4552 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0023-0300Z Rev.3.00 2004.07.09

DESCRIPTION

The 4552 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has one or two reload registers), a 16-bit timer for clock count, interrupts, and oscillation circuit switch function.

The various microcomputers in the 4552 Group include variations of the built-in memory size as shown in the table below.

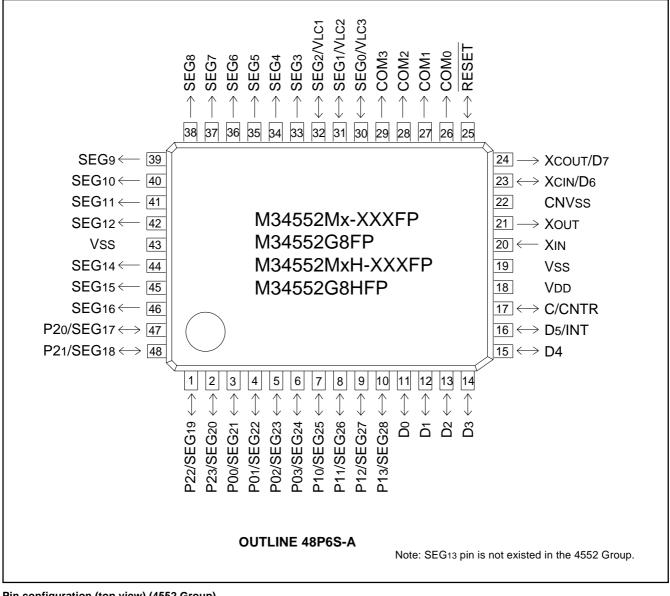
FEATURES

 Minimum instruction execution time
Mask ROM version
(at 6 MHz oscillation frequency, in high-speed through-mode)
One Time PROM version 0.68 μ s
(at 4.4 MHz oscillation frequency, in high-speed through-mode)
● Supply voltage
Mask ROM version 1.8 to 5.5 V
One Time PROM version 1.8 to 3.6 V
(It depends on operation source clock, oscillation frequency and op-
eration mode)
●Timers
Timer 1 8-bit timer with a reload register
Timer 2 8-bit timer with two reload registers
Timer 3 16-bit timer (fixed dividing frequency)

Interrupt
• Key-on wakeup function pins
LCD control circuit
Segment output 28
Common output 4
 Voltage drop detection circuit (only H version)
Reset occurrence Typ. 1.8 V (Ta = 25 °C)
Reset releaseTyp. 1.9 V (Ta = 25 °C)
Watchdog timer
Clock generating circuit
Built-in clock
(on-chip oscillator)
Main clock
(ceramic resonator/RC oscillation)
Sub-clock
(quartz-crystal oscillation)

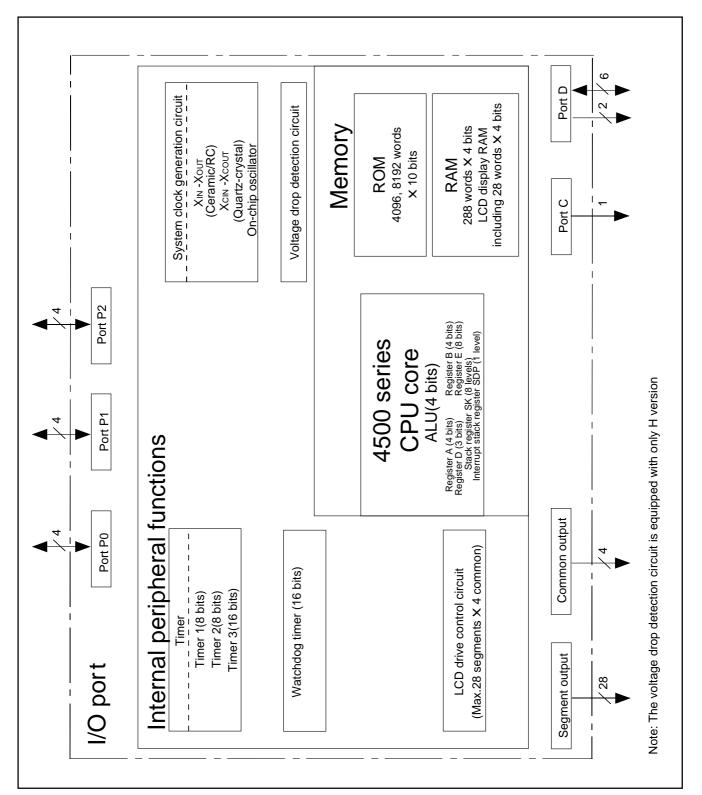
●LED drive directly enabled (port D)

APPLICATION


Remote control transmitter

	Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
	M34552M4-XXXFP	4096 words	288 words	48P6S-A	Mask ROM
dno	M34552M8-XXXFP	8192 words	288 words	48P6S-A	Mask ROM
Gro	M34552G8FP (Note)	8192 words	288 words	48P6S-A	One Time PROM
4552	M34552M4H-XXXFP	4096 words	288 words	48P6S-A	Mask ROM
45	M34552M8H-XXXFP	8192 words	288 words	48P6S-A	Mask ROM
	M34552G8HFP (Note)	8192 words	288 words	48P6S-A	One Time PROM

Note: Shipped in blank.



PIN CONFIGURATION

Pin configuration (top view) (4552 Group)

Block diagram (4552 Group)

PERFORMANCE OVERVIEW

Parameter				Function
Number of basic	M345	52M	4/M8/G8	123
instructions			4H/M8H/G8H	124
Minimum	Mask ROM version			0.5 μ s (at 6 MHz oscillation frequency, in high-speed through mode)
instruction				
execution time	e One Time PROM version			0.68 μ s (at 4.4 MHz oscillation frequency, in high-speed through mode)
Memory sizes	ROM	M3	4552M4	4096 words X 10 bits
		M3	4552M4H	
		M3	4552M8/G8	8192 words X 10 bits
		M3	4552M8H/G8H	
	RAM	M3	4552M4/M8/G8	288 words X 4 bits (including LCD display RAM 28 words X 4 bits)
		M34	552M4H/M8H/G8H	
Input/Output ports	Do-D	5	I/O	Six independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port Ds is also used as INT pin.
	D6, D [.]	7	Output	Two independent output ports. Ports D6 and D7 are also used as XCIN and XCOUT, respectively.
	P00-F	2 03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P00–P03 are also used as SEG21–SEG24, respectively.
	P10-F	2 13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P10–P13 are also used as SEG25–SEG28, respectively.
	P20-P23		I/O	4-bit I/O port; The output structure can be switched by software. Ports P20–P23 are also used as SEG17–SEG20, respectively.
	C Output		Output	1-bit output; Port C is also used as CNTR pin.
Timers	Timer 1			8-bit programmable timer with a reload register and has an event counter.
	Timer 2			8-bit programmable timer with two reload registers and PWM output function.
	Timer 3			16-bit timer, fixed dividing frequency (timer for clock count)
	Timer LC			4-bit timer with a reload register (for LCD clock)
	Watchdog timer			16-bit timer (fixed dividing frequency) (for watchdog)
LCD control	Selective bias value		bias value	1/2, 1/3 bias
circuit	Selec	tive	duty value	2, 3, 4 duty
	Common output			4
	Segment output			28
	Internal resistor for power supply			2r X 3, 2r X 2, r X 3, r X 2 (r = 80 kΩ, (Ta = 25 °C, Typical value))
Interrupt	Sources			4 (one for external, three for timer)
	Nestir	ng		1 level
Subroutine ne	sting			8 levels
Device structu	re			CMOS silicon gate
Package				48-pin plastic molded QFP (48P6S-A)
Operating temperature range		ange	-20 °C to 85 °C	
Supply	Mask ROM version		M version	1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)
voltage	One Time PROM version		PROM version	1.8 to 3.6 V (It depends on operation source clock, oscillation frequency and operation mode)
Power	Active	mo	de	2.2 mA (at room temperature, VDD = 5 V, f(XIN) = 6 MHz, f(XCIN) = stop, f(RING) = stop,
dissipation			M version)	f(STCK) = f(XIN)/1)
-			perating mode M version)	6 μ A (at room temperature, VDD = 5 V, f(XCIN) = 32 kHz)
	At RA	Mb	ack-up	0.1 μ A (at room temperature, VDD = 5 V, output transistor is cut-off state)
	(Mask ROM version)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function	
Vdd	Power supply	_	Connected to a plus power supply.	
Vss	Ground	_	Connected to a 0 V power supply.	
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.	
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.	
Xin	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them.	
Хоит	Main clock output	Output	When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.	
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32.768 kHz quartz-crystal oscilla- tor between pins XCIN and XCOUT. A feedback resistor is built-in between them. XCIN and	
Хсоит	Sub-clock output	Output	XCOUT pins are also used as ports D6 and D7, respectively.	
D0D5	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D5 is also used as INT pin.	
D6, D7	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output struture is N-channel open-drain. Ports D6 and D7 are also used as XCIN pin and XCO pin, respectively.	
P00–P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-chann open-drain or CMOS by software. For input use, set the latch of the specified bit "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function ar a pull-up function. Both functions can be switched by software. Ports P00–P03 a also used as SEG21–SEG24, respectively.	
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-chann open-drain or CMOS by software. For input use, set the latch of the specified bit "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function at a pull-up function. Both functions can be switched by software. Ports P10–P13 a also used as SEG25–SEG28, respectively.	
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports P20–P23 are also used as SEG17–SEG20, respectively.	
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR pin.	
COM0– COM3	Common output	Output	LCD common output pins. Pins COM ₀ and COM ₁ are used at 1/2 duty, pins COM ₀ – COM ₂ are used at 1/3 duty and pins COM ₀ –COM ₃ are used at 1/4 duty.	
SEG0-SEG28 (Note)	Segment output	Output	LCD segment output pins. SEG0–SEG2 pins are used as VLC3–VLC1 pins, respectively. SEG17–SEG28 pins are used as Ports P20–P23, Ports P00–P03 and Port P10–P13, respectively.	
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 1 event counter and to out put the PWM signal generated by timer 2.CNTR pin is also used as Port C.	
INT	Interrupt input	Input	INT pin accepts external interrupts. They have the key-on wakeup function which can be switched by software. INT pin is also used as Port D5.	

Note: SEG13 pin is not existed in the 4552 Group.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
XCIN	D6	D6	XCIN	P20	SEG17	SEG17	P20
Хсоит	D7	D7	Хсоит	P21	SEG18	SEG18	P21
P00	SEG21	SEG21	P00	P22	SEG19	SEG19	P22
P01	SEG22	SEG22	P01	P23	SEG20	SEG20	P23
P02	SEG23	SEG23	P02	D5	INT	INT	D5
P03	SEG24	SEG24	P03	С	CNTR	CNTR	С
P10	SEG25	SEG25	P10	SEG0	VLC3	VLC3	SEG0
P11	SEG26	SEG26	P11	SEG1	VLC2	VLC2	SEG1
P12	SEG27	SEG27	P12	SEG2	VLC1	VLC1	SEG2
P13	SEG28	SEG28	P13				

Notes 1: Pins except above have just single function.

2: The input/output of D5 can be used even when INT is selected.

The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used. 3: The port C "H" output function can be used even when CNTR (output) is selected.

DEFINITION OF CLOCK AND CYCLE

- Operation source clock
 - The operation source clock is the source clock to operate this product. In this product, the following clocks are used.
 - Clock (f(XIN)) by the external ceramic resonator
 - Clock (f(XIN)) by the external RC oscillation
 - Clock (f(XIN)) by the external input
 - Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
 - Clock (f(Xcin)) by the external quartz-crystal oscillation

• System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Register MR				System clock	Operation mode
MRз	MR2	MR1	MR ₀		
1	1	0	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	0	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	0	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	0	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	1	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	1	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	1	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	1	f(STCK) = f(XIN)	High-speed through mode
1	1	1	0	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode
1	0	1	0	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode
0	1	1	0	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode
0	0	1	0	f(STCK) = f(XCIN)	Low-speed through mode

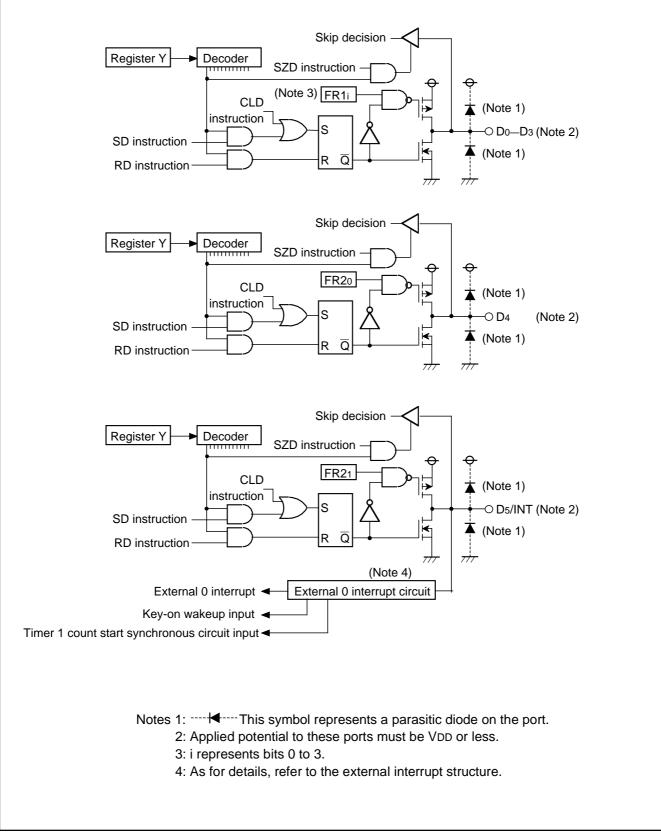
Note: The f(RING)/8 is selected after system is released from reset.

PORT FUNCTION

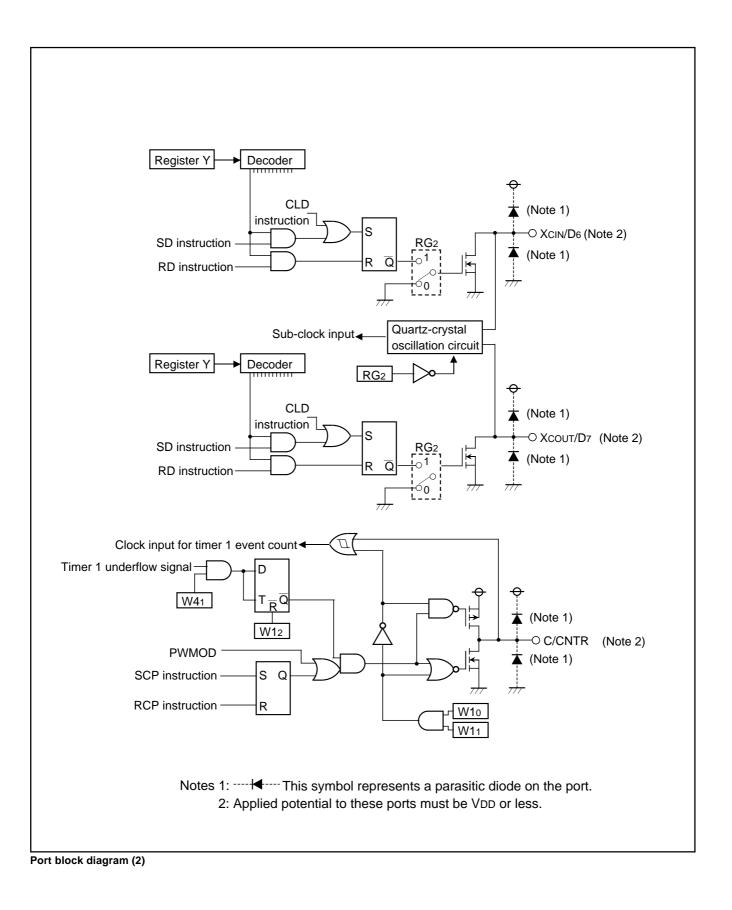
Port	Pin	Input	Output structure	I/O	Control	Control	Remark
			utput		instructions	registers	Kemark
Port D	D0-D4, D5/INT	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection
		(6)	CMOS		SZD	l1, K2	function (programmable)
					CLD		
	XCIN/D6, XCOUT/D7	Output	N-channel open-drain]		RG	
		(2)					
Port P0	P00/SEG21-P03/SEG24	I/O	N-channel open-drain/	4	OP0A	FR0, PU0	Built-in pull-up functions, key-on
		(4)	CMOS		IAP0	K0	wakeup functions and output
						C1	structure selection function
							(programmable)
Port P1	P10/SEG25-P13/SEG28	I/O	N-channel open-drain/	4	OP1A	FR0, PU1	Built-in pull-up functions, key-on
		(4)	CMOS		IAP1	K0, K1	wakeup functions and output
						C2	structure selection function
							(programmable)
Port P2	P20/SEG17-P23/SEG20	I/O	N-channel open-drain/	4	OP2A	FR2	Output structure selection func
		(4)	CMOS		IAP2	L3	tion (programmable)
Port C	C/CNTR	Output	CMOS	1	RCP	W1	
		(1)			SCP		

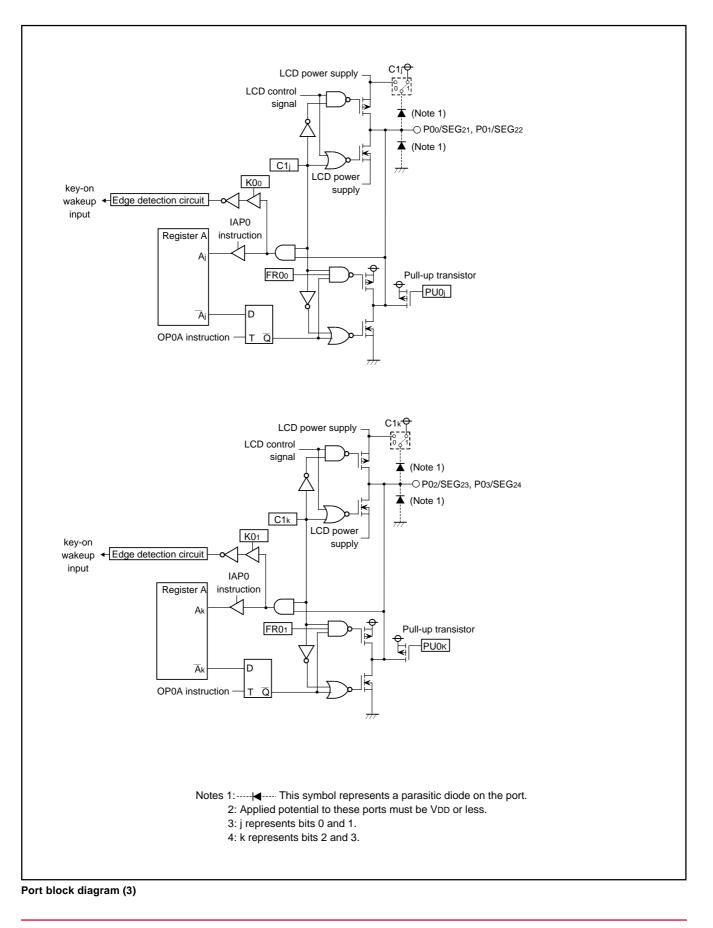
CONNECTIONS OF UNUSED PINS

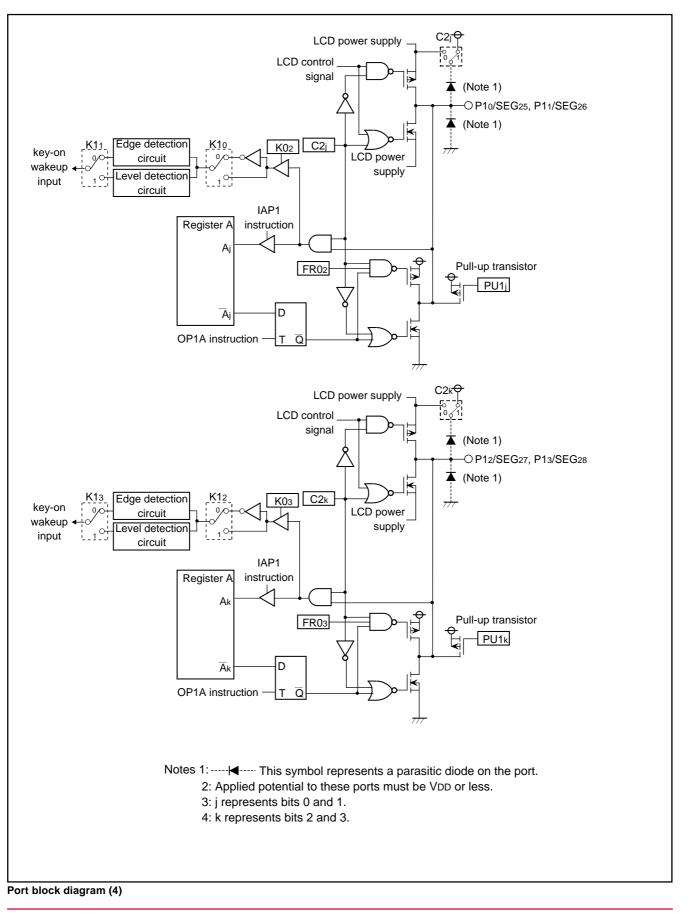
Pin	Connection	Usage condition			
Xin	Connect to Vss.	RC oscillator is not selected			
Хоџт	Open.				
XCIN/D6	Connect to Vss.				
XCOUT/D7	Open.				
D0D4	Open.				
	Connect to Vss.	N-channel open-drain is selected for the output structure.			
D5/INT	Open.	INT pin input is disabled.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.			
C/CNTR	Open.	CNTR input is not selected for timer 1 count source.			
P00/SEG21-	Open.	The key-on wakeup function is invalid.			
P03/SEG24	Connect to Vss.	Segment output is not selected.			
		N-channel open-drain is selected for the output structure.			
		Pull-up transistor is OFF.			
		The key-on wakeup function is invalid.			
P10/SEG25-	Open.	The key-on wakeup function is invalid.			
P13/SEG28	Connect to Vss.	Segment output is not selected.			
		N-channel open-drain is selected for the output structure.			
		Pull-up transistor is OFF.			
		The key-on wakeup function is invalid.			
P20/SEG17-	Open.				
P23/SEG20	Connect to Vss.	Segment output is not selected.			
		N-channel open-drain is selected for the output structure.			
COM0-COM3	Open.				
SEG0/VLC3	Open.	SEG ₀ pin is selected.			
SEG1/VLC2	Open.	SEG1 pin is selected.			
SEG2/VLC1	Open.	SEG2 pin is selected.			
SEG3–SEG16 (Note)	Open.				

