCIN)/4		8	16	
		oscillator) ^(1, 2)		f(STCK) = f(XCIN)/2		10	20	
				f(STCK) = f(XCIN)		14	28	
		Vdd = 3V	f(STCK) = f(XCIN)/8		5	10	μA	
		f(XIN) = stop f(RING) = stop f(XCIN) = 32 kH		f(STCK) = f(XCIN)/4		6	12	1
				f(STCK) = f(XCIN)/2		7	14	
			f(XCIN) = 32 KHz	f(STCK) = f(XCIN)		8	16	
	(with an on-chip oscillator) (1, 2) $f(XIN) = 3$ $f(XIN) = 3$ 	Vdd = 5V	f(STCK) = f(RING)/8		50	100	μA	
		· · · · · · · · · · · · · · · · · · ·	f(XIN) = stop f(RING) = active f(XON) = stop	f(STCK) = f(RING)/4		60	120	
		(1, 2)		f(STCK) = f(RING)/2		80	160	
		f(XCIN) = stop	f(STCK) = f(RING)		120	240		
			VDD = 3V f(XIN) = stop	f(STCK) = f(RING)/8		10	20	μA
				f(STCK) = f(RING)/4		13	26	
		f(RING) = active f(Xcin) = stop	f(STCK) = f(RING)/2		19	38		
			f(STCK) = f(RING)		31	62		
		f(Xcin) = 32 kHz	Vdd = 5V		6	12	μA	
			VDD = 3V		5	10		
			Ta = 25°C		1	0.1	3	μA
			VDD = 5V		1		10	1
	execution) ⁽¹⁾		VDD = 3V				6	1

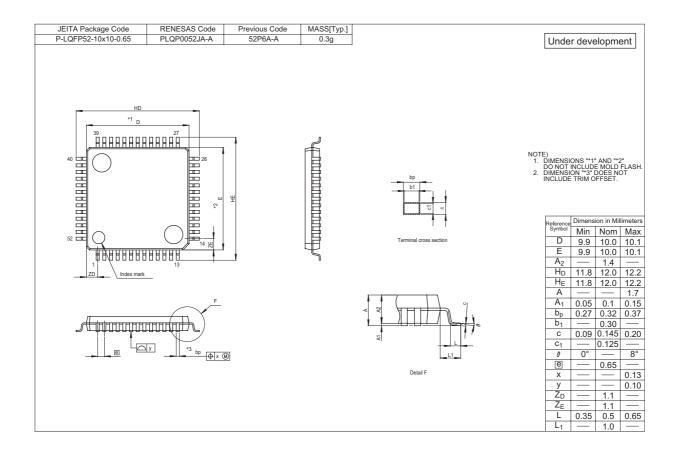
Table 34 Electrical characteristics 2 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Note 1. The voltage drop detection circuit operation current (IRST) is added. Note 2. When the internal dividing resistors for LCD power are used, the current values according to using resistor values are added.

Voltage drop detection circuit characteristics

Table 35 Voltage drop detection circuit characteristics (Ta = -20 °C to 85 °C, unless otherwise noted)
--

Symbol	Parameter	Test conditions		Limits			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vrst-	Detection voltage	Ta = 25°C		1.7		V	
	(reset occurs) (Note 1)	–20°C≤ Ta < 0°C	1.6		2.2		
		0°C≤ Ta < 50°C	1.3		2.1		
		50°C≤ Ta ≤ 85°C	1.1		1.8		
Vrst+	Detection voltage	Ta = 25°C		1.8		V	
	(reset release) (Note 2)	–20°C≤ Ta < 0°C	1.7		2.3		
		0°C≤ Ta < 50°C	1.4		2.2		
		50°C≤ Ta ≤ 85°C	1.2		1.9		
Vskip	Detection voltage	Ta = 25°C		2		V	
	(skip occurs) (Note 3)	–20°C≤ Ta < 0°C	1.9		2.5		
		0°C≤ Ta < 50°C	1.6		2.4		
		50°C≤ Ta ≤ 85°C	1.4		2.1		
Vrst+ -Vrst-	Detection voltage hysteresis			0.1		V	
IRST	Operation current (Note 4)	Vdd = 5V		30	60	μA	
		VDD = 3V		15	30		
		VDD = 1.8V		6	12	1	
Trst	Detection time (Note 5)	$VDD \rightarrow (VRST0.1V)$		0.2	1.2	ms	


Note 1. The detection voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling. Note 2. The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset

Note 3. When the supply voltage goes lower than the detection voltage (VSKIP), the voltage drop detection circuit interrupt request flag (VDF) is set to "1".
 Note 4. Voltage drop detection circuit operation current (IRST) is added to IDD (power current) when voltage drop detection circuit is used.
 Note 5. The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST--0.1V].

Basic timing diagram

Machine cycle Parameter Pin name		Mi		Mi + 1		
System clock	STCK					
Port output	D₀ to D⁊ P0₀ to P0₃				\times	
	P10 to P13 P20 to P23 P30 to P33, C					
Port input	D₀ to D₅				\times	
	P00 to P03 P10 to P13 P20 to P23 P30 to P33					
Interrupt input	INT				\times	

PACKAGE OUTLINE

REVISION HISTORY

4559 Group Datasheet

Rev.	Date		Description		
		Page	Summary		
1.00	Jul 27, 2006	-	First edition issued		
1.01	Apr 27, 2007	58	ig56 stabilizing time b, d: (system clock division ratio x <u>15</u>) times. \rightarrow system clock division ratio x <u>171</u>) times.		
1.02	May 25, 2007	All pages	"PRELIMINARY" deleted		
1.03	May 30, 2007	32	Fig33 ORCLK — \rightarrow ORCLK — $1/2$ —		
		33	Fig34 W30 \rightarrow W33		
		34,74	W33 Timer 3 count source selection bit 1 : Prescaler output (ORCLK)/2 \rightarrow Prescaler output (ORCLK)		
1.04	Aug 23, 2007	4	Timer 1, Timer 2 Explanation of function revised. Segment output "28" \rightarrow "32"		
		21	Fig. 21 13FF16→ 17FF16		
		25	(7)Interrupt sequence revised.		
		34	 PA0 0 "Stop (state initialized)"→ "Stop (state retained)" W30, W31 "Timer 3 count source selection bits" → "Timer 3 count value selection bits" W30 0 "XIN input"→ "XCIN input" 		
		55	Table 23: Note 4 is revised.		
		57	Fig. 56 Note 7 added.		
		65, 66, 67	QzROM Writing Mode added.		
		69	 (2) Bit 3 of register I1 "(register L10="0")" →"(register K20="0")" (3) Bit 2 of register I1 "the external 1 interrupt request flag (EXF0)" → "the external 0 interrupt request flag (EXF0)" 		
		71	(27) Data Required for QzROM Writing Orders added.		
		72	Fig. 76 Note added.		
		73	Fig. 77 "Vcc"→"Voo"		
		77	PAo Prascaler control bit 0 "Stop (state initialized)" \rightarrow "Stop (state retained)" W3o, W31 "Timer 3 count source selection bits" \rightarrow "Timer 3 count value selection bits"		
		84, 85, 86	Index pages added.		
		109	TAW4 Operation: "(A) (W5)" \rightarrow "(A) (W4)"		

All trademarks and registered trademarks are the property of their respective owners.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is activated and the date their document, included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set of easonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed by Renesas states and splications, and process and splications, and process assumes no liability whatsoever for any damages incurred as a disclosed trong the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set of the inters or missions in the information in the date this document. Dut Renesas assumes no liability what set asset methods and applications, or otherwise in systems the failure of mathods. The process of

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com