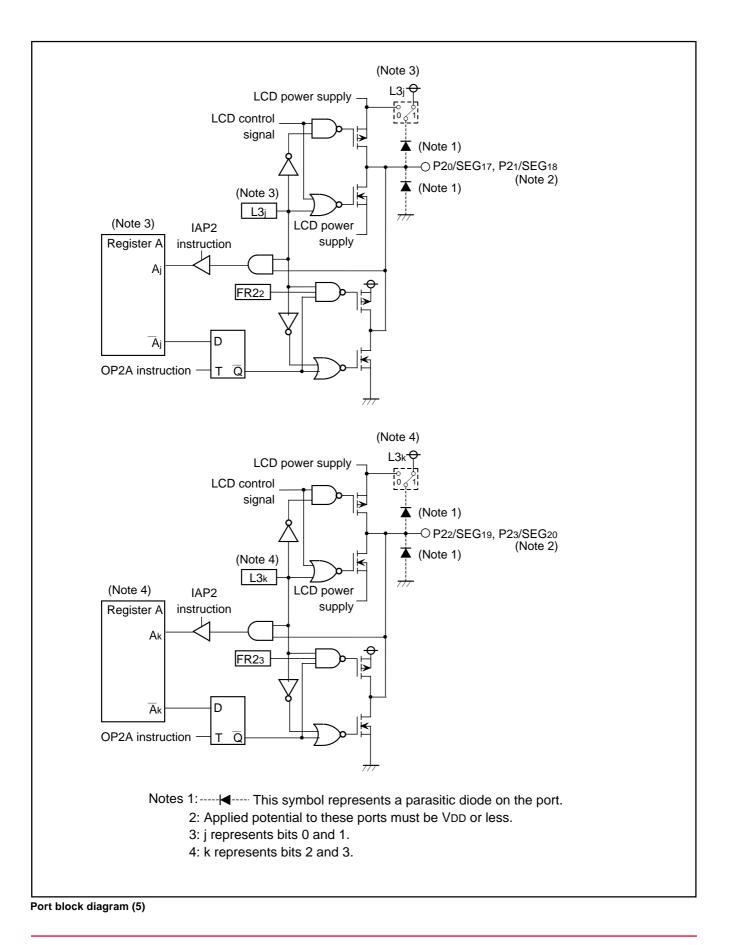

Note: SEG13 pin is not existed in the 4552 Group.

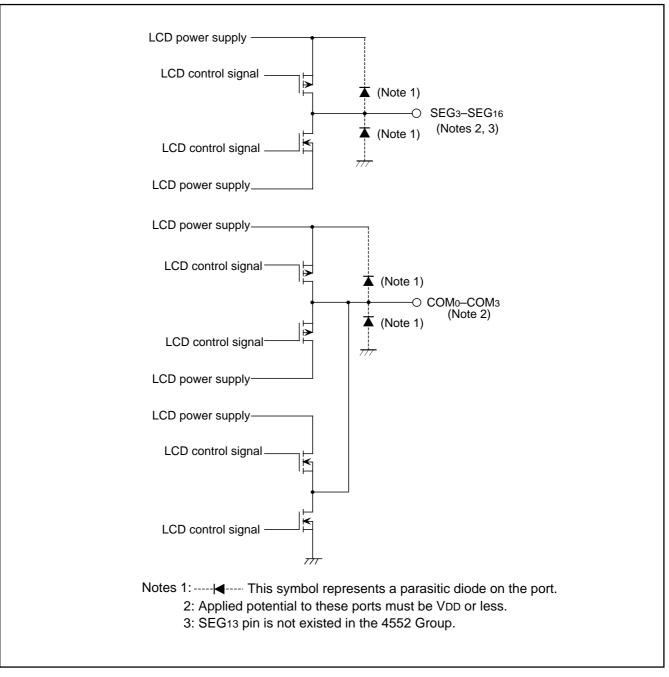
(Note when connecting to Vss and VDD)

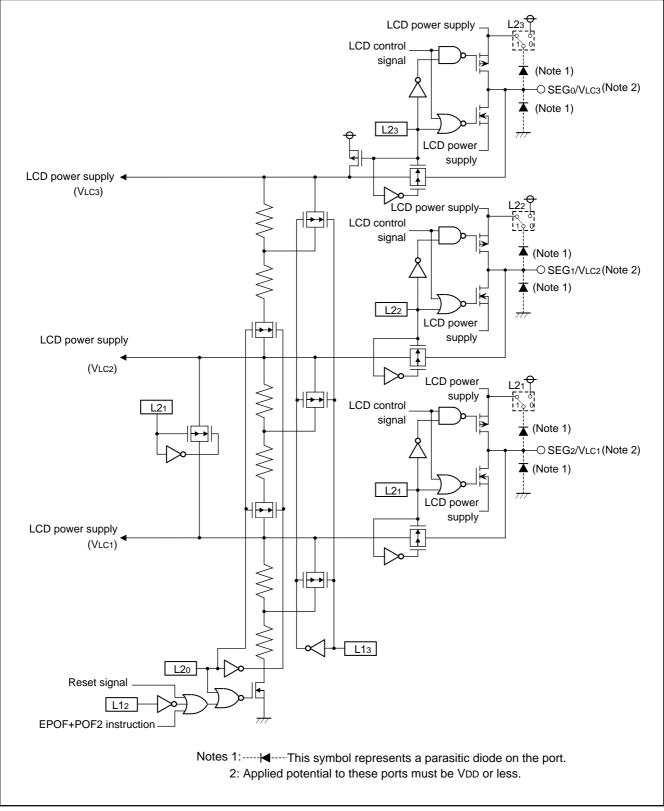

• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.


PORT BLOCK DIAGRAMS

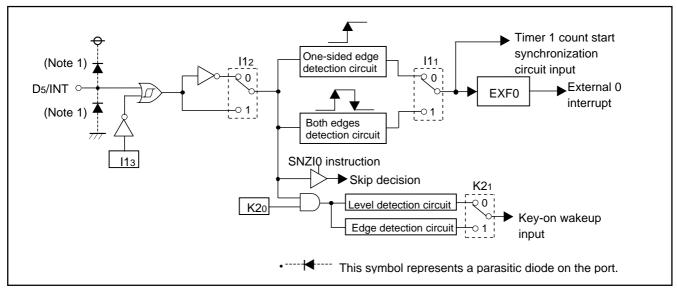

Port block diagram (1)







Port block diagram (6)



Port block diagram (7)

Block diagram of external interrupt

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A0 is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

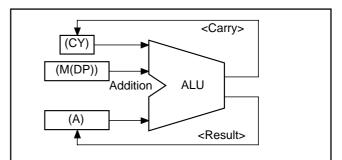


Fig. 1 AMC instruction execution example

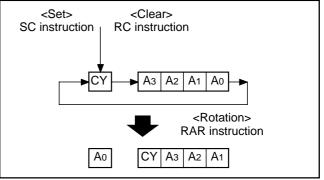


Fig. 2 RAR instruction execution example

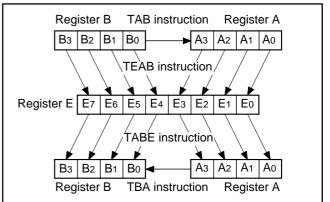
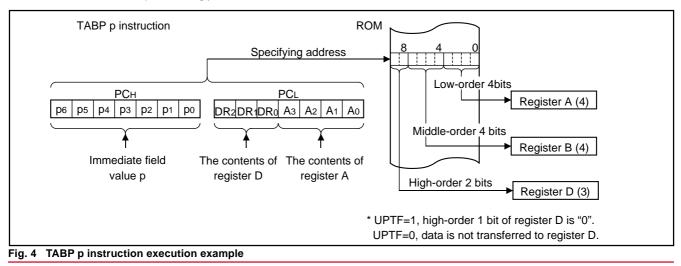



Fig. 3 Registers A, B and register E

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program	counter (PC)				
Executing BM instruction	ד				
	SK0	(SP) = 0			
	SK1	(SP) = 1			
	SK2	(SP) = 2			
	SK3	(SP) = 3			
	SK4	(SP) = 4			
	SK5	(SP) = 5			
	SK6	(SP) = 6			
	SK7	(SP) = 7			
Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.					

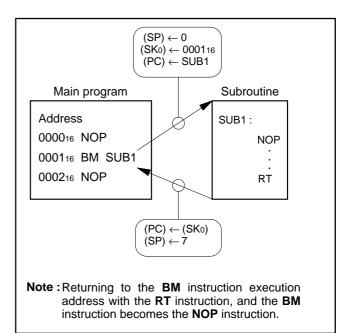


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

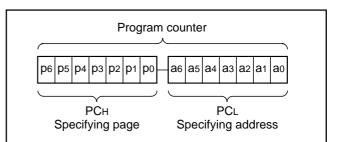


Fig. 7 Program counter (PC) structure

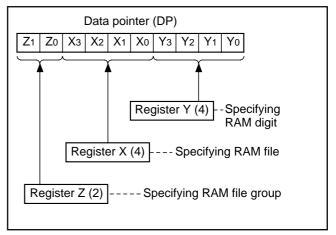


Fig. 8 Data pointer (DP) structure

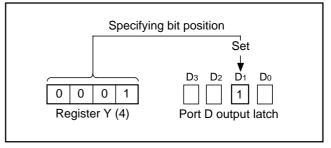


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34552ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34552M4	4096 words	32 (0 to 31)
M34552M4H		
M34552M8	8192 words	64 (0 to 63)
M34552M8H		
M34552G8		
M34552G8H		

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP $\ensuremath{\mathsf{p}}$ instruction.

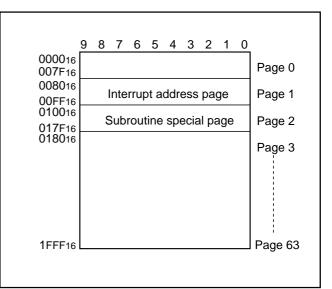


Fig. 10 ROM map of M34552M8/M8H/G8/G8H

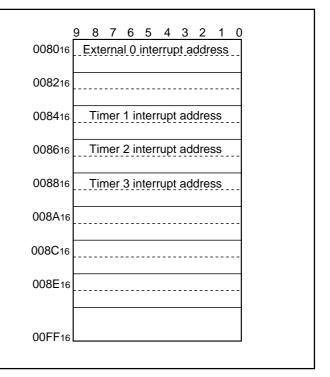


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34552M4/M4H	288 words X 4 bits (1152 bits)
M34552M8/M8H	
M34552G8/G8H	

	Register Z		0							1				
	Register X	0	1	2	3		12	13	14	15	0	1	2	3
	0													
	1													
	2													
	3													
	4													
	5													
Ϋ́	6													
stei	7													
Register Y	8										0	8	16	24
R	9										1	9	17	2
	10										2	10	18	2
	11										3	11	19	2
	12										4	12	20	2
	13										5		21	
	14										6	14	22	
	15										7	15	23	

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

• An interrupt activated condition is satisfied (request flag = "1")

- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

• an interrupt occurs, or

• the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

511 4011011			
Interrupt name	Request flag	Skip instruction	Enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
- An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that
- INTE flag is cleared to "0" so that interrupts are disabled. • Interrupt request flag
- Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
- The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

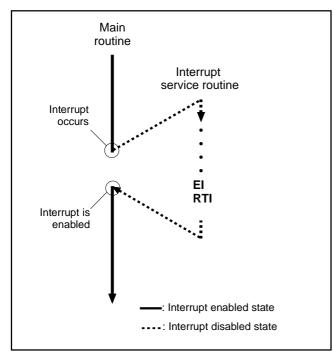
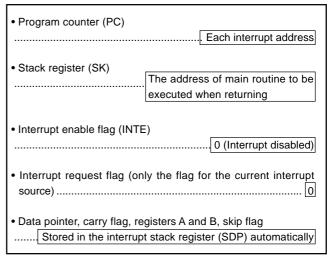
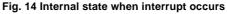
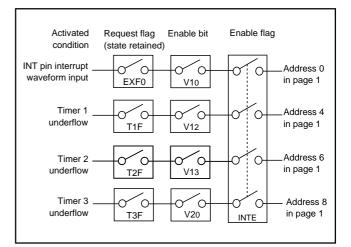
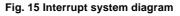






Fig. 13 Program example of interrupt processing

(6) Interrupt control registers

Interrupt control register V1

Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 6 Interrupt control registers

• Interrupt control register V2

The timer 3 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

	Interrupt control register V1		reset : 00002	at power down : 00002	R/W TAV1/TV1A	
V13	V13 Timer 2 interrupt enable bit		0 Interrupt disabled (SNZT2 instruction is valid)			
V 13		1	Interrupt enabled (SNZT2 instruction is invalid)			
V12	V12 Timer 1 interrupt enable bit		Interrupt disabled	(SNZT1 instruction is valid)		
VIZ		1	Interrupt enabled (SNZT1 instruction is invalid)		
\/4 A	Not used	0				
V11	Not used	1	This bit has no function, but read/write is enabled.			
V/1 o			Interrupt disabled	(SNZ0 instruction is valid)		
V10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)		

	Interrupt control register V2		Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A
V23 Not used		0	This bit has no function, but read/write is enabled.				
V25		1					
V22	Not used	0	This hit has no fun	ction, but read/write is enabled.			
V 22		1					
Vo	Not used	0	This bit has no function, but read/write is enabled.				
V21		1		ction, but read/write is enabled.			
1/20	Timer 3 interrupt enable bit	0	Interrupt disabled (SNZT3 instruction is valid)			
V20		1	Interrupt enabled (SNZT3 instruction is invalid)			

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V20), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

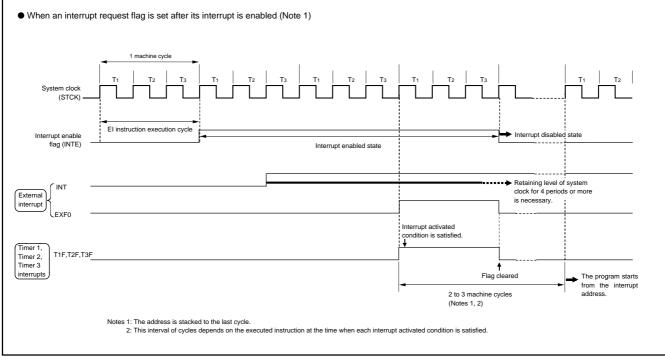
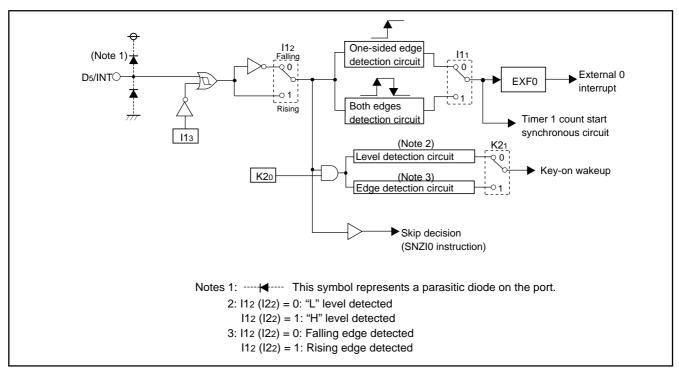


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS


The 4552 Group has the external 0 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D5/INT	When the next waveform is input to D5/INT pin	l11
		 Falling waveform ("H"→"L") 	l12
		 Rising waveform ("L"→"H") 	
		Both rising and falling waveforms	

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D5/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16). The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D5/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- $\ensuremath{\textcircled{O}}$ Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- (5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D5/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

R/W at reset : 00002 Interrupt control register I1 at power down : state retained TAI1/TI1A 0 INT pin input disabled I13 INT pin input control bit (Note 2) 1 INT pin input enabled Falling waveform/"L" level ("L" level is recognized with the SNZI0 0 Interrupt valid waveform for INT pin/ instruction) 112 return level selection bit (Note 2) Rising waveform/"H" level ("H" level is recognized with the SNZI0 1 instruction) 0 One-sided edge detected 111 INT pin edge detection circuit control bit 1 Both edges detected INT pin Timer 1 count start synchronous 0 Timer 1 count start synchronous circuit not selected 110 circuit selection bit 1 Timer 1 count start synchronous circuit selected

Table 8 External interrupt control register

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of these bits (I12, I13) are changed, the external interrupt request flag (EXF0) may be set.

(2) External interrupt control registers

Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

(3) Notes on External 0 interrupts

① Note [1] on bit 3 of register I1
 When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18⁽³⁾).

:						
LA	4	; (XXX02)				
TV1A		; The SNZ0 instruction is valid				
LA	8	; (1 XXX 2)				
TI1A		; Control of INT pin input is changed				
NOP						
SNZ0		; The SNZ0 instruction is executed				
		(EXF0 flag cleared)				
NOP		3				
:						
x :	X : these bits are not used here.					

Fig. 18 External 0 interrupt program example-1

2 Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19①).

; (00 XX 2)
; Input of INT disabled①
; RAM back-up
se bits are not used here.

Fig. 19 External 0 interrupt program example-2

3 Note on bit 2 of register I1

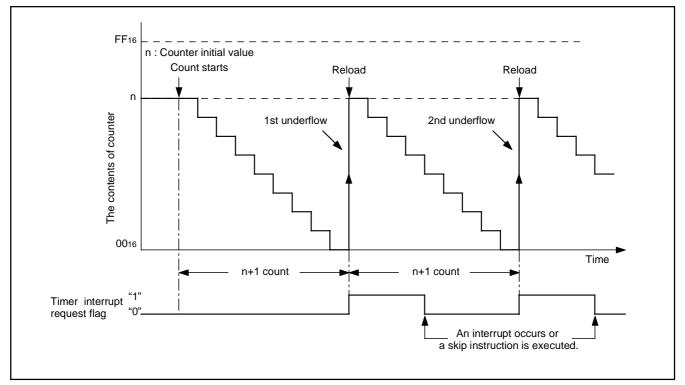
When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

• Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20⁽³⁾).

:						
LA	4	; (XXX02)				
TV1A		; The SNZ0 instruction is valid				
LA	12					
TI1A		; Interrupt valid waveform is changed				
NOP						
SNZ0		; The SNZ0 instruction is executed				
		(EXF0 flag cleared)				
NOP						
:						
x :	X : these bits are not used here.					

Fig. 20 External 0 interrupt program example-3


TIMERS

- The 4552 Group has the following timers.
- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

The 4552 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 16-bit fixed dividing frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer : 16-bit fixed dividing frequency timer (Timers 1, 2, and 3 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3 and LC can be controlled with the timer control registers PA, W1 to W4. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

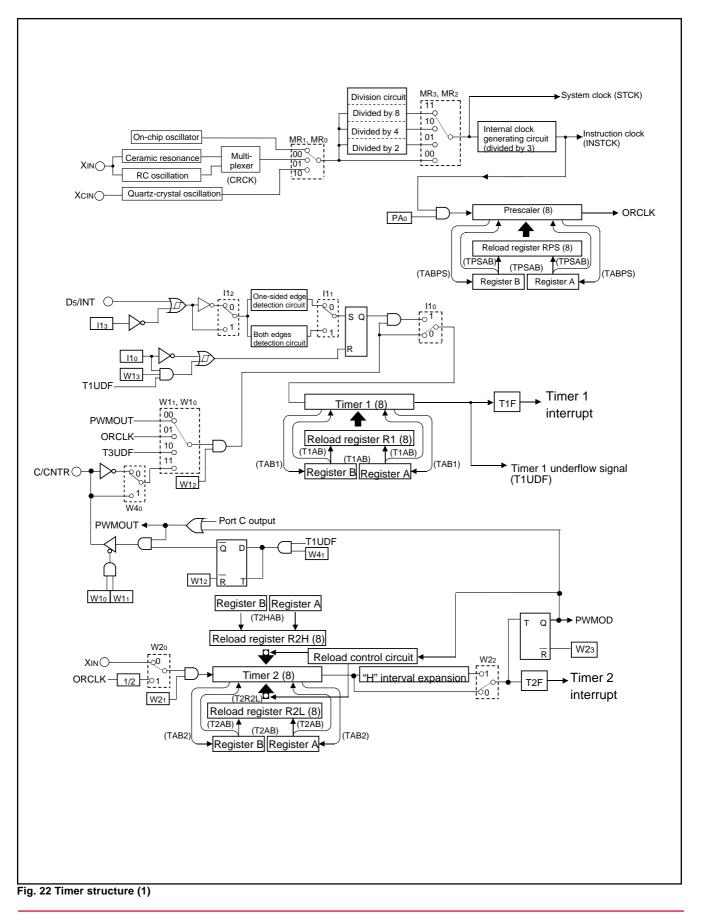


Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, 3 and LC count sources	PA
Timer 1	8-bit programmable binary down counter (link to INT input)	 PWM output (PWMOUT) Prescaler output (ORCLK) Timer 3 underflow (T3UDF) CNTR input 	1 to 256	CNTR output control Timer 1 interrupt	W1
Timer 2	8-bit programmable binary down counter (PWM output function)	XIN input Prescaler output (ORCLK) divided by 2	1 to 256	Timer 1 count source CNTR output Timer 2 interrupt	W2
Timer 3	16-bit fixed dividing frequency	XCIN input ORCLK	8192 16384 32768 65536	 Timer 1 count source Timer 3 interrupt Timer LC count source 	W3
Timer LC	4-bit programmable binary down counter	Bit 4 of timer 3 System clock (STCK)	1 to 16	LCD clock	W4
Watchdog timer	16-bit fixed dividing frequency	Instruction clock (INSTCK)	65534	System reset (count twice)WDF flag decision	

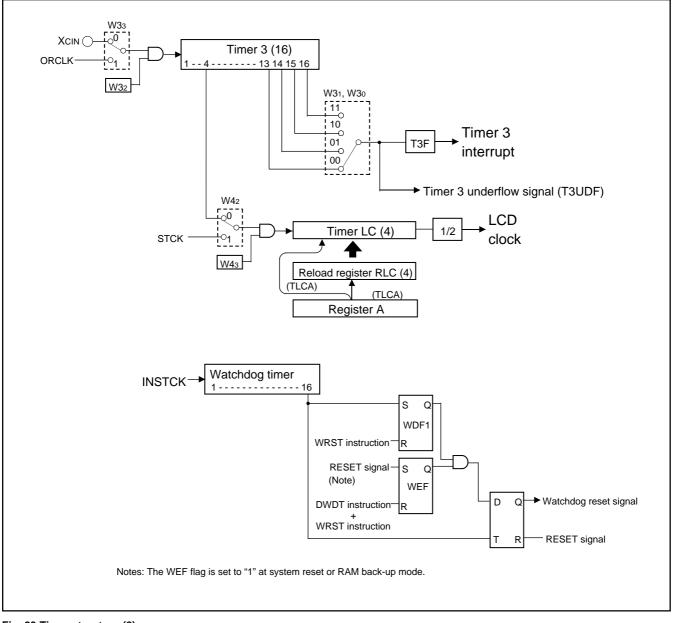


Fig. 23 Timer structure (2)

Table 10 Timer related registers

	Timer control register PA		at reset : 02	at power down : 02	W TPAA
PAo	Prescaler control bit	0	Stop (state initialize	ed)	
FAU		1	Operating		

	Timer control register W1		at	reset : 00002	at power down : state retained	R/W TAW1/TW1A	
W13	W12 Timer 1 count auto-stop circuit selection)	Timer 1 count auto-stop circuit not selected			
110	bit (Note 2)	1		Timer 1 count auto-stop circuit selected			
W12	Timer 1 control bit	()	Stop (state retained)			
VV 12	Timer 1 control bit	1 Operating					
		W11	W10		Count source		
W11		0	0	PWM signal (PWM	OUT)		
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)			
W10	(Note 3)	1	0	Timer 3 underflow	signal (T3UDF)		
		1	1	CNTR input			

	Timer control register W2	at	reset : 00002	at power down : 00002	R/W TAW2/TW2A		
W23	CNTR pin output control bit	0 CNTR pin output invalid					
1125	1 CNTR pin output control bit	alid					
W22	PWM signal interrupt valid waveform/	0	PWM signal "H" interval expansion function invalid				
VVZZ	return level selection bit	1	PWM signal "H" interval expansion function valid				
W21	Time 2 control bit	0	Stop (state retaine	d)			
VVZ1	Timer 2 control bit	1 Operating					
W20	Timer 2 count soruce selection bit	0	XIN input				
VV20		1	Prescaler output (ORCLK)/2 signal output				

	Timer control register W3		at	reset : 00002	at power down : state retained	R/W TAW3/TW3A
W33 Timer 3 count auto-stop circuit selection		0	0 XCIN input			
	bit	1	1	Prescaler output (ORCLK)		
W32	Timer 2 control bit	0)	Stop (Initial state)		
1102	Timer 3 control bit	1	1 Operating			
		W31	W30		Count source	
W31	T	0	0	Underflow occurs every 8192 counts		
	Timer 3 count source selection bits	0	1	Underflow occurs e	every 16384 counts	
W30		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs e	every 65536 counts	

	Timer control register W4	at	reset : 00002	at power down : state retained	R/W TAW4/TW4A		
W43	13 Timer LC control bit 0 Stop (state retained)	d)					
	Operating						
W42	Timer LC count source selection bit	0	Bit 4 (T34) of timer 3				
VV+2		1	System clock (STCK)				
W41	CNTR output auto-control circuit	0	CNTR output auto-	control circuit not selected			
VV41	selection bit	1	CNTR output auto-control circuit selected				
W40		0	Falling edge				
VV+0	CNTR pin input count edge selection bit	1	Rising edge				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

3: Port C output is invalid when CNTR input is selected for the timer 1 count source.

(1) Timer control registers

Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the CNTR output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W3

Register W3 controls the count operation and count source of timer 3. Set the contents of this register through register A with the TW5A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the operation and count source of timer LC, the selection of CNTR output auto-control circuit and the count edge of CNTR input. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

② set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- 1 set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows.

Timer 2 starts counting after the following process;

① set data in timer 2

2 set count source by bit 0 of register W2, and

3 set the bit 1 of register W2 to "1."

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When bit 3 of register W2 is set to "1", timer 2 reloads data from reload register R2L and R2H alternately each underflow.

Timer 2 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM signal (PWMOUT) is output from CNTR pin.

When bit 2 of register W2 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R2H for the counter of timer 2 is extended for a half period of count source.

In this case, when a value set in reload register R2H is n, timer 2 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R2H. When bit 1 of register W4 is set to "1", the PWM signal output to CNTR pin is switched to valid/invalid each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W2 is cleared to "0" in the "H" interval of PWM signal, timer 2 does not stop until it next timer 2 underflow. When clearing bit 1 of register W2 to "0" to stop timer 2, avoid a timing when timer 2 underflows.

(5) Timer 3 (interrupt function)

Timer 3 is a 16-bit binary down counter.

Timer 3 starts counting after the following process;

0 set count value by bits 0 and 1 of register W3,

2 set count source by bit 3 of register W3, and

3 set the bit 2 of register W3 to "1."

Once count is started, when timer 3 underflows (the set count value is counted), the timer 3 interrupt request flag (T3F) is set to "1," and count continues.

Bit 4 of timer 3 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W3 is cleared to "0", timer 3 is initialized to "FFFF16" and count is stopped.

Timer 3 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 3 underflow occurs at clock operating mode, system returns from the power down state.

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

① set data in timer LC,

② select the count source with the bit 2 of register W4, and③ set the bit 3 of register W4 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(7) Timer input/output pin (C/CNTR pin)

CNTR pin is used to input the timer 1 count source and output the PWM signal generated by timer 2. When the PWM signal is output from C/CNTR pin, set "0" to the output latch of port C.

The selection of CNTR output signal can be controlled by bit 3 of register W2.

When the CNTR input is selected for timer 1 count source, timer 1 counts the waveform of CNTR input selected by bit 0 of register W4. Also, when the CNTR input is selected, the output of port C is invalid (high-impedance state).

(8) Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(9) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT pin input can be performed.

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit 110 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(10) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(11) Precautions

Note the following for the use of timers.

Prescaler

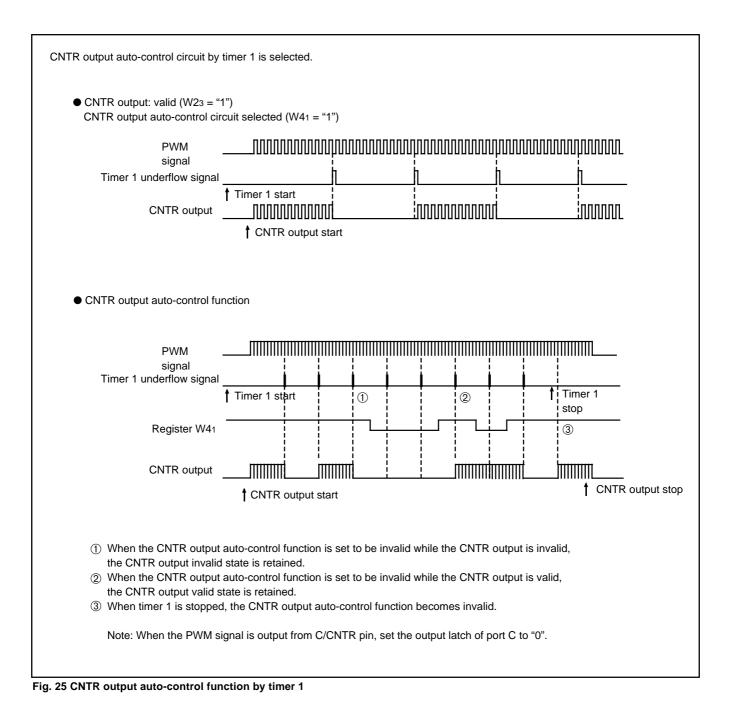
Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

- Timer count source Stop timer 1, 2, and LC counting to change its count source.
- Reading the count value
 Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.
- Writing to the timer Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.
- Writing to reload register R1, R2H
 When writing data to reload register R1 or reload register R2H
 while timer 1 or timer 2 is operating, avoid a timing when timer 1
 or timer 2 underflows.
- Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.


- Timer 3 Stop timer 3 counting to change its count source.
- Timer input/output pin Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

Timer 2 count source Timer 2 count value (Reload register) Timer 2 underflow signal	(R2L)	1 31 3 021901190 82L) 1	1 (R2L)	(R2L)	110,0010,00310,0210 (R2L)	√011 } ∕001)
WM signal (output invalid)		L			L	
,	Timer 2 start				PWM s fixed	ignal "L"
CNTR output: valid (W23 = PWM signal "H" interval ex	'1") ension function: invalid (W22	= "0")				
Timer 2 count source	- Luuui	uuri		ļuuri		
Timer 2 count value (Reload register)	(R2L)		310021001100010 R2L) 1	\uparrow \frown \frown	310x0210x0110x0016 † R2L) T	(R2H)
Timer 2 underflow signal PWM signal	Timer 2 start	3 clock	od 7 clock	←_3 clock→ ←9WM peri	od 7 clock	
CNTR output: valid (W23 PWM signal "H" interval o Timer 2 count source	= "1") extension function: valid (W22	= "1") (Note)				
Timer 2 count value (Reload	0316 0216 0116 0016 (R2L)	0216 0116 0016 †	0316X0216X0116X0	016 0216 01160	016×0316×0216×0116	0016 0216
register) Timer 2 underflow signal		R2H)	(R2L)	(R2H)	(R2L)	(R2H)
PWM signal	Timer 2 start	-3.5 clock	iod 7.5 clock		period 7.5 clock	

Fig. 24 Timer 2 operation (reload register R2L: "0316", R2H: "0216")

	art timing		
Machine cycle Mi	Mi+1	X	Mi+2
System clock f(STCK)=f(XIN)/4	TW2A instruction execut	tion cycle (W21) ← 1	
XIN input count source selected)	ψ		
Register W21			
Timer 2 count value (Reload register)	0316 (R2L)		1216/0116/0016/0316/0216/0116/ (R2H) (R2L)
Timer 2 underflow signal			
PWM signal			
PWM signal	ning	Timer 2 count sta	rt timing
—Timer 2 count stop tir		Timer 2 count star	
	Mi+1	X	rt timing Mi+2
—Timer 2 count stop tir		X	
—Timer 2 count stop tir Machine cycle <u>Mi</u> System clock]	Mi+1	X	
—Timer 2 count stop tir Machine cycle <u>Mi</u> System clock f(STCK)=f(XIN)/4 XIN input [] [Mi+1	X	
—Timer 2 count stop tir Machine cycle <u>Mi</u> System clock f(STCK)=f(XIN)/4 XIN input count source selected) Register W21	Mi+1 TW2A instruction executi	ion cycle (W21) \leftarrow 0	
—Timer 2 count stop tin Machine cycle <u>Mi</u> System clock f(STCK)=f(XIN)/4 XIN input count source selected) Register W21 Timer 2 count value (Reload register) Timer 2	Mi+1 TW2A instruction executi	ion cycle (W21) \leftarrow 0	
—Timer 2 count stop tin Machine cycle <u>Mi</u> System clock f(STCK)=f(XIN)/4 XIN input count source selected) Register W21 Timer 2 count value (Reload register) Timer 2 underflow signal	Mi+1 TW2A instruction executi	ion cycle (W21) \leftarrow 0	
—Timer 2 count stop tin Machine cycle <u>Mi</u> System clock f(STCK)=f(XIN)/4 XIN input count source selected) Register W21 Timer 2 count value (Reload register) Timer 2	Mi+1 TW2A instruction executi	ion c <u>ycle (W2</u> 1) ← 0	

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

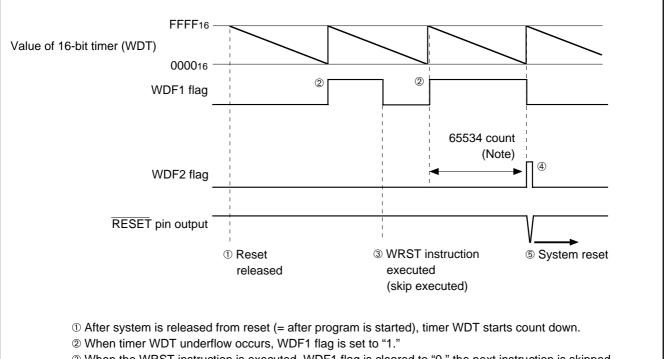
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overrightarrow{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.


When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.

When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is <u>output.</u>

⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 27 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 28).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 29).

The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function.

WRST	; WDF1 flag cleared
DI DWDT WRST	; Watchdog timer function enabled/disabled ; WEF and WDF1 flags cleared

Fia.	28 Program	example	to	start/stop	watchdog	timer
	Loriogram	champic		510105100	matomaog	unior

:	
WRST	; WDF1 flag cleared
NOP	
DI	; Interrupt disabled
EPOF	; POF instruction enabled
POF	
\downarrow	
Oscillation	stop
:	
•	

Fig. 29 Program example to enter the mode when using the watchdog timer

LCD FUNCTION

The 4552 Group has an LCD (Liquid Crystal Display) controller/ driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W4), timer LC, LCD control registers (L1, L2, L3, C1, C2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 28 segment signal output pins can be used to drive the LCD. By using these pins, up to 112 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 11 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
1/2	56 segments	COM0, COM1 (Note)
1/3	84 segments	COM0–COM2 (Note)
1/4	112 segments	COM0–COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W42), timer LC control bit (W43), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 30, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W42="1")

• When using the bit 4 of timer 3 as timer LC count source (W42="0")

$$\mathsf{F} = \begin{bmatrix} \mathsf{T}_{34} & \mathsf{X} & \frac{1}{\mathsf{LC}+1} & \mathsf{X} & \frac{1}{2} \\ 1 & 2 & 3 \end{bmatrix}$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)
Frame period = $\frac{n}{F}$ (s)

F: LCD clock frequency

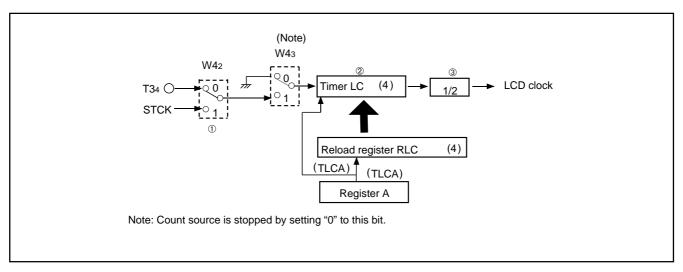


Fig. 30 LCD clock control circuit structure

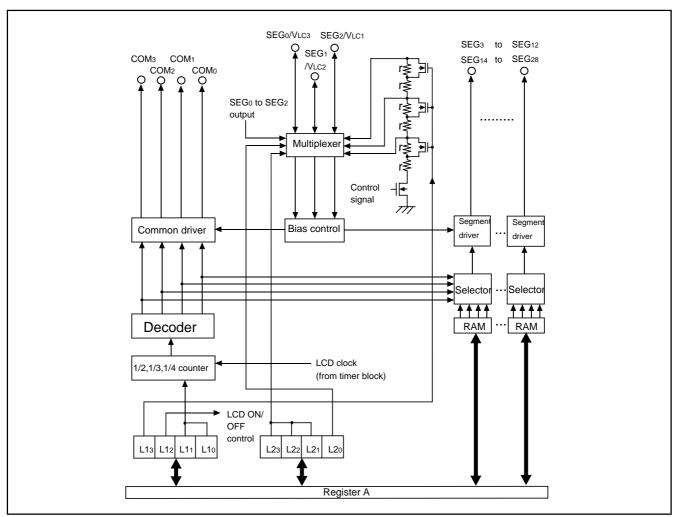


Fig. 31 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

X			0			1			2				3			
Y Bits	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	(
8	SEG0	SEG0	SEG0	SEG0	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	SEG24	SEG24	SEG24	SEC
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEC
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEC
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEC
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEC
13	SEG5	SEG5	SEG5	SEG5					SEG21	SEG21	SEG21	SEG21				_
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22				
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15	SEG23	SEG23	SEG23	SEG23				
COM	COM3	COM ₂	COM1	COM0	COM3	COM ₂	COM1	COM0	COM3	COM ₂	COM1	COM0	COM3	COM2	COM1	CO
COM COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM0																

Table 12 LCD control registers (1)

	LCD control register L1		at reset : 00002		at power down : state retained		R/W
							TAL1/TL1A
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2			
L13	supply selection bit (Note 2)	1	1	r X 3, r X 2			
L12		()	Stop			
	LCD control bit	1		Operating			
		L11	L10	Duty		Bias	
L11		0 0			Not ava	ailable	
	LCD duty and bias selection bits		1	1/2		1/2	
L10			0	1/3		1/3	
		1	1	1/4		1/3	

	LCD control register L2	at	reset : 00002	at power down : state retained	W TL2A	
1.22	L23 SEG0/VLC3 pin function switch bit (Note 3)		SEG0			
L23			VLC3			
L22) SEG1			
	SEG1/VLC2 pin function switch bit (Note 4)	1	VLC2			
L21	SECo(1) of pip function switch bit (block 4)	0	SEG2			
LZ1	SEG2/VLC1 pin function switch bit (Note 4)	1	VLC1			
L20	Internal dividing resistor for LCD power		Internal dividing resistor valid			
	supply control bit	1	Internal dividing res	sistor invalid		

	LCD control register L3	at	t reset : 11112	at power down : state retained	W TL3A
1.20	L33 P23/SEG20 pin function switch bit		SEG20		
L33			P23		
L32	L32 P22/SEG19 pin function switch bit		SEG19		
L32		1	P22		
1.24	P21/SEC18 pin function switch bit	0	SEG18		
L31	L31 P21/SEG18 pin function switch bit		P21		
1.20	L30 P20/SEG17 pin function switch bit		SEG17		
L30	F20/3EGT/ pin function switch bit	1	P20		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

3: VLC3 is connected to VDD internally when SEG0 pin is selected.

4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Table 12 LCD control registers (2)

	LCD control register C1		t reset : 11112	at power down : state retained	W TC1A	
C10	C13 P03/SEG24 pin function switch bit		SEG24			
013			P03			
C12	C12 P02/SEG23 pin function switch bit		SEG23			
012		1	P02			
C14	P04/SEG22 pip function switch hit	0	SEG22			
	C11 P01/SEG22 pin function switch bit		P01			
C10	C10 P00/SEG21 pin function switch bit		SEG21			
C10			P00			

	LCD control register C2	at	t reset : 11112	at power down : state retained	W TC2A	
C22	C23 P13/SEG28 pin function switch bit -		SEG28			
023			P13			
C22	C22 P12/SEG27 pin function switch bit		0 SEG27			
022		1	P12			
<u></u>	C21 P11/SEG26 pin function switch bit		SEG26			
621			P11			
C20	C20 P10/SEG25 pin function switch bit		SEG25			
020		1	P10			

Note: "R" represents read enabled, and "W" represents write enabled.

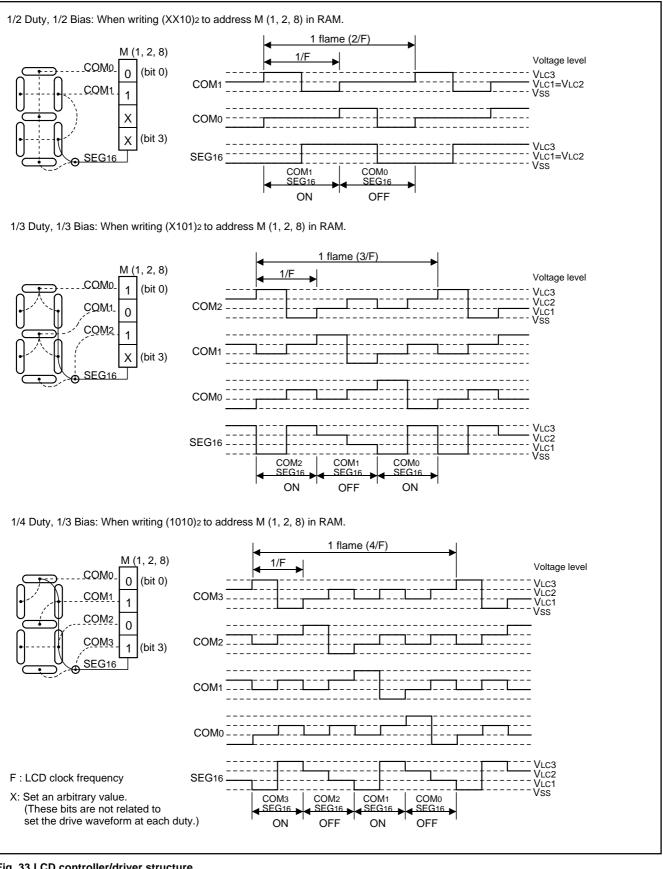


Fig. 33 LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power supply circuit suitable for the using LCD panel.

The LCD power supply circuit is fixed by the followings;

- The internal dividing resistor is controlled by bit 0 of register L2.
- The internal dividing resistor is selected by bit 3 of register L1.
- The bias condition is selected by bits 0 and 1 of register L1.

Internal dividing resistor

The 4552 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "0", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off. The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and

using bias condition, the resistor is prepared as follows;

- L13 = "0", 1/3 bias used: 2r X 3 = 6r
- L13 = "0", 1/2 bias used: 2r X 2 = 4r
- L13 = "1", 1/3 bias used: r X 3 = 3r
- L13 = "1", 1/2 bias used: r X 2 = 2r

●VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEG0 pin function is selected, VLC3 is connected to VDD internally.

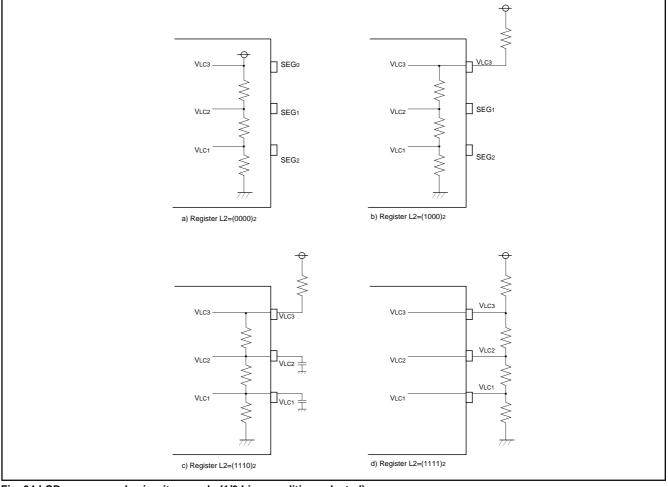
VLC2/SEG1, VLC1/SEG2 pin

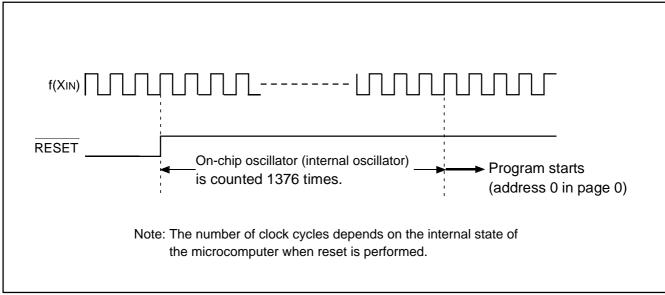
The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.

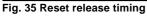
The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

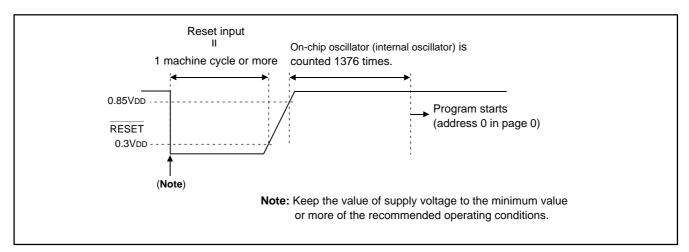
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

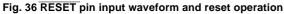
When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin have the same electric potential at 1/2 bias. When SEG1 and SEG2 pin functions are selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividing voltage.




Fig. 34 LCD power supply circuit example (1/3 bias condition selected)




RESET FUNCTION


System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

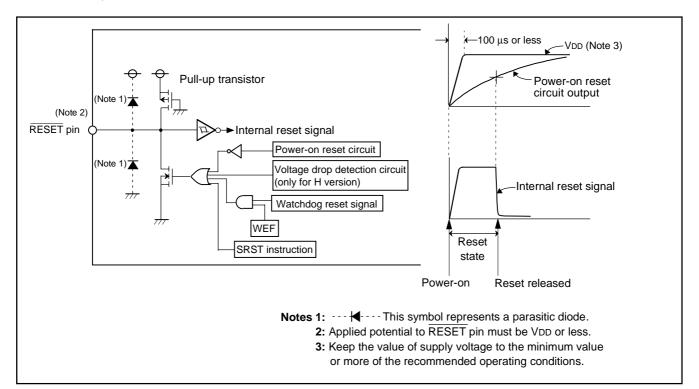


Fig. 37 Structure of reset pin and its peripherals,, and power-on reset operation

Table 13 Port state at reset

Name	Function	State
D0-D4	D0D4	High-impedance (Notes 1, 2)
D5/INT	D5	High-impedance (Notes 1, 2)
XCIN/D6, XCOUT/D7	XCIN, XCOUT	Sub-clock input
P00/SEG21-P03/SEG24	P00–P03	High-impedance (Notes 1, 2, 3)
P10/SEG25-P13/SEG28	P10-P13	High-impedance (Notes 1, 2, 3)
P20/SEG17-P23/SEG20	P20-P23	High-impedance (Notes 1, 2, 3)
SEG0/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VDD) level
SEG3-SEG12, SEG14-SEG16	SEG3–SEG12, SEG14–SEG16	VLC3 (VDD) level
COM0–COM3	COM0–COM3	VLC3 (VDD) level
C/CNTR	С	"L" (Vss) level

Notes 1: Output latch is set to "1."

2: Output structure is N-channel open-drain.

3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 38 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 38 are undefined, so set the initial value to them.

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register 11	
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer hags (WEF) , WEF2)	
Timer control register PA	
Timer control register V1	
-	
Timer control register W2	
Timer control register W3 Timer control register W4	
Timer control register W4	
Clock control register MR	
Clock control register RG	
LCD control register L1	
LCD control register L2	
LCD control register L3	
LCD control register C1	
LCD control register C2	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR2	0000
Carry flag (CY)	0
High-order bit reference enable flag (UPTF)	0
Register A	
Register B	
Register D	
Register E	X X X X X X X X X
• Register X	
• Register Y	
• Register Z	
Stack pointer (SP)	
Operation source clock	On-chip oscillator (operating)
Ceramic resonator circuit	
RC oscillation circuit	Stop
Quartz-crystal oscillator	Operating
-	
	"X" represents undefined.

Fig. 38 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

(1) SVDE instruction

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the power down mode. The SVDE instruction can be executed only once.

In order to release the execution of the SVDE instruction, the system reset is required.

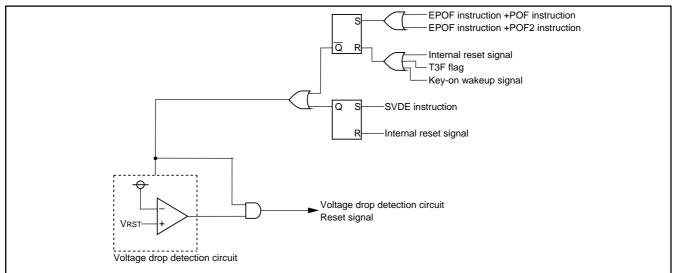
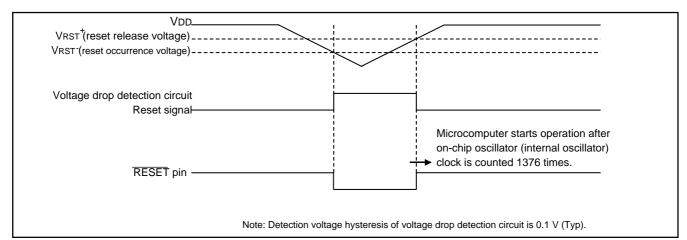
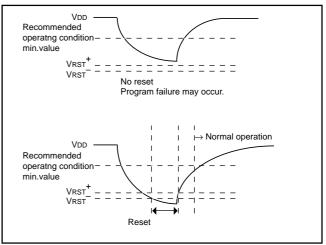
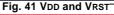



Fig. 39 Voltage drop detection reset circuit

Fig. 40 Voltage drop detection circuit operation waveform

(2) Note on voltage drop detection circuit


The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.


When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 41);

supply voltage does not fall below to VRST, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST⁻ and re-goes up after that.

POWER DOWN FUNCTION

The 4552 Group has 2-type power down functions. System enters into each power down state by executing the following instructions.

- Clock operating mode EPOF and POF instructions
- RAM back-up mode EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- LCD display
- Timer 3

(2) RAM back-up mode

- The following functions and states are retained.
- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 3 underflow occurs
- in the power down mode.
- In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

• reset pulse is input to $\overline{\text{RESET}}$ pin,

- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T3F flag.

Table 15 Functions and states retained at power down

	Power do	wn mode
Function	Clock	RAM
	operating	back-up
Program counter (PC), registers A, B,	x	х
carry flag (CY), stack pointer (SP) (Note 2)		
Contents of RAM	0	0
Interrupt control registers V1, V2	×	X
Interrupt control register I1	0	0
Selected oscillation circuit	0	0
Clock control register MR, RG	0	0
Timer 1 to timer 2 functions	(Note 3)	(Note 3)
Timer 3 function	0	0
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	X (Note 4)
Timer control registers PA	X	X
Timer control registers W1 to W4	0	0
LCD display function	0	(Note 5)
LCD control registers L1 to L3, C1, C2	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers	0	0
FR0 to FR2		
External interrupt request flag	X	X
(EXF0)		
Timer interrupt request flags (T1F, T2F)	(Note 3)	(Note 3)
Timer interrupt request flag (T3F)	0	0
Interrupt enable flag (INTE)	×	Х
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM

back-up, and set an initial value after returning.

2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.

- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed, this function is valid at power down.
- 7: In the RAM back-up mode, C/CNTR pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/ CNTR pin is in an input enabled state (output = high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 3 interrupt request flag (T3F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 16 shows the return condition for each return source.

(7) Control registers

• Key-on wakeup control register K0

Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

Key-on wakeup control register K1

Register K1 controls the return condition and the selection of valid waveform/level of port P1. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

• Key-on wakeup control register K2

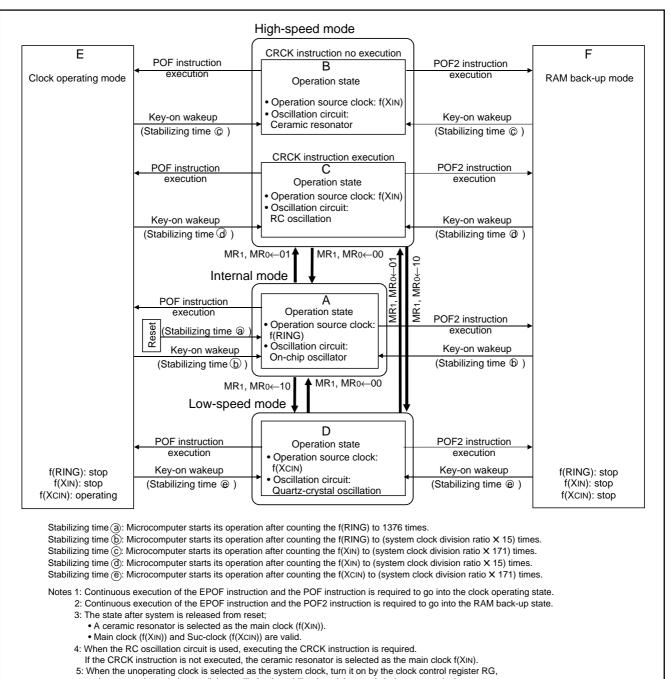
Register K2 controls the INT pin key-on wakeup function and the selection of return codition. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

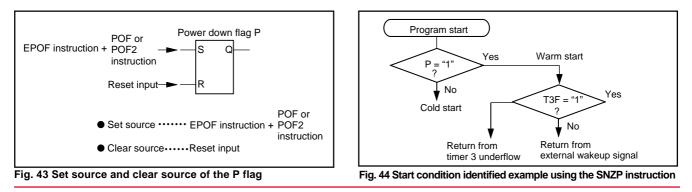
Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.


• External interrupt control register I1

Register 11 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TA11 instruction can be used to transfer the contents of register I1 to register A.

F	Return source	Return condition	Remarks
lal	Ports P00–P03	Return by an external falling edge ("H" \rightarrow "L").	The key-on wakeup function can be selected by two port unit.
wakeup signal	Ports P10–P13	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L"). Return by an external "L" level input.	The key-on wakeup function can be selected by two port unit. Select the re- turn level ("L" level or "H" level) and return condition (return by level or edge) with register K1 according to the external state before going into the power down state.
External w	INT pin	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L").	Select the return level ("L" level or "H" level) with register I1 and return con- dition (return by level or edge) with register K2 according to the external state before going into the power down state.
ш		When the return level is input, the in- terrupt request flag (EXF0) is not set.	
	er 3 interrupt lest flag (T3F)	Return by timer 3 underflow or by setting T3F to "1".	Clear T3F with the SNZT3 instruction before system enters into the power down state.
		It can be used in the clock operating mode.	When system enters into the power down state while T3F is "1", system re- turns from the state immediately because it is recognized as return condition.


Table 16 Return source and return condition

and generate the wait time until the oscillation is stabilized, and then, switch the system clock.

Key-on wakeup control register K0		a	t reset : 00002	at power down : state retained	R/W TAK0/ TK0A
K03	Port P12, P13 key-on wakeup	0	Key-on wakeup not	t used	
KU3	control bit	1	Key-on wakeup use	ed	
KOa	Port P10, P11 key-on wakeup	0	0 Key-on wakeup not used		
K02	control bit	1	Key-on wakeup use	ed	
K01	Port P02, P03 key-on wakeup	0	Key-on wakeup not used		
KU 1	control bit	1	Key-on wakeup use	ed	
KOa	Port P00, P01 key-on wakeup	0	Key-on wakeup not used		
K00	control bit	1 Key-on wakeup used			

Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

		•	They off walkeup use	a	
	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A
K13	Darte Dia, Dia return condition coloction bit	0	Returned by edge		
N 13	K13 Ports P12, P13 return condition selection bit		Returned by level		
K12	Ports P12, P13 valid waveform/level	0 Falling waveform/"L		L" level	
N 12	selection bit	1 Rising waveform/"H		l" level	
1/14	Deste D4a, D4a seture and differentiation bit	0	Returned by edge		
K11	Ports P10, P11 return condition selection bit	1	Returned by level		
K10	Ports P10, P11 valid waveform/level	0	Falling waveform/"L	" level	
K10	selection bit	1	Rising waveform/"H	l" level	

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A
K22	K23 Not used		This bit has no function, but read/write is enabled.		
1123				This bit has no function, but read/while is enabled.	
K2a	K22 Not used	0	This bit has no function, but read/write is enabled.		
r\22		1	This bit has no function, but read/while is enabled.		
Ka	INIT his return condition coloction bit	0	Returned by level		
K 21	K21 INT pin return condition selection bit		Returned by edge		
K20	INT his key on wekeup control hit	0	Key-on wakeup inva	alid	
r\20	INT pin key-on wakeup control bit	1	Key-on wakeup vali	id	

Note: "R" represents read enabled, and "W" represents write enabled.

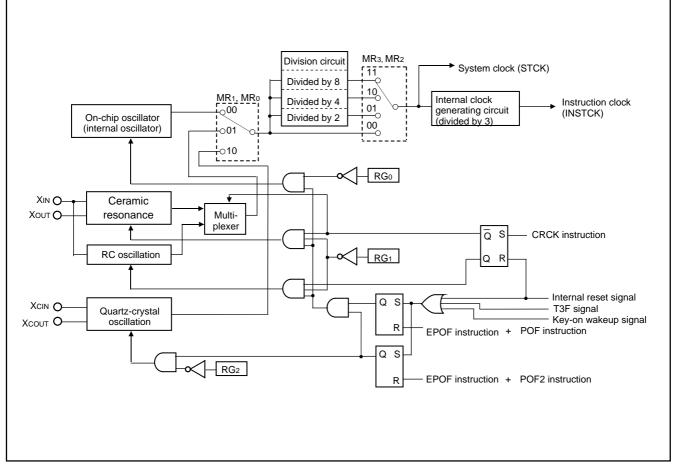
Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
P003	control bit	1	Pull-up transistor O	N	
DUOs	Port P02 pull-up transistor	0 Pull-up transistor OFF		FF	
PU02	control bit	1 Pull		N	
DU0/	Port P01 pull-up transistor	0 Pull-up transistor OFF			
PU01	control bit	1	Pull-up transistor O	N	
PU00	Port P00 pull-up transistor	0	Pull-up transistor O	FF	
P000	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		•	R/W [APU1/ [PU1A
PU13	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
P013	control bit	1	Pull-up transistor O	Ν	
DUIA	Port P12 pull-up transistor	0 Pull-up transistor C		DFF	
PU12	control bit	1 Pull-up transistor O		Ν	
	Port P11 pull-up transistor	0 Pull-up transistor OFF			
PU11	control bit	1	Pull-up transistor O	N	
PU10	Port P10 pull-up transistor	0	Pull-up transistor O	FF	
P010	control bit	1	Pull-up transistor O	N	

Interrupt control register I1		at reset : 00002		at power down : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disab	bled	
115		1	INT pin input enab	led	
110	Interrupt valid waveform for INT pin/		Falling waveform/"L" level ("L" level is recognized with the SNZI instruction)		
112	return level selection bit (Note 2)	1	Rising waveform/" instruction)	H" level ("H" level is recognized with	n the SNZI0
14.4	INIT ain adap dataption airquit control bit	0	One-sided edge de	etected	
111	I11 INT pin edge detection circuit control bit		Both edges detect	ed	
110	INT pin Timer 1 count start synchronous	0	Timer 1 count star	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

CLOCK CONTROL


- The clock control circuit consists of the following circuits.
- On-chip oscillator (internal oscillator)
- Ceramic resonator
- RC oscillation circuit
- Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 45 shows the structure of the clock control circuit.

The 4552 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4552 Group.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

Fig. 45 Clock control circuit structure

(1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

When the MCU operates by the ceramic resonator or the RC oscillator as the main clock (f(XIN)).

After system is released from reset, the ceramic oscillation is valid for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

The CRCK instruction can be executed only once.

Execute the CRCK instruction in the initial setting routine (executing it in address 0 in page 0 is recommended).

When the main clock (f(XIN)) is not used, connect XIN pin to VSS and leave XOUT pin open, and do not execute the CRCK instruction (Figure 47).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 48). Do not execute the CRCK instruction in program.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 49).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

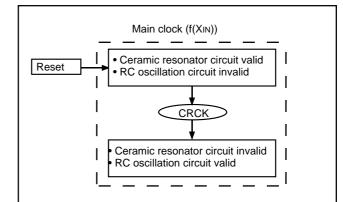


Fig. 46 Switch to ceramic resonance/RC oscillation

Fig. 47 Handling of XIN and XOUT when operating on-chip oscillator

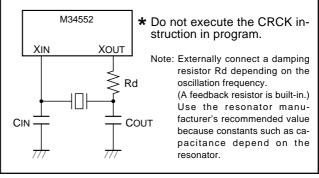


Fig. 48 Ceramic resonator external circuit

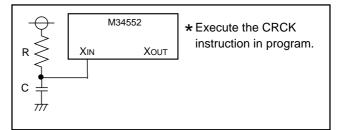


Fig. 49 External RC oscillation circuit

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. (Figure 50). Do not execute the CRCK instruction in program.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 51). XCIN pin and XCOUT pin are also used as ports D6 and D7, respectively. The sub-clock oscillation circuit is invalid and the function of ports D6 and D7 are valid by setting bit 2 of register RG to "1".

When sub-clock, ports D6 and D7 are not used, connect XCIN/D6 to Vss and leave XCOUT/D7 open.

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(8) Clock control register RG

Register RG controls the start/stop of each oscillation circuit. Set the contents of this register through register A with the TRGA instruction.

Table 18 Clock control registers

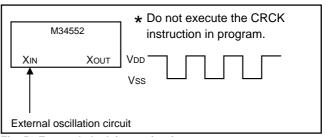
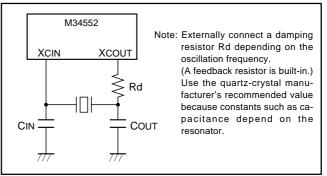
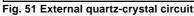




Fig. 50 External clock input circuit

ROM ORDERING METHOD

1.Mask ROM Order Confirmation Form*

2.Mark Specification Form*

3.Data to be written to ROM... one floppy disk.

* For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

Clock control register MR		at reset : 11002		at power down : state retained	R/W TAMR/ TMRA
	MR3	MR2		Operation mode	
	0	0	Through mode		
Operation mode selection bits		1	Frequency divided b	by 2 mode	
	1	0	Frequency divided by 4 mode		
	1	1	Frequency divided by 8 mode		
	MR1	MR0		System clock	
	0	0	f(RING)		
System clock selection bits (Note 2)	0	1	f(XIN)		
-	1	0	f(XCIN)		
	1	1	Not available (Note	3)	
	Operation mode selection bits	Operation mode selection bits MR3 0 1 1 1 System clock selection bits (Note 2)	MR3 MR2 0 0 0 1 1 0 1 1 <td>Operation mode selection bits MR3 MR2 0 0 Through mode 0 1 Frequency divided to 1 0 Frequency divided to 1 1 Frequency divided to 1 1 Frequency divided to 0 0 f(RING) 0 0 f(RING) 0 1 f(XcIN) 1 0 f(XcIN)</td> <td>MR3 MR2 Operation mode 0 0 1 Through mode 0 1 Frequency divided by 2 mode 1 0 Frequency divided by 4 mode 1 1 Frequency divided by 8 mode MR1 MR0 System clock 0 0 1 System clock selection bits (Note 2) 0 1</td>	Operation mode selection bits MR3 MR2 0 0 Through mode 0 1 Frequency divided to 1 0 Frequency divided to 1 1 Frequency divided to 1 1 Frequency divided to 0 0 f(RING) 0 0 f(RING) 0 1 f(XcIN) 1 0 f(XcIN)	MR3 MR2 Operation mode 0 0 1 Through mode 0 1 Frequency divided by 2 mode 1 0 Frequency divided by 4 mode 1 1 Frequency divided by 8 mode MR1 MR0 System clock 0 0 1 System clock selection bits (Note 2) 0 1

Clock control register RG		at reset : 0002		at power down : state retained	W TRGA
RG2	RG2 Sub-clock (f(Xcin)) control bit (Note 4)		Sub-clock (f(XCIN))	oscillation available, ports D6 and D	07 not selected
		1	Sub-clock (f(XCIN)) oscillation stop, ports D6 and D7 selected		
	RG1 Main-clock (f(XIN)) control bit (Note 4)		Main clock (f(XIN)) oscillation available		
RG1		1	Main clock (f(XIN)) oscillation stop		
	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f	(RING)) oscillation available	
RG0	(Note 4)	1 On-chip oscillator (f(RING)) oscillation stop			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: The stopped clock cannot be selected for system clock.

3: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.

4: The oscillation circuit selected for system clock cannot be stopped.

LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and

• use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

②Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

③Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

④ Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

5 Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

6 Timer count source

Stop timer 1, 2 and LC counting to change its count source.

⑦ Reading the count value

Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.

Writing to the timer

Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.

Writing to reload register R1, R2H

When writing data to reload register R1, reload register R2H while timer 1 or timer 2 is operating, avoid a timing when timer 1 or timer 2 underflows.

[®]Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.

10 Timer 3

Stop timer 3 counting to change its count source.

¹²Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

⁽³⁾Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1.

Multifunction

• Be careful that the output of port D5 can be used even when INT pin is selected.

The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used.

• Be careful that the "H" output of port C can be used even when output of CNTR pin are selected.

[®]Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

16 D5/INT pin

• Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 52⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 52⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 52⁽³⁾).

:								
LA	4	; (XXX02)						
TV1A		; The SNZ0 instruction is valid						
LA	8	; (1XXX2)						
TI1A		; Control of INT pin input is changed						
NOP								
SNZ0		; The SNZ0 instruction is executed						
		(EXF0 flag cleared)						
NOP								
:								
x :	X : these bits are not used here.							

Fig. 52 External 0 interrupt program example-1

• Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 53⁽¹⁾).

:	
LA 0	; (00 XX 2)
TI1A	; Input of INT disabled
DI	
EPOF	
POF2	; RAM back-up
:	
X : thes	se bits are not used here.

Fig. 53 External 0 interrupt program example-2

Note on bit 2 of register I1

When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 54⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 54@). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 54@).

:							
LA 4	; (XXX 02)						
TV1A	; The SNZ0 instruction is valid						
LA 12							
TI1A	; Interrupt valid waveform is changed						
NOP							
SNZ0	; The SNZ0 instruction is executed						
	(EXF0 flag cleared)						
NOP	3						
:							
X : the	X : these bits are not used here.						

Fig. 54 External 0 interrupt program example-3

POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

18 Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Voltage drop detection circuit (only in H version)

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 55);

supply voltage does not fall below to VRST⁻, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST⁻ and re-goes up after that.

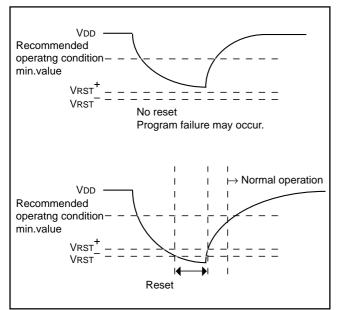


Fig. 55 VDD and VRST

Clock control

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). The oscillation circuit by the CRCK instruction can be selected only once.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

Difference between Mask ROM version and One Time PROM version Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an

electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)	
V13	V13 Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
V12		0	Interrupt disabled	(SNZT1 instruction is valid)	
V12	Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	Not used	0	This bit has an found in that we dont in the sheet of		
V I 1	Not used	1	This bit has no fun	ction, but read/write is enabled.	
V10	External 0 interrupt enable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
VIU		1	Interrupt enabled (SNZ0 instruction is invalid)	

Interrupt control register V2		at reset : 00002		at power down : 00002	R/W TAV2/TV2A
V23	V23 Not used	0	This bit has no function, but read/write is enabled.		
VZ3		1		otion, but road, write is chabled.	
1/20	V22 Not used	0	This bit has no function, but read/write is enabled.		
V22		1		clion, but read/write is enabled.	
1/0.	Not used	0	This bit has no function, but read/write is enabled.		
V21	Not used	1		clion, but read/write is enabled.	
\/Qa	Timer 3 interrupt enable bit	0	Interrupt disabled ((SNZT3 instruction is valid)	
V20		1	Interrupt enabled (SNZT3 instruction is invalid)	

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
113	INT pin input control bit (Note 2)	0	INT pin input disab	led	
113		1	INT pin input enab	led	
	Interrupt valid waveform for INT pin/ return level selection bit (Note 3)	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI0
112		1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI0
11.4	INT his adre detection circuit control hit	0	One-sided edge de	etected	
11	INT pin edge detection circuit control bit	1	Both edges detected	ed	
110	INT pin Timer 1 count start synchronous	0	Timer 1 count start	synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected		

	Clock control register MR		at reset : 11002		at power down : state retained TAMR/ TMRA
		MR3	MR2		Operation mode
MR3		0	0	Through mode	
	Operation mode selection bits	0	1	Frequency divided I	by 2 mode
MR2		1	0	Frequency divided I	by 4 mode
		1	1	Frequency divided	by 8 mode
		MR1	MR0		System clock
MR3	System clock selection bits (Note 3)	0	0	f(RING)	
		0	1	f(XIN)	
MR2		1	0	f(XCIN)	
		1	1	Not available (Note	4)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

3: The stopped clock cannot be selected for system clock. 4: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.

Clock control register RG		at reset : 0002		at power down : state retained	W TRGA	
RG2	RG2 Sub-clock (f(Xcin)) control bit (Note 2)		Sub-clock (f(XCIN))	oscillation available, ports D6 and D	D7 not selected	
1102		1	Sub-clock (f(XCIN))	Sub-clock (f(XCIN)) oscillation stop, ports D6 and D7 selected		
	Main-clock (f(XIN)) control bit (Note 2)	0	Main clock (f(XIN))	oscillation available		
RG1		1	Main clock (f(XIN))	oscillation stop		
	On-chip oscillator (f(RING)) control bit		On-chip oscillator (f	(RING)) oscillation available		
RG0	(Note 2)	1	On-chip oscillator (f	(RING)) oscillation stop		

Timer control register PA		at reset : 02		at power down : 02	W TPAA
PAo	Prescaler control bit	0	Stop (state initialized	ed)	
FAU		1	Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto	-stop circuit not selected	
	bit (Note 3)	· ·	1	Timer 1 count auto	-stop circuit selected	
W12	W/10	0		Stop (state retained)		
VVIZ	Timer 1 control bit	1		Operating		
		W11	W10		Count source	
W11		0	0	PWM signal (PWM	OUT)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10	(Note 4)	1	0	Timer 3 underflow signal (T3UDF)		
	· · ·	1	1	CNTR input		

	Timer control register W2		reset : 00002	at power down : 00002	R/W TAW2/TW2A
W23	W23 CNTR pin output control bit	0	CNTR pin output ir	nvalid	
1125		1	CNTR pin output v	alid	
W/22	W22 PWM signal interrupt valid waveform/ return level selection bit	0	PWM signal "H" interval expansion function invalid		
VVZZ		1	PWM signal "H" int	erval expansion function valid	
W21	Timor Q control bit	0	Stop (state retaine	d)	
VVZI	Timer 2 control bit	1	Operating		
W20	Times 0 sound source calestics hit	0	XIN input		
VV20	Timer 2 count soruce selection bit	1	Prescaler output (0	DRCLK)/2 signal output	

	Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	XCIN input		
1100	bit	-	1	Prescaler output (C	DRCLK)	
W32	Timer 3 control bit	0		Stop (Initial state)		
W02	Timer 3 control bit		1	Operating		
		W31	W30		Count source	
W31	Timer 2 count course colorition hits	0	0	Underflow occurs e	every 8192 counts	
	Timer 3 count source selection bits	0	1	Underflow occurs e	every 16384 counts	
W30		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs e	every 65536 counts	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: The oscillation circuit selected for system clock cannot be stopped.

3: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
4: Port C output is invalid when CNTR input is selected for the timer 1 count source.

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retaine	d)	
VV -1 3		1	Operating		
W42	W42 Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
VV 42	Timer Lo count source selection bit	1	System clock (STC	CK)	
W41	CNTR output auto-control circuit	0	CNTR output auto-	control circuit not selected	
VV41	selection bit		CNTR output auto-	control circuit selected	
W40		0	Falling edge		
vv40	CNTR pin input count edge selection bit	1	Rising edge		

	LCD control register L1		at	reset : 00002	at power dow	n : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	0)	2r X 3, 2r X 2			
L13	supply selection bit (Note 2)	1	1	r X 3, r X 2			
1.10	L12 I CD control bit	()	Stop			
LIZ	LCD control bit	0	1	Operating			
		L11	L10	Duty		Bias	
L11		0	0		Not av	ailable	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
		1	1	1/4		1/3	

	LCD control register L2	at	reset : 00002	at power down : state retained	W TL2A		
1.22	L23 SEG0/VLC3 pin function switch bit (Note 3)	0	0 SEG0				
LZS	SEGUVECS pir function switch bit (Note 3)	1	VLC3				
L22		0	0 SEG1				
	SEG1/VLC2 pin function switch bit (Note 4)	1 0 1 0 1	VLC2				
1.07		0	SEG2				
L21	SEG2/VLC1 pin function switch bit (Note 4)	1	VLC1				
1.20	Internal dividing resistor for LCD power	0 Internal dividing resi		sistor valid			
L20	supply control bit	1	Internal dividing res	sistor invalid			

	LCD control register L3	at reset : 11112		at power down : state retained	W TL3A
1.20	L33 P23/SEG20 pin function switch bit	0	SEG20		
L33		1	P23		
L32	L32 P22/SEG19 pin function switch bit	0	SEG19		
LJZ	1 22/3E 019 pin function switch bit	1	P22		
L31	P21/SEG18 pin function switch bit	0	SEG18		
LOT		1	P21		
L30	L30 P20/SEG17 pin function switch bit	0	SEG17		
L30	F20/3EG17 pin function switch bit	1	P20		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
3: VLC3 is connected to VDD internally when SEG0 pin is selected.

4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

	LCD control register C1	at	reset : 11112	at power down : state retained	W TC1A
C12	C13 P03/SEG24 pin function switch bit	0	SEG24		
013	1 03/0E024 pirrunetion switch bit	1	P03		
C12	C12 P02/SEG23 pin function switch bit	0	SEG23		
012	F 02/3E G23 pin function switch bit	1	P02		
C14	B04/SEC on pin function owitch hit	0	SEG22		
C11	P01/SEG22 pin function switch bit	1	P01		
C10	Doc/OFCost min function quitab hit	0	SEG21		
010	P00/SEG21 pin function switch bit	1	P00		

	LCD control register C2	at	t reset : 11112	at power down : state retained	W TC2A	
C22	C23 P13/SEG28 pin function switch bit	0	0 SEG28			
023		1	P13			
C20	C22 P12/SEG27 pin function switch bit	0	SEG27			
022		1	P12			
C21	P11/SEG26 pin function switch bit	0	SEG26			
621	F 173E G26 pin function switch bit	1	P11			
C20	C20 P10/SEG25 pin function switch bit	0	SEG25			
020		1	P10			

	Pull-up control register PU0	at	reset : 00002	at power down : state retained	R/W TAPU0/ TPU0A
DUIDO	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	Ν	
DUIDA	Port P02 pull-up transistor	0 Pull-up transistor OFF		FF	
PU02	control bit	1	Pull-up transistor O	N	
DU O.	Port P01 pull-up transistor	0 Pull-up transistor OFF		FF	
PU01	control bit	1	1 Pull-up transistor ON		
PU00	Port P00 pull-up transistor	0 Pull-up transistor OFF		FF	
P000	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1	at	reset : 00002	at power down : state retained	R/W TAPU1/ TPU1A
PU13	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
PU12	Port P12 pull-up transistor	0	0 Pull-up transistor OFF		
PUI2	control bit	1	1 Pull-up transistor ON		
PU11	Port P11 pull-up transistor	0	Pull-up transistor OFF		
PUT	control bit	1	Pull-up transistor ON		
PU10	Port P10 pull-up transistor	0	Pull-up transistor O	FF	
F010	control bit	1	Pull-up transistor O	N	

Note: "W" represents write enabled.

Por	t output structure control register FR0	at	reset : 00002	at power down : state retained	W TFR0A	
FR03	Ports P12, P13 output structure selection	0 N-channel open-drain		ain output		
FR03	bit	1	CMOS output			
FR02	Ports P10, P11 output structure selection	0	N-channel open-drain output			
FR02	bit	1	CMOS output			
FR01	Ports P02, P03 output structure selection	0	N-channel open-drain output			
FR01	bit	1	CMOS output			
FR00	Ports P00, P01 output structure selection	0	N-channel open-dra	ain output		
FR00	bit	1	CMOS output			

Por	t output structure control register FR1	at reset : 00002		at power down : state retained	W TFR1A		
	FR13 Port D3 output structure selection bit	0	N-channel open-drain output				
FR13		1	CMOS output				
	FR12 Port D2 output structure selection bit	0 N-channel open-drain output					
FR12		1	CMOS output				
FR11	Dant De autout atmusture calentian hit	0	N-channel open-drain output				
	Port D1 output structure selection bit	1	CMOS output				
	Dant Da autout atmenture calentian, kit	0	N-channel open-dra	ain output			
FR10	Port Do output structure selection bit	1	CMOS output				

Por	t output structure control register FR2	at	reset : 00002	at power down : state retained	W TFR2A		
FR23	Derte D20 D20 output atructure coloction bit	0	N-channel open-drain output				
FRZ3	Ports P22, P23 output structure selection bit	1	CMOS output				
FR22		0 N-channel open-drain output					
FR22	Ports P20, P21 output structure selection bit	1	CMOS output				
FR21	Dent De eutruit etmusture celection, hit	0	N-channel open-dra	ain output			
FR21	Port D5 output structure selection bit	1	CMOS output				
ED 20	Part D4 output atrusture colection, bit	0	N-channel open-dra	ain output			
FR20	Port D4 output structure selection bit	1	CMOS output				

Note: "W" represents write enabled.

	Key-on wakeup control register K0	at	reset : 00002	at power down : state retained	R/W TAK0/ TK0A
K03	Port P12, P13 key-on wakeup	0	Key-on wakeup not	used	
K03	control bit	1	Key-on wakeup use	ed	
K02	Port P10, P11 key-on wakeup	0 Key-on wakeup not used		used	
K02	control bit	1 Key-on wakeup used		ed	
K01	Port P02, P03 key-on wakeup	0			
K01	control bit	1	Key-on wakeup use	ed	
K00	Port P00, P01 key-on wakeup	0	Key-on wakeup not	used	
K00	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K1	at	reset : 00002	at power down : state retained	R/W TAK1/ TK1A	
K10	K13 Ports P12, P13 return condition selection bit	0	Returned by edge			
K13		1	Returned by level			
K12	Ports P12, P13 valid waveform/level	0	Falling waveform/"L	." level		
K12	selection bit	1	Rising waveform/"H	l" level		
1/14	Deste D4a, D4a estare en differencia destina bit	0	Returned by edge			
K11	Ports P10, P11 return condition selection bit	1	Returned by level			
K10	Ports P10, P11 valid waveform/level	0 Falling waveform/"L" level				
K10	selection bit	1	Rising waveform/"H	l" level		

	Key-on wakeup control register K2		reset : 00002	at power down : state retained	R/W TAK2/ TK2A			
K23	K23 Not used		This bit has no function, but read/write is enabled.					
1123		1						
K22	Not used	0	This bit has no function, but read/write is enabled.					
NZ2		1						
K21	INIT air actum condition colorities bit	0	Returned by level					
N Z1	INT pin return condition selection bit	1	Returned by edge					
K20	INIT nin kov on wakeun eentrel hit	0	Key-on wakeup invalid					
1\20	INT pin key-on wakeup control bit	1	Key-on wakeup valid					

Note: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The 4552 Group has the 124 (123) instructions. Each instruction is described as follows;

(1) Index list of instruction function

(2) Machine instructions (index by alphabet)

(3) Machine instructions (index by function)

(4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	Т3	Timer 3
V1	Interrupt control register V1 (4 bits)	TLC	Timer LC
V2	Interrupt control register V2 (4 bits)	T1F	Timer 1 interrupt request flag
11	Interrupt control register I1 (4 bits)	T2F	Timer 2 interrupt request flag
MR	Clock control register MR (4 bits)	T3F	Timer 3 interrupt request flag
RG	Clock control register RG (3 bits)	WDF1	Watchdog timer flag
PA	Timer control register PA (1 bit)	WEF	Watchdog timer enable flag
W1	Timer control register W1 (4 bits)	INTE	Interrupt enable flag
W2	Timer control register W2 (4 bits)	EXF0	External 0 interrupt request flag
	-	P	
W3	Timer control register W3 (4 bits)	٢	Power down flag
W4	Timer control register W4 (4 bits)		
L1	LCD control register L1 (4 bits)	D	Port D (8 bits)
L2	LCD control register L2 (4 bits)	P0	Port P0 (4 bits)
L3	LCD control register L3 (4 bits)	P1	Port P1 (4 bits)
C1	LCD control register C1 (4 bits)	P2	Port P2 (4 bits)
C2	LCD control register C2 (4 bits)	С	Port C (1 bit)
PU0	Pull-up control register PU0 (4 bits)		
PU1	Pull-up control register PU1 (4 bits)	х	Hexadecimal variable
FR0	Port output format control register FR0 (4 bits)	у	Hexadecimal variable
FR1	Port output format control register FR1 (4 bits)	z	Hexadecimal variable
FR2	Port output format control register FR2 (4 bits)	р	Hexadecimal variable
K0	Key-on wakeup control register K0 (4 bits)	n	Hexadecimal constant
K1	Key-on wakeup control register K1 (4 bits)	i	Hexadecimal constant
K2	Key-on wakeup control register K2 (4 bits)	j	Hexadecimal constant
Х	Register X (4 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
Y	Register Y (4 bits)		(same for others)
Z	Register Z (2 bits)		
DP	Data pointer (10 bits)	\leftarrow	Direction of data movement
	(It consists of registers X, Y, and Z)	\leftrightarrow	Data exchange between a register and memory
PC	Program counter (14 bits)	?	Decision of state shown before "?"
РСн	High-order 7 bits of program counter	()	Contents of registers and memories
PCL	Low-order 7 bits of program counter	_	Negate, Flag unchanged after executing instruction
SK	Stack register (14 bits X 8)	M(DP)	RAM address pointed by the data pointer
SP	Stack pointer (3 bits)	a	Label indicating address a6 a5 a4 a3 a2 a1 a0
CY	Carry flag	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
UPTF	High-order bit reference enable flag	p, a	in page p5 p4 p3 p2 p1 p0
RPS			Hex. C + Hex. number x
RFS	Prescaler reload register (8 bits) Timer 1 reload register (8 bits)	C +	
R3	Timer 3 reload register (8 bits)	x	
	Timer 2 reload register (8 bits)		
R2L	o ()		
R2H RLC	Timer 2 reload register (8 bits)		
	Timer LC reload register (4 bits)		

Note : Some instructions of the 4552 Group has the skip function to unexecute the next described instruction. The 4552 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page		Group- ing	Mnemonic	Function	Page
	ТАВ	$(A) \gets (B)$	88, 104			XAMI j	$(A) \leftarrow \to (M(DP))$	103, 104
			05 404		sfer		$(X) \leftarrow (X) EXOR(j)$	
	ТВА	$(B) \leftarrow (A)$	95, 104		tran		j = 0 to 15	
	TAY	$(A) \leftarrow (Y)$	94, 104		ster		$(Y) \gets (Y) + 1$	
			- , -		regi	тма і	$(M(DP)) \leftarrow (A)$	99, 104
	ΤΥΑ	$(Y) \gets (A)$	102, 104		1 to		$(X) \leftarrow (X) EXOR(j)$	
					RAM to register transfer		j = 0 to 15	
	TEAB	$(E_7-E_4) \leftarrow (B)$	96, 104	-				
Isfe		(E3–E0) ← (A)				LA n	$(A) \leftarrow n$	78, 106
trar	TABE	(B) ← (E7–E4)	89, 104				n = 0 to 15	
ister		(A) ← (E3–E0)				TABP p	$(SP) \leftarrow (SP) + 1$	89, 106
Register to register transfer							$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$	
er to	TDA	$(DR2-DR0) \leftarrow (A2-A0)$	96, 104				$(PCL) \leftarrow (DR2 - DR0, A3 - A0)$	
giste	TAD	(A2–A0) ← (DR2–DR0)	90, 104				at (UPTF) = 0 (B) ← (ROM(PC))7–4	
Re		$(A_2 A_0) \leftarrow (B_1 Z_2 B_1 C_0)$ $(A_3) \leftarrow 0$,				$(A) \leftarrow (ROM(PC))_{3-0}$	
							at (UPTF) = 1 (DR2) ← (0)	
	TAZ	(A1, A0) ← (Z1, Z0)	95, 104				$(DR1, DR0) \leftarrow (ROM(PC))9, 8$ (B) $\leftarrow (ROM(PC))7-4$	
		(A3, A2) ← 0					$(A) \leftarrow (ROM(PC))_{3-0}$	
	ТАХ	$(A) \leftarrow (X)$	94, 104				$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
		$(A) \leftarrow (A)$	0.,.0.					
	TASP	$(A_2 - A_0) \leftarrow (SP_2 - SP_0)$	92, 104			AM	$(A) \leftarrow (A) + (M(DP))$	73, 106
		(A3) ← 0			c	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	73, 106
	1.207	00 01 15	78, 104		atio		$(CY) \leftarrow Carry$	73, 100
	LXY x, y	$\begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array}$	70, 104		oper			
ses		(1) <- y y = 0 to 13			etic o	A n	$(A) \gets (A) + n$	73, 106
ress	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	79, 104		Arithmetic operation		n = 0 to 15	
RAM addresses			70 404			AND	$(A) \leftarrow (A) AND (M(DP))$	73, 106
AM	INY	$(Y) \leftarrow (Y) + 1$	78, 104					70, 100
	DEY	$(Y) \leftarrow (Y) - 1$	76, 104			OR	$(A) \gets (A) \; OR \; (M(DP))$	80, 106
		(1) <- (1) 1						
	ТАМ ј	$(A) \gets (M(DP))$	91, 104			SC	(CY) ← 1	83, 106
		$(X) \leftarrow (X) EXOR(j)$				RC	$(CY) \leftarrow 0$	81, 106
fer		j = 0 to 15						01, 100
ans	XAM j	$(A) \leftarrow \rightarrow (M(DP))$	103, 104			szc	(CY) = 0 ?	87, 106
er tr		$(X) \leftarrow (X) EXOR(j)$					_	
egist		j = 0 to 15				CMA	$(A) \leftarrow (\overline{A})$	75, 106
to re			103, 104			RAR	⊢→CY→A3A2A1A0	81, 106
RAM to register transfer	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$	100, 104					01,100
		$(X) \leftarrow (X) EXOR(j)$ j = 0 to 15						
		$(Y) \leftarrow (Y) - 1$						
		34552M4/M4H						

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page		Group- ing	Mnemonic	Function	Page
Bit operation	SB j	(Mj(DP)) ← 1 j = 0 to 3	83, 106			DI	$(INTE) \leftarrow 0$	76, 110
	RB j	(Mj(DP)) ← 0 j = 0 to 3	81, 106			EI SNZ0	$(INTE) \leftarrow 1$ V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) $\leftarrow 0$	77, 110 84, 110
	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	87, 106		-	SNZ10	V10 = 1: NOP	85, 110
rison ion	SEAM	(A) = (M(DP)) ?	84, 106		errupt operation		112 = 0 : (INT) = "L" ?	
Comparison operation	SEA n	(A) = n ? n = 0 to 15	84, 106			TAV1	$(A) \leftarrow (V1)$	93, 110
	Ва	(PC∟) ← a6–a0	74, 108			TV1A	$(V1) \leftarrow (A)$	101, 11
ration	BL p, a	(РСн) ← р	74, 108			TAV2	$(A) \leftarrow (V2)$	93, 110
Branch operation		(PCL) ← a6–a0				TV2A	$(V2) \leftarrow (A)$	101, 11
Branc	BLA p	BLA p $(PCH) \leftarrow p$ 74, 108 $(PCL) \leftarrow (DR2-DR0, A3-A0)$			TAI1	(A) ← (I1)	90, 110	
	BM a	(SP) ← (SP) + 1	74, 108			TI1A	(I1) ← (A)	97, 110
	Divid	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$				TPAA	$(PA) \leftarrow (A)$	99, 112
c		$(PCL) \leftarrow a6-a0$				TAW1	$(A) \leftarrow (W1)$	93, 112
Subroutine operation	BML p, a	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	75, 108			TW1A	(W1) ← (A)	101, 11
outine o		(PCH) ← p (PCL) ← a6–a0				TAW2	$(A) \leftarrow (W2)$	93, 112
Subr	BMLA p	(SP) ← (SP) + 1	75, 108			TW2A	(W2) ← (A)	102, 11
		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$			tion	TAW3	(A) ← (W3)	94, 112
		$(PCL) \leftarrow (DR2-DR0, A3-A0)$			Timer operation	TW3A	$(W3) \leftarrow (A)$	102, 11
	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	82, 108		Timer	TAW4	$(A) \leftarrow (W4)$	94, 112
	RT	(PC) ← (SK(SP))	82, 108			TW4A	(W4) ← (A)	102, 11
tion		$(SP) \leftarrow (SP) - 1$				TABPS	$(B) \leftarrow (TPS7-TPS4)$ $(A) \leftarrow (TPS3-TPS0)$	90, 112
	RTS	(PC) ← (SK(SP)) (SP) ← (SP) − 1	82, 108			TPSAB	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$	100, 11

p is 0 to 63 for M34552M8/M8H/G8/G8H.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page		oup- ing	Mnemonic	Function	Page
	TAB1	(B) ← (T17–T14)	89, 112			CLD	(D) ← 1	75, 114
		(A) ← (T13–T10)				RD	(D(Y)) ← 0	82, 114
	T1AB	(R17–R14) ← (B)	87, 112			ND	$(D(1)) \leftarrow 0$ (Y) = 0 to 7	02, 114
		(T17−T14) ← (B)						
		(R13–R10) ← (A)				SD	$(D(Y)) \leftarrow 1$	84, 114
		(T13–T10) ← (A)					(Y) = 0 to 7	
	1 I I I	(B) ← (T27–T24)	89, 112			SZD	(D(Y)) = 0 ?	87, 114
		(A) ← (T23–T20)					(Y) = 0 to 7	
	T2AB	(R27–R24) ← (B)	88, 112			RCP	(C) ← 0	81, 114
		$(T27-T24) \leftarrow (B)$	00,					0.,
		(R23–R20) ← (A)				SCP	(C) ← 1	83, 114
		(T23−T20) ← (A)				TAPU0	(A) ← (PU0)	92, 114
	T2HAB	(R2H7–R2H4) ← (B)	88, 112					02, 111
ion		$(R2H3\text{-}R2H0) \leftarrow (A)$			ation	TPU0A	$(PU0) \leftarrow (A)$	100, 114
Timer operation	TR1AB	R17–R14) ← (B)	100, 112		opera	TAPU1	(A) ← (PU1)	92, 114
ler ol		(R13–R10) ← (A)	,		tput			
Lin	TODOL		00 440	<u>(</u>	t/Out	TPU1A	$(PU1) \leftarrow (A)$	100, 114
	T2R2L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Input/Output operation	TAK0	(A) ← (K0)	90, 114	
	TLCA	$(LC) \leftarrow (A)$ $(RLC) \leftarrow (A)$	99, 112			TK0A	$(K0) \leftarrow (A)$	97, 114
		$(RLO) \leftarrow (A)$				TAK1	(A) ← (K1)	91, 114
	SNZT1	V12 = 0: (T1F) = 1 ?	85, 112					
		After skipping, (T1F) \leftarrow 0 V12 = 1: NOP				TK1A	(K1) ← (A)	97, 114
						TAK2	(A) ← (K2)	91, 114
	SNZT2	V13 = 0: (T2F) = 1 ?	85, 112			THOM		
		After skipping, (T2F) \leftarrow 0 V13 = 1: NOP				TK2A	(K2) ← (A)	98, 114
		ZT3 V20 = 0: (T3F) = 1 ? 86, 112			TFR0A	$(FR0) \leftarrow (A)$	96, 114	
	SNZT3		86, 112					00 444
		After skipping, (T3F) \leftarrow 0 V20 = 1: NOP				TFR1A	(FR1) ← (A)	96, 114
				-		TFR2A	$(FR2) \leftarrow (A)$	97, 114
	IAP0	(A) ← (P0)	77, 114			CRCK	RC oscillator selected	76, 116
Input/Output operation	OP0A	(P0) ← (A)	79, 114					70, 110
					c	TAMR	$(A) \leftarrow (MR)$	92, 116
	IAP1	(A) ← (P1)	77, 114	;	Clock operation	TMRA	(MR) ← (A)	99, 116
	OP1A	(P1) ← (A)	79, 114		c ope			00, 110
put/C			70 444		Clock	TRGA	$(RG) \leftarrow (A)$	101, 116
<u> </u>	IAP2	(A) ← (P2)	78, 114	`	-			
	OP2A	(P2) ← (A)	80, 114					
L		I					I	

Group- ing	Mnemonic	Function	Page
	TAL1	(A) ← (L1)	91, 116
	TL1A	(L1) ← (A)	98, 116
sration	TL2A	98, 116	
LCD operation	TL3A	(L3) ← (A)	98, 116
Ľ	TC1A	(C1) ← (A)	95, 116
	TC2A	$(C2) \leftarrow (A)$	95, 116
	NOP	(PC) ← (PC) + 1	79, 116
	POF	Transition to clock operating mode	80, 116
	POF2	Transition to RAM back-up mode	80, 116
	EPOF	POF, POF2 instructions valid	77, 116
uo	SNZP	(P) = 1 ?	85, 116
Other operation	DWDT Stop of watchdog timer function enabled SRST System reset		76, 116
Othe			86,116
	WRST	(WDF1) = 1 ? After skipping, (WDF1) \leftarrow 0	103, 116
	RUPT	$(UPTF) \leftarrow 0$	83, 116
	SUPT	(UPTF) ← 1	86, 116
	SVDE (Note)	At power down mode, voltage drop detection circuit valid	86, 116

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Note: The SVDE instruction can be used only for the H version.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

An (Add n	and accumulator)							
Instruction		Number of	Number of	Flag CY	Skip condition			
code	0 0 0 1 1 0 n n n ₂ 0 6 n ₁₆	words 1	cycles 1	-	Overflow = 0			
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation				
operation.	n = 0 to 15				the immediate field to			
					a result in register A.			
					g CY remains unchanged.			
					ction when there is no			
					t of operation.			
					struction when there is t of operation.			
AM (Add a	ccumulator and Memory)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	$\begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \end{vmatrix}$	words	cycles					
		1	1	-	-			
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation				
•			: Adds the	contents o	f M(DP) to register A.			
			Stores the result in register A. The contents					
			of carry flag CY remains unchanged.					
	accumulator, Memory and Carry)		Number					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition			
code	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	1	1	0/1	_			
				67.1				
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: Arithmetic operation						
	$(CY) \leftarrow Carry$	Description			f M(DP) and carry flag			
		CY to register A. Stores the result in r						
			ter A and c	arry flag C	Y.			
AND (logic	al AND between accumulator and memory)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 0 1 1 0 0 0 0 1 8	words	cycles		•			
		1	1	-	-			
Operation:	$(A) \leftarrow (A) AND (M(DP))$	Grouping:	Arithmetic	operation				
operation.	$(X) \leftarrow (X)$ AND $(W(DP))$	Grouping: Arithmetic operation Description: Takes the AND operation between the contents of register A and the contents of						
		M(DP), and stores the result in regist						

B a (Branch	n to address a)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	words	cycles				
		1	1	-	-		
Operation:	$(PCL) \leftarrow a6 \text{ to } a0$	Grouping:	Branch op	eration			
•		Description			: Branches to address		
			a in the ide				
		Note:	Specify the	e branch a	ddress within the page		
			including t	his instruct	ion.		
BL p, a (Bra	anch Long to address a in page p)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 ^E +p p ₁₆	words	cycles				
		2	2	-	_		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Grouping:	Branch op	eration			
Operation:	$(PCH) \gets p$	Description	: Branch out	t of a page	: Branches to address		
	$(PCL) \leftarrow a6 to a0$		a in page p				
		Note:	Note: p is 0 to 31 for M34552M4/M4H and p is to 63 for M34552M8/M8H/G8/G8H.				
			to 63 for M	1345521018/	M8H/G8/G8H.		
	rach Lang to address (D) + (A) in page p)						
Instruction	nch Long to address (D) + (A) in page p)	Number of	Number of		Olvin condition		
		Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 0 0 1 0 0 0 0 2 0 1 0 16	2	2	_	_		
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆						
		Grouping:	Branch op				
Operation:	$(PCH) \leftarrow p$	Description			: Branches to address		
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$		(DR2 DR1 DR0 A3 A2 A1 A0)2 specified by				
		Nete	registers D				
		Note:	•	p is 0 to 31 for M34552M4/M4H and p is 0 to 63 for M34552M8/M8H/G8/G8H.			
RM a (Bran	ch and Mark to address a in page 2)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	riay CT	Skip condition		
	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a ₁₆	1	1	-	_		
Operation:	$(SP) \leftarrow (SP) + 1$	Grouping: Subroutine call operation					
	$(SK(SP)) \leftarrow (PC)$	Description: Call the subroutine in page 2 : Calls the					
	$(PCH) \leftarrow 2$	subroutine at address a in page 2.					
	(PCL) ← a6–a0	Note: Subroutine extending from page 2 to an-					
					be called with the BM		
		instruction when it starts on p					
					the stack because the		
			maximum i		routine nesting is 8.		

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)
--

BML p, a (Branch and Mark Long to address a in page p)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 p+ p 1 ₆	2	2	_			
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p a a 16						
		Grouping:	Subroutine				
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine at		
	$(SK(SP)) \leftarrow (PC)$	Note:	address a i		52M4/M4H and p is 0		
	(PCH) ← p (PCL) ← a6–a0	Note.	•		M8H/G8/G8H.		
	$(FOL) \leftarrow ab-ab$				the stack because the		
			maximum l	evel of sub	routine nesting is 8.		
BMLA p (B	ranch and Mark Long to address (D) + (A) in page ())					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 1 0 0 0 0 2 0 3 0 16	words	cycles				
		2	2	-	-		
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping: Subroutine call operation					
Operation:	$(SP) \leftarrow (SP) + 1$: Call the su	broutine :	Calls the subroutine at		
	$(SK(SP)) \leftarrow (PC)$		address (DR2 DR1 DR0 A3 A2 A1 A0)2 spec				
	$(PCH) \gets p$		fied by registers D and A in page p.				
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:	p is 0 to 31 for M34552M4/M4H and p is 0 to 63 for M34552M8/M8H/G8/G8H.				
					M8H/G8/G8H.		
					routine nesting is 8.		
			maximam				
CLD (CLea	· · ·	I					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 0 0 1 0 0 1 2 0 1 1 1	1	1	_			
Operation:	(D) ← 1	Grouping: Input/Output operation					
		Description	: Sets (1) to	port D.			
CMA (CoM	plement of Accumulator)	•					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C 16	words	cycles				
		1	1	-	-		
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping: Arithmetic operation					
		Description: Stores the one's complement for register					
			A's content	ts in regist	er A.		
		1					

CRCK (Clo	ck select: Rc oscillation ClocK)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 1 1 0 1 1 2 9 B te	words	cycles			
	10100100110011022200016	1	1	-	-	
Operation:	RC oscillation circuit selected	Grouping:	Clock cont	rol operation	วท	
					llation circuit for main	
			clock f(XIN)).		
DEY (DEcr	ement register Y)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	Ũ	·	
	0 0 0 0 0 1 0 1 1 1 2 0 1 1 16	1	1	-	(Y) = 15	
Operation:	$(Y) \leftarrow (Y) - 1$	Grouping:	RAM addr	esses		
			h: Subtracts	1 from the	contents of register Y.	
			As a resu	It of subtr	action, when the con-	
				-	15, the next instruction	
		is skipped. When the contents of register Y				
			is not 15, t	he next in	struction is executed.	
DI (Disable	Interrupt)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 0 0 0 0 1 0 0 2 0 0 4 16	1	1	-		
Operation:	$(INTE) \leftarrow 0$	Grouping:		antrol oner	ation	
operation.		Grouping: Interrupt control operation Description: Clears (0) to interrupt enable flag INTE, and				
			disables th			
		Note:			by executing the DI in-	
			struction a	fter execut	ing 1 machine cycle.	
DWDT (Dis	able WatchDog Timer)					
Instruction code	D9 D0 1 0 1 0 0 1 1 1 0 0 2 9 C	Number of words	Number of cycles	Flag CY	Skip condition	
Code		1	1	-	-	
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation		
		Description: Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.				

EI (Enable	Interrupt)					
Instruction code	D9 D0 D0 0 0 0 1 0 1 0 5 16	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0 0 0 0 0 1 0 1 2 0 0 5 16	1	1	-	_	
Operation:	$(INTE) \leftarrow 1$	Grouping:	Interrupt co	ontrol oper	ation	
•		Description	: Sets (1) to	interrupt	enable flag INTE, and	
		Nata	enables th	•		
		Note:			by executing the EI in- ing 1 machine cycle.	
			on donom d			
	able POF instruction)	i				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 0 1 1 0 1 1 ₂ 0 5 B ₁₆	1	1	_		
		I	I	_	-	
Operation:	POF instruction, POF2 instruction valid	Grouping:	Other oper			
		Description			e after POF instruction valid by executing the	
			EPOF inst		valid by executing the	
	t Accumulator from port P0)	1		I		
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 1 0 0 0 0 0 0 ₂ 2 6 0 ₁₆	1	1	_	-	
Operation:	(A) ← (P0)	Grouping:	Input/Outp	out operatio	מנ	
•••••					f port P0 to register A.	
		_				
IAP1 (Inpu	t Accumulator from port P1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 0 0 0 1 ₂ 2 6 1 ₁₆	words	cycles			
		1	1	-	_	
Operation:	$(A) \leftarrow (P1)$	Grouping: Input/Output operation				
		Description: Transfers the input of port P1 to register A.				

IAP2 (Input	t Aco	cum	ulate	or froi	n po	ort P	2)													
Instruction	D9								D0	_					Number of	Number of	Flag CY	Skip condition		
code	1	0	0	1 1	0	0	0	1	0		2	6	2	16	words	cycles				
	L				_			-		12					1	1	-	-		
Operation:	(Δ)	← (F	22)												Grouping:	Input/Outp		'n		
Operation.	(~)	() —	2)															f port P2 to register A.		
															Decemption		ino input o			
INY (INcrer	nen	t rec	niste	rY)																
Instruction	D9	102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,					Do						Number of	Number of	Flag CY	Skip condition		
code	0	0	0	0 0	1	0	0	1	1	1	0	1	3		words	cycles		Chip contaition		
	U	U	U	0 0	'	0	0			2	0	'	5	16	1	1	_	(Y) = 0		
																		. ,		
Operation:	(Y)	(۲) →	′) + 1												Grouping:	RAM addr	esses			
															Description			s of register Y. As a re-		
																		hen the contents of		
																		e next instruction is		
															skipped. When the contents of register Y is not 0, the next instruction is executed.					
		Δ.		1.1.1	<u>,</u>															
LA n (Load			cum	ulatol)										I					
Instruction	D9	1					T		D0	1		1	_	-	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆							1	1	_	Continuous									
																I		description		
Operation:	(A)	← n													Grouping:	Arithmetic	operation			
-	n =	0 tc	15												Description	: Loads the	value n in	the immediate field to		
																register A.				
																When the	LA instruc	tions are continuously		
															coded and executed, only the first LA struction is executed and other					
																	ns code	d continuously are		
																skipped.				
LXY x, y (l	oac	l reg	jiste	r X aı	nd Y	' with	h x	and	y)											
Instruction	D9								D0	_					Number of	Number of	Flag CY	Skip condition		
code	1	1	х3	x2 x	1 X(о уз	y2	2 y1	y0	2	3	x	y	16	words	cycles				
					1	1	-	Continuous												
Operation:	(X)	/ v	x - (0 to 15											0		<u> </u>	description		
operation.				0 to 15											Grouping: Description	RAM addr		the immediate field to		
	(.)	, j	, ,											register X, and the value y in the immediate						
														field to register Y. When the LXY ins tions are continuously coded and exect only the first LXY instruction is exec				•		
																		•		
													and other LXY instructions co							
																ously are				
															1	-				

LZ z (Load	register Z with z)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	0 0 0 1 0 0 1 0 z1 z0 0 4 8 +z 16	words	cycles			
		1	1	-	-	
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addr	esses		
oporation					the immediate field to	
			register Z.			
NOP (No C	DPeration)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	words	cycles			
		1	1	-	-	
Operation:	(PC) ← (PC) + 1	Grouping:	Other ope	ration		
					1 to program counter	
			value, and	l others rer	nain unchanged.	
ODA (0)						
	put port P0 from Accumulator)					
Instruction		Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 0 0 0 0 2 2 2 0 16	1	1	_		
			•			
Operation:	$(P0) \leftarrow (A)$	Grouping:	Input/Outp	out operation	n	
		Description: Outputs the contents of register A to port P0.				
OP1A (Out	put port P1 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	- J		
		1	1	-	-	
Oneration		O mournin mu	line must/Outer			
Operation:	$(P1) \leftarrow (A)$	Grouping: Description		out operation		
		Description: Outputs the contents of register A to port P1.				

OP2A (Out	put port P2 from Accumulator)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 0 0 1 0 0 0 1 0 ₂ 2 2 2 ₁₆	words	cycles				
		1	1	_	-		
Operation:	$(P2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n		
		Description		ne content	s of register A to port		
			P2.				
OR (logica	OR between accumulator and memory)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 1 1 0 0 1 2 0 1 9 16	words	cycles 1	_			
Operation:	$(A) \leftarrow (A) \text{ OR } (M(DP))$	Grouping:	Arithmetic				
		Description		•	tion between the con-		
			tents of register A and the content M(DP), and stores the result in register				
POF (Pow	er OFf)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 0 0 0 1 0 2 0 0 16	words	cycles 1	_	_		
		· ·	•				
Operation:	Transition to clock operating mode	Grouping: Other operation Description: Puts the system in clock operating mode by					
		Description	,	Puts the system in clock operating mode by executing the POF2 instruction after ex-			
			ecuting the				
		Note:			n is not executed before		
			-		tion, this instruction is instruction.		
POF2 (Pov	ver OFf2)	1					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0	words	cycles 1				
			I				
Operation:	Transition to RAM back-up mode	Grouping:	Other oper				
		Description		-	RAM back-up state by 2 instruction after ex-		
			ecuting the				
		Note:			n is not executed before		
		executing this instruction, this ins equivalent to the NOP instruction.					

RAR (Rota	te Accumulator Right)					
Instruction code	D9 D0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0	Number of words	Number of cycles	Flag CY	Skip condition	
_		1	1	0/1	-	
Operation:	→CY→A3A2A1A0	Grouping:	Arithmetic	operation		
		Description			ontents of register A in-	
			cluding the right.	e contents	of carry flag CY to the	
RB j (Rese	et Bit)					
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition	
COUE	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	_	
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operati	on		
	j = 0 to 3	Description			nts of bit j (bit specified	
		by the value j in the immediate field) of M(DP).				
RC (Reset	Carry flag)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	words	cycles	0		
					_	
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic		- 01/	
		Description	: Clears (0)	to carry ha	g C Y.	
RCP (Rese	et Port C)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 1 0 0 0 1 1 0 0 ₂ 2 8 C ₁₆	1	1	0	-	
Operation:	$(C) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	n	
		Description: Clears (0) to carry flag CY.				

RD (Reset	port D specified by register Y)						
Instruction code	D9 D0 0 0 0 0 0 1 0 1 0 0 0 1 4 0	Number of words	Number of cycles	Flag CY	Skip condition		
coue	0 0 0 0 0 1 0 1 0 0 2 0 1 4 16	1	1	-	-		
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	n		
	However,			to a bit of p	oort D specified by reg-		
	(Y) = 0 to 7		ister Y.				
RT (ReTuri	n from subroutine)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	0 0 0 1 0 0 1 0 0 1 0 0 2 0 4 4 16	words	cycles				
		1	2	_	-		
Operation:	$(PC) \gets (SK(SP))$	Grouping:	Return ope	eration			
	$(SP) \leftarrow (SP) - 1$	Description	: Returns f called the		outine to the routine		
	n from Interrupt)						
Instruction		Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 0 0 1 1 0 2 0 4 6 16	1	1	-	-		
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration			
	$(SP) \leftarrow (SP) - 1$	Description: Returns from interrupt service routine to					
		main routine. Returns each value of data pointer (X,					
					, NOP mode status by		
			the continuous description of the L				
			and register B to the				
PTS (RaTu	rn from subroutine and Skip)		states just		inupi.		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code		words	cycles	i lag e i			
	16	1	2	-	Skip at uncondition		
Operation:	$(PC) \gets (SK(SP))$	Grouping: Return operation					
	$(SP) \leftarrow (SP) - 1$	Description: Returns from subroutine to the routine					
			called the struction a		, and skips the next in- on.		

Instruction code Ds Ds Ds Number of values o	RUPT (Res	set UPTF flag)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Flag CY	Skip condition
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	code	0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0			-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Operation:	$(UPTF) \leftarrow 0$	Groupina:	Other oper	ration	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: Clears (0)	to the hig	h-order bit reference
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SB j (Set B	it)				
Operation: (Mj(DP)) \leftarrow 1 Grouping: Bit operation $j = 0$ to 3 $j = 0$ to 3 Description: Sets (1) the contents of bit j (bit specified bit the value j in the immediate field) of M(DP) SC (Set Carry flag) Instruction D9 D0 Number of vords Number of vords Skip condition code 0 0 0 0 0 1 1 2 0 7 16 Number of vords Skip condition code 0 0 0 0 0 1 1 1 1 $-$ Operation: (CY) $\leftarrow 1$ Grouping: Arithmetic operation Description: Sets (1) to carry flag CY. Skip condition scole 1 1 0 0 1 0 1 0 1 0 1 0 1 1 $ -$ ScP (Set Port C) Instruction code 1 0 0 1 0 1 0 1 1 1 $ -$ code 1	Instruction	D9 D0			Flag CY	Skip condition
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1	1	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Operation:			: Sets (1) th	e contents	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SC (Set Ca	arry flag)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Number of	Number of	Elon CV	Skin condition
Operation: $(CY) \leftarrow 1$ Grouping: Arithmetic operation Description:Arithmetic operation Description:SCP (Set Port C)Instruction codeD9 1 0 1 0 0 0 1 1 0 1 2D0 2 8 D 16Number of Number of 1 1 1 1 -Flag CY Skip condition Skip conditionOperation:(C) $\leftarrow 1$ Grouping:Input/Output operation			words	cycles		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	1	1	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Operation:	$(CY) \leftarrow 1$				CY.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SCP (Set P	Port C)				
Operation: (C) $\leftarrow 1$ 1 1 - -		1 0 1 0 0 0 1 1 0 1 2 8 D			Flag CY	Skip condition
		2 16	1	1	-	-
	Operation:	(C) ← 1				

When V10 = 1: This instruction is equiva-

lent to the NOP instruction.

code00010111	SD (Set po	rt D specified by register Y)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Flag CY	Skip condition		
(Y) = 0 to 7Description: Sets (1) to a bit of port D specified by ter Y.SEA n (Skip Equal, Accumulator with immediate data n)Instruction codeDe 0 0 0 1 1 0 1 0 1 0 1 0 2 0 2 5 16 0 0 1 1 1 1 n n n n 2 0 7 n 16Operation:(A) = n (A) = n (A) = n 7 n = 0 to 15Operation:(A) = n 7 (A) = n 2Number of wordsNumber of vordsNumber of vordsNumber of vordsNumber of vordsOperation:(A) = n 1 n = 0 to 15De o 0 0 1 1 0 0 1 1 0 2O 2 6 16Operation:Number of n he mot instruction when th tents of register A is equal to the value the immediate field.SEAM (Skip Equal, Accumulator with Memory)Instruction wordsNumber of wordsNumber of wordsNumber of wordsNumber of wordsNumber of Number of Number of Number of Number of Number of Number of Number of register A is not equal to the value the instruction when th tents of register A is not equal to the value tents of register A is not equal to the value tents of register A is not equal to the value tents of register A is equal to the colt M(DP).SNZO (Skip if Non Zero condition of external 0 interrupt request flag)Instruction merotionDe o 0 0 0 1 1 1 0 0 2 0 0 0 0 0 1 1 1 0 0 2 <th col<="" th=""><th></th><th>0 0 0 0 0 1 0 1 0 1 2 0 1 5 16</th><th>1</th><th>1</th><th>-</th><th>-</th></th>	<th></th> <th>0 0 0 0 0 1 0 1 0 1 2 0 1 5 16</th> <th>1</th> <th>1</th> <th>-</th> <th>-</th>		0 0 0 0 0 1 0 1 0 1 2 0 1 5 16	1	1	-	-	
(Y) = 0 to 7Description: Sets (1) to a bit of port D specified by ter Y.SEA n (Skip Equal, Accumulator with immediate data n)InstructionDescription: Sets (1) to a bit of port D specified by ter Y.CodeDescription: Sets (1) to a bit of port D specified by ter Y.Comparison operationOperation:(A) = n (A) = n ? n = 0 to 15Comparison operationDescription: Skips the next instruction when th tents of register A is equal to the vali the immediate field.SEAM (Skip Equal, Accumulator with Memory)Instruction De codeO 0O 1O 2 0Fileg CY wordsSkip condition codeSEAM (Skip Equal, Accumulator with Memory)Instruction modeDe modeOperation: Skips the next instruction when th tents of register A is equal to the vali the immediate field.SEAM (Skip Equal, Accumulator with Memory)Instruction wordsNumber of wordsNumber of wordsNumber of wordsNumber of stip conditionSecient (A) = (M(DP)) ?Operation: (A) = (M(DP)) ?Operation: Grouping: Comparison operation Description:SMZD (Skip if Non Zero condition of external 0 interrupt request flag)Instruction mords <th <="" colspan="2" th=""><th>Operation:</th><th>$(D(Y)) \leftarrow 1$</th><th>Grouping:</th><th>Input/Outp</th><th>ut operatio</th><th>้า</th></th>	<th>Operation:</th> <th>$(D(Y)) \leftarrow 1$</th> <th>Grouping:</th> <th>Input/Outp</th> <th>ut operatio</th> <th>้า</th>		Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp	ut operatio	้า
Instruction code $D_{2} = D_{2} = D_$			Description		a bit of po	rt D specified by regis-		
Instruction code $D_{2} = D_{2} = D_$	SFA n (Sk	in Foual Accumulator with immediate data n)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Instruction				Flag CY	Skip condition		
Operation: (A) = n ? n = 0 to 15 Description: Skips the next instruction when the tents of register A is equal to the value the immediate field. SEAM (Skip Equal, Accumulator with Memory) Instruction Description: Number of cycles Number of cycles Code 0 0 1 1 - (A) = (M(DP)) ? Operation: (A) = (M(DP)) ? Grouping: Comparison operation Operation: (A) = (M(DP)) ? Grouping: Comparison operation Description: Skips the next instruction when the tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is equal to the value tents of register A is not equal to the value tents of register A is not equal to the value tents of register A is not equal to the value tents of register A is not equal to the value tents of the register A is not equal to the value tents of register A is not equal to the value tents of register A is not equal to the value tents of tents of the register A is not equal to the value tents of tents tents of the register A is not equal to the value tents of tents of tents tents tents of tents tents tents of tents tents tents tent			2	2	-	(A) = n n = 0 to 15		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 0 0 1 1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	Grouping:	Compariso	on operatio	n		
Instruction codeD9D0 0Number of 0 Number of vordsFlag CY vordsSkip conditionOperation:(A) = (M(DP)) ? 0 1 0 1 1 0 1 1 $-$ (A) = (M(DP))Operation:(A) = (M(DP)) ?Grouping: Comparison operationComparison operation Description:Skips the next instruction when the tents of register A is equal to the content M(DP). Executes the next instruction when the tents of register A is not equal to contents of M(DP).SNZ0 (Skip if Non Zero condition of external 0 interrupt request flag)Number of 	Operation:		Descriptior	tents of re the immed Executes tents of re	gister A is liate field. the next in gister A is	equal to the value n in struction when the con- not equal to the value n		
Instruction codeD9D0 0Number of 0 Number of vordsFlag CY vordsSkip conditionOperation:(A) = (M(DP)) ? 0 1 0 1 1 0 1 1 $-$ (A) = (M(DP))Operation:(A) = (M(DP)) ?Grouping: Comparison operationComparison operation Description:Skips the next instruction when the tents of register A is equal to the content M(DP). Executes the next instruction when the tents of register A is not equal to contents of M(DP).SNZ0 (Skip if Non Zero condition of external 0 interrupt request flag)Number of wordsNumber of vordsFlag CY Skip conditionInstruction codeD9D0 0 1 1 0 0 2 0 3 8 Operation:V10 = 0: (EXFO) = 1 ? After skipping, (EXFO) \leftarrow 0 (V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)Grouping: Interrupt operation Description:When V10 = 0 : Skips the next instruction wordsComparison operation Comparison operation	SEAM (Sk	ip Equal, Accumulator with Memory)						
Image: Comparison operationOperation: (A) = (M(DP)) ?Grouping: Comparison operationDescription: Skips the next instruction when the tents of register A is equal to the content $M(DP)$.SNZO (Skip if Non Zero condition of external 0 interrupt request flag)Instruction codeD9D0 00011002030111-V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) <- 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)Comparison operation Grouping:Interrupt operationDo wordsOperation:V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) <- 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)Interrupt operation Bescription:Description:When V10 = 0 : Skips the next instruction words	Instruction				Flag CY	Skip condition		
$\begin{array}{c} \textbf{SNZ0} (Skip \text{ if Non Zero condition of external 0 interrupt request flag)} \\ \hline \textbf{SNZ0} (Skip \text{ if Non Zero condition of external 0 interrupt request flag)} \\ \hline \textbf{Instruction} \\ \hline \textbf{Description:} \\ \hline \textbf{SNZ0} (Skip \text{ if Non Zero condition of external 0 interrupt request flag)} \\ \hline \textbf{Instruction} \\ \hline \textbf{Description:} \\ \hline \textbf{Description:} \\ \hline \textbf{SNZ0} (Skip \text{ if Non Zero condition of external 0 interrupt request flag)} \\ \hline \textbf{Instruction} \\ \hline \textbf{Description:} \\ \hline \textbf{Description:} \\ \hline \textbf{SNZ0} (Skip \text{ if Non Zero condition of external 0 interrupt request flag)} \\ \hline \textbf{Instruction} \\ \hline \textbf{Description:} \\ \hline \textbf{Description:} \\ \hline \textbf{V10} = 0: (EXF0) = 1? \\ \hline \textbf{After skipping, (EXF0)} \leftarrow 0 \\ \hline \textbf{V10} = 1: SNZ0 = NOP \\ \hline (V10: bit 0 of the interrupt control register V1) \\ \hline \textbf{SNZ0} (V10: bit 0 of the interrupt control register V1) \\ \hline \textbf{Description:} \\ \hline \textbf{V10} = 0: Skips the next instruction when the ternal 0 interrupt request flag is "1." After skipping, clears (0) to the start of the skipping start of the interrupt control register V1) \\ \hline \textbf{Description:} \\ \hline \textbf{V10} = 0: Skips the next instruction when the ternal 0 interrupt request flag is "1." After skipping, clears (0) to the start of the interrupt control register V1) \\ \hline \textbf{Description:} \\ \hline \textbf{V10} = V$			1	1	-	(A) = (M(DP))		
$\begin{array}{c} \mbox{tents of register A is equal to the control M(DP).} \\ \mbox{Executes the next instruction when the tents of register A is not equal to contents of M(DP).} \\ \mbox{Executes the next instruction when the tents of register A is not equal to contents of M(DP).} \\ \mbox{Instruction} & \begin{tabular}{cccccccccccccccccccccccccccccccccccc$	Operation:	(A) = (M(DP)) ?	Grouping:	Compariso	on operatio	ิท		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Descriptior	tents of re M(DP). Executes tents of	gister A is the next in register A	equal to the contents of struction when the con-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SNZ0 (Ski	p if Non Zero condition of external 0 interrupt reques	st flag)					
Operation: $V10 = 0$: (EXF0) = 1 ? After skipping, (EXF0) $\leftarrow 0$ V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)Grouping:Interrupt operationDescription:When $V10 = 0$: Skips the next instr when external 0 interrupt request flag is "1." After skipping, clears (0) to the					Flag CY	Skip condition		
After skipping, $(EXF0) \leftarrow 0$ Description:When $V10 = 0$: Skips the next instr when external 0 interrupt request flag is "1." After skipping, clears (0) to the $V10 = 1: SNZ0 = NOP$ is "1." After skipping, clears (0) to the			1	1	-	V10 = 0: (EXF0) = 1		
flag. When the EXF0 flag is "0," exe the next instruction.	Operation:	After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP		when V10 when exte is "1." Afte flag. When) = 0 : Skij rnal 0 inter r skipping, n the EXF	rupt request flag EXF0 clears (0) to the EXF0		

SNZIO (Skip	o if Non Zero condition of external 0 Interrupt input p	oin)					
Instruction code	D9 D0 0 0 0 0 1 1 1 0 1 0 0 0 3 A 4	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	l12 = 0 : (INT) = "L" l12 = 1 : (INT) = "H"		
Operation: SNZP (Skip Instruction	I12 = 0 : (INT) = "L" ? I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1) o if Non Zero condition of Power down flag) D9 D0	Grouping: Description	Description: When I12 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H." When I12 = 1 : Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L."				
code	0 0 0 0 0 0 0 0 1 1 2 0 0 3 16	words 1	cycles 1	-	(P) = 1		
Operation:	(P) = 1 ?	Grouping: Description	"1". After skip changed.	next instruction	ction when the P flag is P flag remains un- nstruction when the P		
SNZT1 (Sk	ip if Non Zero condition of Timer 1 interrupt request	flag)					
Instruction code	D9 D0 1 0 1 0 0 0 0 0 0 0 0 2 2 8 0 16	Number of words	Number of cycles 1	Flag CY	Skip condition V12 = 0: (T1F) = 1		
Operation:	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0 V12 = 1: SNZT1 = NOP (V12 = bit 2 of interrupt control register V1)	Grouping: Descriptior	when time "1." After flag. Wher next instru	e = 0 : Ski er 1 interru skipping, n the T1F f ction. e = 1 : This	ps the next instruction upt request flag T1F is clears (0) to the T1F lag is "0," executes the s instruction is equiva- uction.		
SNZT2 (Sk	ip if Non Zero condition of Timer 2 interrupt request	flag)					
Instruction code	D9 D0 1 0 1 0 0 0 0 0 1 2 8 1 16	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	-	V13 = 0: (T2F) = 1		
Operation:	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP (V13 = bit 3 of interrupt control register V1)	Grouping: Descriptior	when time "1." After flag. Wher next instru	s = 0 : Ski er 2 interru skipping, n the T2F f ction. s = 1 : This	ps the next instruction upt request flag T2F is clears (0) to the T2F lag is "0," executes the s instruction is equiva- uction.		

SNZT3 (Sk	ip if Non Zero condition of Timer 3 interrupt request	flag)			
Instruction code	D9 D0 1 0 1 0 0 0 0 1 0 2 8 2 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 0 0 0 1 0 2 2 0 2 16	1	1	-	V20 = 0: (T3F) = 1
Operation:	V20 = 0: (T3F) = 1 ? After skipping, (T3F) \leftarrow 0 V20 = 1: SNZT3 = NOP (V20 = bit 0 of interrupt control register V2)	Grouping: Description	when time "1." After flag. When next instru	= 0 : Skip r 3 interru skipping, the T3F fl ction. = 1 : This	os the next instruction pt request flag T3F is clears (0) to the T3F ag is "0," executes the instruction is equiva- uction.
	tem ReSeT)	1			
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	System reset occurrence	Grouping:	Other oper : System res		
SUBT (Sot	UPTF flag)				
Instruction	•	Number of	Number of	Flog CV	Skip condition
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	Flag CY	
Operation:	(UPTF) ← 1	Grouping:	Other oper		
		Description	: Sets (1) to flag.	high-orde	r bit reference enable
SVDE (Se	Voltage Detector Enable flag)				
Instruction code	D9 D0 1 0 1 0 0 1 0 0 1 1 2 2 9 3 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	Voltage drop detection circuit valid at powerdown mode.	Grouping: Description Note: This in	powerdow RAM back	rop detect n mode (c -up mode)	tion circuit is valid at clock operating mode, only for H version.

SZB j (Skip	o if Zero, Bit)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 j j ₂ 0 2 j ₁₆	words 1	cycles 1	_	(Mj(DP)) = 0
Oneretien		0	D't an anati		j = 0 to 3
Operation:	(Mj(DP)) = 0 ? j = 0 to 3	Grouping:	Bit operation		uction when the con-
] = 0.10.5	Description	•		cified by the value j in
					of M(DP) is "0."
					struction when the con-
			tents of bit	j of M(DP)) is "1."
SZC (Skip	if Zero, Carry flag)	1			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	$\begin{vmatrix} 0 & 0 & 0 & 0 \end{vmatrix}$ 0 1 0 1 1 1 1 1 $\begin{vmatrix} 1 \\ 2 & 0 \end{vmatrix}$ 2 F $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	words	cycles		
		1	1	-	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic	operation	
•		Description	n: Skips the	next instr	ruction when the con-
			tents of ca	nrry flag CY	' is "0."
				ping, the	CY flag remains un-
			changed.		
					struction when the con-
			tents of the	ecrilagi	5 1.
	if Zero, port D specified by register Y)				
Instruction		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 0 2 0 2 4 16	2	2		(D(Y)) = 0
		2	2		(D(T)) = 0 (Y) = 0 to 7
	0 0 0 0 1 0 1 0 1 0 <u>1</u> <u>0</u>				
Operation:	(D(Y)) = 0?	Grouping:	Input/Outp		
	(Y) = 0 to 7	Description			ction when a bit of port or Y is "0." Executes the
					the bit is "1."
T1AB (Tra	nsfer data to timer 1 and register R1 from Accumula	tor and reg	gister B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		-
		1	1	-	-
Operation:	(T17−T14) ← (B)	Grouping:	Timer ope	ration	
oporation	$(R17-R14) \leftarrow (B)$	Description			nts of register B to the
	$(T13-T10) \leftarrow (A)$		high-orde	r 4 bits of	timer 1 and timer 1 re-
	$(R13-R10) \leftarrow (A)$		-		ansfers the contents of
			•		-order 4 bits of timer 1
			and timer	1 reload re	egister R1.

	INSTRUCTIONS (INDEX BY ALPHABET)	•	,		
	nsfer data to timer 2 and register R2 from Accumula	, °	, ,		
Instruction code	D9 D0 1 0 0 0 1 1 0 0 0 1 2 3 1	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	_
Operation:	$(R2L7-R2L4) \leftarrow (B)$	Grouping:	Timer oper	ation	
•	$(T27-T24) \leftarrow (B)$	Description			nts of register B to the
	$(R2L3-R2L0) \leftarrow (A)$				imer 2 and timer 2 re-
	$(T23-T20) \leftarrow (A)$		-		ansfers the contents of
			-		order 4 bits of timer 2
			-		gister R2L.
					9
T2HAB (Tr	ansfer data to register R2H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
		1	1	-	-
		. .			
Operation:	$(R2H7-R2H4) \leftarrow (B)$	Grouping:	Timer oper		nts of register B to the
	$(R2H_3-R2H_0) \leftarrow (A)$	Description			timer 2 and timer 2 re-
			-		ansfers the contents of
					-order 4 bits of timer 2
			-		gister R2H.
T2R2L (Tra	ansfer data to timer 2 from register R2L)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 0 1 ₂ 2 9 5 ₁₆	words	cycles		
		1	1	-	-
Onenetiens	$(T_{2}, T_{2}) = (D_{2}) = D_{2} = 0$	Grouping:	Timer ope	ration	
Operation:	$(T27-T20) \leftarrow (R2L7-R2L0)$	Description			ents of reload register
		Description	R2L to tim		
				01 2.	
TAD /Tran	ofer data to A councilator from register D)				
Instruction	sfer data to Accumulator from register B)	Number of	Number of		Olvin equalities
		words	cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 ₂ 0 1 E ₁₆		-		
		1	1	-	-
Operation:	$(A) \leftarrow (B)$	Grouping:	Register to	register t	ransfer
					ts of register B to reg-
			ister A.		- <u>-</u>

TAB1 (Trar	isfer o	Jata t	o Ac	cum	nula	ator a	and r	egis	ter	B fr	om	timer	1)			
Instruction	D9		-					Do)				Number of	Number of	Flag CY	Skip condition
code	1	0 0	1	1	1	0	0 0) 0	7	2	7	0	words	cycles		-
			<u> </u>	<u> </u>		•			2		.	16	1	1	-	-
Operation:	(B) ←	- (T17-	-T14))									Grouping:	Timer ope	ration	
		- (T13-											Description			rder 4 bits (T17–T14) of
	()	`	,										••••	timer 1 to	-	
																der 4 bits (T13-T10) of
														timer 1 to		
															0	
TAB2 (Trar	nsfer o	lata t	o Ac	ccum	nula	ator a	and r	egis	ter	B fr	om	timer	2)			
Instruction	D9							Do)				Number of	Number of	Flag CY	Skip condition
code	1	0 0	1	1	1	0	0 0) 1		2	7	1	words	cycles		
			1						2			16	1	1	-	-
Operation:	(B) ←	- (T27-	- T 24))									Grouping:	Timer ope	ration	
		- (T23-											Description			rder 4 bits (T27-T24) of
													-	timer 2 to	-	, , , , , , , , , , , , , , , , , , ,
														Transfers	the low-or	der 4 bits (T23-T20) of
														timer 2 to	register A.	
								!-	4	D 4-						
TABE (Trar			0 AC	cun	IUIa	ator a	ina r	-		BIL	om	regist	· · · ·	Number		
Instruction	D9) 				Number of words	Number of cycles	Flag CY	Skip condition
code	0	0 0	0	1	0	1	0 1	0	2	0	2	A 16				
													1	1	_	-
Operation:	(B) ←	- (E7–E	=4)										Grouping:	Register to	register tr	ansfer
	. ,	- (E3–E	,										Description			order 4 bits (E7–E4) of
													• • •		-	B, and low-order 4 bits
														of register	-	
														-	-	
TABP p (Tr	ansfe	r dat:	a to	Δοοι	umi	ilato	r and		niet	or R	fro	m Pro	aram mem	orv in nade	2 D)	
Instruction	D9		0		<u></u>	aiato				ם .כ			Number of	Number of	Flag CY	Skip condition
code									٦		8		words	cycles		emp containen
	0	0 1	0	p 5	p4	рз	p2 p	01 pc	2	0	8 +p	p16	1	3	_	_
Onenetiens																
Operation: (SP) \leftarrow (SP) +	· 1									ing:		Arithme	tic operation			
$(SK(SP)) \leftarrow (F)$										iptio = 0: 7		sfers bit	s 7 to 4 to ree	dister B and b	oits 3 to 0 t	o register A. These bits
$(PCH) \leftarrow p (N)$ $(PCL) \leftarrow (DR2)$		A3–A0)					9 to	o 0 c	are tl	he R	OM pa	ttern in ad-dr			A2 A1 A0)2 specified by
at (UPTF) = 0		at (U	ÍPTF') = 1								D in pag		ter D hite 7 t	o 4 to regi	ster B and bits 3 to 0 to
$(B) \leftarrow (ROM)$ $(A) \leftarrow (ROM)$	2C))7-4 2C))3-0			(0) 30) ←	(RO		;))a s									s (DR2 DR1 DR0 A3 A2
	2,,0 0	(B) ←	– (R0	О́М(Р	°Č))7	7 —4	,,,5, 8	A1	A0)2	2 spe	cified	d by reg	jisters A and I	D in page p.		
				OM(P SK(SF		3—0		NO								34552M8/M8H/G8/G8H. ver the stack because 1
		(SP)	→ (\$	SR(Sr SP) –	1								gister is used.			

TABPS (Tr	ansfer data to Accumulator and register B from Pre-	Scaler)			
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 1 1 0 1 0 1 ₂ 2 7 5 ₁₆	1	1	-	-
Operation:	$(B) \leftarrow (TPS7-TPS4)$	Grouping:	Timer oper	ation	
	(A) ← (TPS3–TPS0)		TPS4) of	prescale ne low-ord	order 4 bits (TPS7– r to register B, and er 4 bits (TPS3–TPS0) er A.
TAD (Trans	sfer data to Accumulator from register D)				
Instruction code	D9 D0 0 0 1 0 1 0 0 0 1 0 5 1 10	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(A_2-A_0) \leftarrow (DR_2-DR_0)$	Grouping:	Register to	register tr	ansfer
	$(A_3) \leftarrow 0$	Description			ts of register D to the
		Note:			Ao) of register A.
		Note:			a) of register A.
	sfer data to Accumulator from register I1)	I			
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 1 <u>2</u> 2 5 3 ₁₆	1	1	_	-
Operation:	$(A) \leftarrow (I1)$	Grouping:	Interrupt op	peration	
		Description			nts of interrupt control
			register I1	to register	A.
	nsfer data to Accumulator from register K0)	1			
Instruction code	D9 D0 1 0 0 1 0 1 0 1 1 0 2 5 6 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(A) ← (K0)	Grouping:	Input/Outp		
		Description	: Transfers control reg		nts of key-on wakeup register A.

MACHINE INSTRUCTIONS ((INDEX BY ALPHABET)) ((continued))
	(/ 1		ε.

TAK1 (Trar	nsfer data to Accumulator from register K1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 1 1 0 0 1 2 5 9	words	cycles			
	1 0 0 1 0 1 1 0 0 1 2 2 0 0 16	1	1	-	-	
Operation:	(A) ← (K1)	Grouping:	Input/Outp	ut operatio	 on	
			n: Transfers	the conte	nts of key-on wakeup	
			control reg	jister K1 to	o register A.	
	sfor data to Accumulator from register (2)					
Instruction	Isfer data to Accumulator from register K2)	Number of	Number of	Elon CV	Skip condition	
code		words	cycles	Flag CY	Skip condition	
COUE	1 0 0 1 0 1 1 0 1 ₂ <u>2 5 A</u>	1	1	_	_	
Operation:	$(A) \leftarrow (K2)$	Grouping:	Input/Outpu			
		Description			nts of key-on wakeup	
			control regi	ster K2 to	register A.	
TAL1 (Trar	nsfer data to Accumulator from register L1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code		words	cycles	Ŭ	•	
		1	1	-	-	
Operation:	$(A) \leftarrow (L1)$	Grouping:	LCD contr	ol operatio	n	
operation.		Description			ts of LCD control regis-	
			ter L1 to re			
I AIVI J (I ran	esfer data to Accumulator from Memory)	Number of	Number of	Flag CY	Skip pondition	
		words	cycles	Flag C Y	Skip condition	
code	1 0 1 1 0 0 j j j ₂ <u>2 C j</u> ₁₆	1	1	_		
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg			
	$(X) \leftarrow (X) EXOR(j)$	Description		-	contents of M(DP) to	
	j = 0 to 15				sive OR operation is	
			performed between register X and the value j in the immediate field, and stores the re-			
			sult in regis		and, and stores the re-	

TAMR (Tra	nsfer data to Accumulator from register MR)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 0 ₂ 2 5 2 ₁₆	words	cycles		
		1	1	-	-
Operation:	$(A) \leftarrow (MR)$	Grouping:	Clock oper	ation	
					ts of clock control reg-
			ister MR to	o register A	
TAPU0 (Tra	ansfer data to Accumulator from register PU0)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 1 2 2 5 7 16	words	cycles		
		1	1	-	_
Oneration		Grouping:	Input/Outp	ut operatio	<u></u>
Operation:	(A) ← (PU0)				nts of pull-up control
			register PL		
	ansfer data to Accumulator from register PU1)				
Instruction		Number of	Number of	Flag CY	Skip condition
code		words	cycles	r lag or	
	1 0 0 1 0 1 1 1 0 2 2 5 E 16	1	1	_	_
		Grouping	Input/Outp		
Operation:	$(A) \leftarrow (PU1)$	Grouping: Description	Input/Outp : Transfers		nts of pull-up control
			register PL		
TASP (Trar	nsfer data to Accumulator from Stack Pointer)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
		1	1	-	-
Operation:	$(A_2-A_0) \leftarrow (SP_2-SP_0)$	Grouping:	Pogistor to	rogistor tr	ansfor
	$(A_2 - A_0) \leftarrow (SF_2 - SF_0)$ $(A_3) \leftarrow 0$		Register to : Transfers t		s of stack pointer (SP)
					s (A2–A0) of register A.
		Note:			n is executed, "0" is
			stored to th	ne bit 3 (Aa	a) of register A.

TAV1 (Trar	nsfer data to Accumulator from register V1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	1	-	-
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt o	peration	
•		Description			nts of interrupt control
		-	register V1	l to registe	r A.
			0	U	
TAV2 (Trar	nsfer data to Accumulator from register V2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 0 1	words	cycles		
		1	1	-	_
Operation:	(A) ← (V2)	Grouping:	Interrupt o	peration	
		Description	n: Transfers	the conte	nts of interrupt control
			register V2	2 to registe	er A.
TAW1 (Tra	nsfer data to Accumulator from register W1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	0	
		1	1	-	_
Operation:	$(A) \leftarrow (W1)$	Grouping:	Timer ope		
		Description			ts of timer control reg-
			ister W1 to	o register A	۱.
TAW2 (Tra	nsfer data to Accumulator from register W2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	words	cycles		
		1	1	-	-
Operation:	(A) ← (W2)	Grouping:	Timer ope	ration	
oporationi	()) (())	Description			its of timer control reg-
			ister W2 to		-
				- 3.010.7	
		1			

TAW3 (Trai	nsfe	r da	ta to	o Ac	cur	nul	ator	fror	n re	egist	ter	W:	3)						
Instruction	D9									D0						Number of	Number of	Flag CY	Skip condition
code	1	0	0	1	0	0	1	1	0	1	<u> </u>	2	4	D	c	words	cycles		
	L										2 ∟			1	0	1	1	-	_
Operation:	(A)	← (V	V3)													Grouping:	Timer oper	ration	
-																s of timer control reg-			
														•	ister W3 to		-		
TAW4 (Tra	nsfe	r da	ita t	o Ac	ccur	mul	ator	fror	m r	egis	ter	W	4)						
Instruction	D9									D0						Number of	Number of	Flag CY	Skip condition
code	1	0	0	1	0	0	1	1	1	0	Γ	2	4	E 1	_	words	cycles		
			-		-					-	2∟			1	6	1	1	-	-
Operation:	(A)	← (\	N4)													Grouping:	Timer ope	ration	
																Description	: Transfers	the conten	ts of timer control reg-
																	ister W4 to	o register A	
TAX (Trans		data	to <i>i</i>	Accı	umu	ulat	or fr	om	reg	jiste	r X)				1		, I	
Instruction	D9	-								D0	_					Number of words	Number of	Flag CY	Skip condition
code	0	0	0	1	0	1	0	0	1	0	2	0	5	2	6		cycles		
																1	1	-	-
Operation:	(A)	← ()	()													Grouping:	Register to	o register tr	ansfer
-	()	. (-,													Description			ts of register X to reg-
																	ister A.		
TAY (Trans	fer c	lata	to A	Accu	ımu	ulate	or fro	om I	reg	ister	rY)								
Instruction	D9									D0	_					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	0	1	1	1	1	1	2	0	1	F 1	6	words	cycles		
	L			I			I I				2 [1	0	1	1	-	-
Operation:	(A)	← (Y	<i>'</i>)													Grouping:	Register to	register tr	ansfer
•	()		,													Description		-	s of register Y to regis-
																•	ter A.		0 0

Instruction

Operation:

code

D9

0

 $(\mathsf{B}) \leftarrow (\mathsf{A})$

0 0

Skip condition

_

TAZ (Trans	sfer da	ata 1	to A	ccu	ımι	lat	or fr	om	reg	jiste	rZ))						
Instruction code	D9	0	0	4	0	4		0	4	D0	Г	0	5	2	Number of words	Number of cycles	Flag CY	Skip condition
	0	0	0	1	0	1	0	0	I	1	2	0	5	3_ ₁₆	1	1	-	_
Operation:	(A1, A	4 0) ←	— (Z1	1, Z0))										Grouping:	Register to	register t	ransfer
	(Аз, А	\ 2)	- 0												Description	: Transfers	the conte	nts of register Z to the
																	· · ·	Ao) of register A.
															Note:			on is executed, "0" is order 2 bits (A3, A2) of
																register A.		
															1			

D0

0

2

0

0

Е

16

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TBA (Transfer data to register B from Accumulator)

0 0 0 1 1 1

TC1A (Trar	nsfei	' da	ta t	o re	gist	ter (C1 f	rom	n Ac	cur	nu	lato	r)						
Instruction code	D9	0	1	0	1	0	1	0	0	D0 0		2	A	8		Number of words	Number of cycles	Flag CY	Skip condition
	Ľ	0		U				0	•	Ŭ	2				16	1	1	-	-
Operation:	(C1)←	(A)													Grouping: Descriptior	LCD contr Transfers LCD contr	the conte	nts of register A to the

Number of

words

1

Grouping:

Number of

cycles

1

ter B.

Flag CY

_

Register to register transfer Description: Transfers the contents of register A to regis-

TC2A (Tra	nsfei	r da	ta to	o re	gist	er (C2 f	ron	n Ac	cun	nula	atoi	r)						
Instruction	D9									Do						Number of	Number of	Flag CY	Skip condition
code	1	0	1	0	1	0	1	0	0	1		2	Α	9	16	words	cycles		
	L										12 L				110	1	1	-	-
Operation:	(C2	<u>?</u>) ←	(A)													Grouping:	LCD contr	ol operatio	n
																Description	: Transfers	the conte	nts of register A to the
																	LCD contr	ol register	C2.

TDA (Trans	sfer data to register D from Accumulator and register	r B)			
Instruction code	D9 D0 0 0 0 0 1 0 1 0 1 0 2 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping:	Register to	-	
		Description	n: Transfers register A		rder 3 bits (A2-A0) of D.
TEAB (Tra	nsfer data to register E from Accumulator and regist	ter B)			
Instruction code	D9 D0 0 0 0 0 1 1 0 1 0 2 0 1 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(E_7-E_4) \leftarrow (B)$	Grouping:	Register t		
	$(E_3-E_0) \leftarrow (A)$	Descriptio			nts of register B to the
			-		r–E4) of register E, and ster A to the low-order 4
			bits (E3–E	0) of regis	ter E.
TFR0A (Tra	ansfer data to register FR0 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 ₂ 2 2 8 ₁₆	1	1	_	-
Operation:	$(FR0) \leftarrow (A)$	Grouping:	Input/Outp	out operation	วท
		Description			nts of register A to the control register FR0.
TFR1A (Tra	ansfer data to register FR1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 1 0 1 0 1 2 2 9 0	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	-
Operation:	$(FR1) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	on
		Description			nts of register A to the control register FR1.

TFR2A (Tra	ansfer data to register FR2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 0 ₂ 2 2 A ₁₆	words	cycles		
		1	1	_	_
Operation:	$(FR2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description			ts of register A to the
			port output	structure o	control register FR2.
	sfer data to register I1 from Accumulator)	1		11	
Instruction code	D9 D0 1 0 0 0 1 0 1 1 1 2 1 7 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 1 1 2 2 1 1 16	1	1	-	-
Operation:	(I1) ← (A)	Grouping:	Interrupt o		
		Descriptior		the conten of register I	ts of register A to inter-
	nsfer data to register K0 from Accumulator)		Number		
Instruction code	D9 D0 1 0 0 0 1 1 0 1 1 2 1 B	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	-
Operation:	(K0) ← (A)	Grouping:	Input/Outp		
		Description	 Transfers on wakeup 		ts of register A to key- gister K0.
					-
TK1A (Trai	nsfer data to register K1 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 2 2 1 4 16	words 1	cycles 1	_	
Operation:	$(K1) \leftarrow (A)$	Grouping: Description	Input/Outp Transfers		n ts of register A to key-
			on wakeup		

TK2A (Trar	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 ₂ 2 1 5 ₁₆	words 1	cycles 1	-	
Operation:	$(K2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
operation				the conten	ts of register A to key-
TI 1A (Tran	sfer data to register L1 from Accumulator)				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 0 1 0 1 0 2 2 0 1 16	1	1	-	_
Operation:	$(L1) \leftarrow (A)$	Grouping:	LCD contro	ol operation	n
		Description	: Transfers t control reg		ts of register A to LCD
TL2A (Tran	sfer data to register L2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 0 1 1 ₂ 2 0 B ₁₆	words 1	cycles 1	-	
Operation:	$(L2) \leftarrow (A)$	Grouping:	LCD contro	l operation	n
		Description	: Transfers t control reg		ts of register A to LCD
TL3A (Tran	sfer data to register L3 from Accumulator)	•			
Instruction code	D9 D0 1 0 0 0 0 1 1 0 0 2 0 C ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(L3) ← (A)	Grouping: Description	LCD contro : Transfers t control reg	the conten	n ts of register A to LCD

TLCA (Trai	nsfer data to register LC from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 2 2 0 D 16	words 1	cycles 1	_	
Operation:	$(LC) \leftarrow (A)$	Grouping:	Timer oper		to of register A to timer
	$(RLC) \leftarrow (A)$	Description	LC and rel		ts of register A to timer er RLC.
TMA j (Tra	nsfer data to Memory from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 1 j j j ₂ 2 B j ₁₆	words 1	cycles 1	_	_
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to re	aister trans	sfer
•	$(X) \leftarrow (X) EXOR(j)$				e contents of register A
	j = 0 to 15				ve OR operation is per-
				-	ister X and the value j
					d, and stores the result
			in register	^ .	
TMRA (Tra	nsfer data to register MR from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 2 2 1 6	words 1	cycles 1	_	
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ration	
•					ts of register A to clock
			control reg	ister MR.	
TPAA (I ran Instruction	nsfer data to register PA from Accumulator)	Number of	Number of	Flor CV	Okin oordition
code	D9 D0 1 0 1 0 1 0 1 0 1 0 2 A A	words	cycles	Flag CY	Skip condition
0000	1 0 1 0 1 0 1 0 1 0 <u>1</u> 0 <u>0</u> <u>1</u> 0 <u>0</u> 0 0 0 0	1	1	-	_
Operation:	$(PA_0) \leftarrow (A_0)$	Grouping:	Timer oper	ation	
		Description			ts of lowermost bit (Ao) ntrol register PA.

TPSAB (Tra	ansf	er d	ata t	o Pre	e-Sc	aler	from	n A	ccun	nula	tor	ran	d reg	jister B)			
Instruction	D9								Do					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 1	1	0	1	0	1	2		3 5	5	words	cycles		
									2				16	1	1	-	_
Operation:	(RF	S7-F	RPS4) ← (B)									Grouping:	Timer oper	ation	
operation	(TP	S7–1	PS4)	← (B)									Description			ts of register B to the
				$\begin{array}{l} A) \to (A) \\ \leftarrow (A) \end{array}$											high-order	4 bits of p	rescaler and prescaler
	(TF	03-1	F 30)	← (A	,												and transfers the con- the low-order 4 bits of
															prescaler		caler reload register
															RPS.		
TPU0A (Tra	ansf	er d	ata t	o reg	iste	r PU() fro	m	Αссι	ımul	at	or)					
Instruction	D9								Do					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 1	0	1	1	0	1	2		2 [D 16	words	cycles		
					-	1 1			2					1	1	-	-
Operation:	(PU	i0) ←	- (A)											Grouping:	Input/Outp	ut operatio	n
•		,	. ,														ts of register A to pull-
															up control	register Pl	JO.
									•								
TPU1A (Tra		er d	ata t	o reg	liste	r PU	1 fro	m		imul	lat	or)		I			
Instruction	D9					<u>т</u> г			Do	_	_		_	Number of words	Number of cycles	Flag CY	Skip condition
code	1	0	0	0 1	0	1	1	1	0	2		2 1	E16	1	1		
														I	I		
Operation:	(PL	J1) ←	- (A)											Grouping:	Input/Outp	-	
														Description			ts of register A to pull-
															up control	register Pl	J1.
TR1AB (Tra	anef	or d	ata t		nicto	r R1	fron	ο Δ	COUR	nula	to	r an	d roo	nister B)			
Instruction	D9	51 0		5 100	1010				Do	inana				Number of	Number of	Flag CY	Skip condition
code	1	0	0	0 1	1	1	1	1	1	2	Τ.	3	F	words	cycles	i lag o i	Chip conduction
	L'	U	U	• •	'	·	<u> </u>		2	2			16	1	1	_	_
Operation:			14) ←											Grouping:	Timer oper		
	(R1	3–R	10) ←	(A)										Description			nts of register B to the 7–R14) of reload regis-
															-		ents of register A to the
															,		B-R10) of reload regis-
															ter R1.	,	,

TRGA (Tra	nsfei	' da	ta to	o reg	gist	er F	RG	fror	ηA	ccu	mι	ulate	or))					
Instruction	D9									Do)					Number of	Number of	Flag CY	Skip condition
code	1	0	0	0	0	0	1	0	0	1	7,	2	C) () 16	words	cycles		
										1			_		10	1	1	-	-
Operation:	(RG) ←	(A)													Grouping:	Clock cont	rol operation	on
-																Description			s of register A to regis-
																	ter RG.		
TV1A (Tran	nsfer	dat	a to	reg	iste	ər V	′1 fr	om	Ac	cun	nula	ato	r)						
Instruction	D9									Do			,			Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	1	1	1	1	1	1	2	0	3	3 F	= 16	words	cycles		
																1	1	_	-
Operation:	(V1)	← (A)													Grouping:	Interrupt o		
																Description	Transfers rupt control		s of register A to inter-
TV2A (Tran	sfer	data	a to	reg	iste	er V	2 fr	om	Aco	cum	านใส	atoi	r)						
Instruction	D9								1	Do)		_			Number of	Number of	Flag CY	Skip condition
code	0	0	0	0	1	1	1	1	1	0	2	0	3	3 E	16	words 1	cycles 1	-	_
Operation:	(V2)	← (A)													Grouping:	Interrupt o	peration	
•	()		,													Description		·	s of register A to inter-
																	rupt contro	I register ∖	2.
TW1A (Trai	nsfer	da	ta to	o reg	gist	er \	N1 ·	fror	n A	ccu	mu	ulate	or)						
Instruction code	D9	0	0	0	0	0	1	1	1	Do 0)]	2) E	-]	Number of words	Number of cycles	Flag CY	Skip condition
		0	0	0	0	0	1	1		0	2	2	C	, [16	1	1	-	-
Operation:	(W1) ← ((A)													Grouping:	Timer oper	ration	
																Description	: Transfers t control reg		s of register A to timer

TW2A (Tran	nsfer da	ta to r	egist	ter V	V2 fro	om A	ccun	nulat	tor	·)					
Instruction	D9						D0					Number of	Number of	Flag CY	Skip condition
code	1 0	0 0	0	0	1 1	1	1	2		0 1	F16	words	cycles		
								2	_		110	1	1	-	_
Operation:	(W2) ←	(A)										Grouping:	Timer oper	ration	
-													: Transfers t	the conten	ts of register A to timer
													control reg	ister W2.	
TW3A (Tra		ta to r	egis	ter \	N3 fro	om A	ccur	nula	tor	.)		1		1	
Instruction code	D9	0 0	0	1	0 () 0	D0	2		1	0 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 0	0	-	0 1	0	0	2		•	16	1	1	-	-
Operation:	→ (W3)	(A)										Grouping:	Timer ope	ration	
												Description			ts of register A to timer
													control reg	jister ws.	
TW4A (Tra	nsfer da	ta to r	egis	ter \	N4 fro	om A	ccur	nula	tor	-)					
Instruction code	D9						D0			4	•	Number of words	Number of cycles	Flag CY	Skip condition
couc	1 0	0 0	0	1	0 0	0 0	1	2 2		1	1	1	1	-	_
Operation:	(W4) ←	(A)										Grouping:	Timer ope	ration	
												Description			ts of register A to timer
													control rec	jister VV4.	
TYA (Trans		to reg	giste	r Y f	rom /	\ccu		tor)					1	1	
Instruction code	D9	0 0	0	0	1 '	I 0	D0	0		0	C	Number of words	Number of cycles	Flag CY	Skip condition
		0 0	0	0	•		0	2		0	16	1	1	-	_
Operation:	$(Y) \leftarrow (X)$	۹)										Grouping:	Register to	o register t	ransfer
												Description		the conten	ts of register A to regis-
													ter Y.		

WRST (Wa	tchdog timer ReSeT)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 1 0 0 0 0 0 0 0 1 16	1	1	-	(WDF1) = 1
Operation:	(WDF1) = 1 ?	Grouping:	Other oper	ation	
	After skipping, (WDF1) ← 0	Description	timer flag \ (0) to the \ is "0," exe stops the \	WDF1 is "1 WDF1 flag cutes the watchdog t e WRST in	uction when watchdog ." After skipping, clears . When the WDF1 flag next instruction. Also, imer function when ex- nstruction immediately uction.
XAM j (eXc	hange Accumulator and Memory data)				
Instruction code	D9 D0 1 0 1 1 0 1 j j j j 2 D j 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X) EXOR(j)$	Description	: After exch	anging th	e contents of M(DP)
	j = 0 to 15				egister A, an exclusive
				•	ormed between regis- in the immediate field,
				-	in register X.
Instruction	Kchange Accumulator and Memory data and Decrem	Number of	Number of	Flag CY	Skip condition
code	D9 D0 1 0 1 1 1 1 j j j j 2 F j c	words	cycles	Flag CT	Skip condition
		1	1	-	(Y) = 15
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to rec		
	$(X) \leftarrow (X) E XOR(j)$	Description			e contents of M(DP) egister A, an exclusive
	j = 0 to 15		OR operat	ion is perf	ormed between regis-
	$(Y) \leftarrow (Y) - 1$				in the immediate field, in register X.
			Subtracts ?	1 from the	contents of register Y.
					action, when the con- 15, the next instruction
					contents of register Y truction is executed.
XAMI j (eX	change Accumulator and Memory data and Increme	ent register			ardenon is executed.
Instruction code	D9 D0 1 0 1 1 0 j j j j 2 E j 6	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	(Y) = 0
Operation:	$\begin{array}{l} (A) \longleftrightarrow (M(DP))\\ (X) \hookleftarrow (X)EXOR(j)\\ j=0 \text{ to } 15\\ (Y) \hookleftarrow (Y)+1 \end{array}$	Grouping: Description	with the co OR operat ter X and t	nanging the ontents of r tion is perf the value j	sfer ee contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X.
			Adds 1 to t sult of ac register Y skipped.w	he content dition, w / is 0, th /hen the co	is of register Y. As a re- hen the contents of e next instruction is potents of register Y is ction is executed.

Type of	Mnemonic						Stru	ction	cou	ie.					r of s	r of s	
Instructions	Whenternorme	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otati	cimal on	Number (words	Number o cycles	Function
г	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \leftarrow (B)$
г	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \leftarrow (A)$
Г	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
	ΓΥΑ	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
Register to register transfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	A	1	1	$\begin{array}{l} (E7-E4) \leftarrow (B) \\ (E3-E0) \leftarrow (A) \end{array}$
register	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$\begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array}$
rto T	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR2-DR0) \leftarrow (A2-A0)$
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$\begin{array}{l} (A2-A0) \leftarrow (DR2-DR0) \\ (A3) \leftarrow 0 \end{array}$
r	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$\begin{array}{l} (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \end{array}$
Г	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
г	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$\begin{array}{l} (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \end{array}$
L	_XY x, y	1	1	Х3	Х2	X1	X 0	уз	у2	y1	y 0	3	х	у	1	1	$ \begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array} $
L	Zz	0	0	0	1	0	0	1	0	Z 1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z \ z = 0 \text{ to } 3$
RAM addresses —	NY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
<u>г</u>	ГАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$
RAM to re	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
T	ΓΜΑ j	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

MACHINE INSTRUCTIONS (INDEX BY TYPES)

	βC	
Skip condition	Carry flag	Datailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
-	-	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	-	Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
-	_	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.
-		After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0		After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped. When the contents of register Y is not 0, the next instruction is executed.
_	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.

Parameter			Instruction code													er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number o words	Number o cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	TABP p	0	0	1	0	p5	р4	рз	p2	р1	po	0	8 +I		1	3	$\begin{split} (SP) &\leftarrow (SP) + 1 \\ (SK(SP)) &\leftarrow (PC) \\ (PCH) &\leftarrow p (Note) \\ (PCL) &\leftarrow (DR2 - DR0, A3 - A0) \\ at (UPTF) &= 0 \\ (B) &\leftarrow (ROM(PC))7 - 4 \\ (A) &\leftarrow (ROM(PC))3 - 0 \\ at (UPTF) &= 1 \\ (DR2) &\leftarrow (0) \\ (DR1, DR0) &\leftarrow (ROM(PC))9, 8 \\ (B) &\leftarrow (ROM(PC))7 - 4 \\ (A) &\leftarrow (ROM(PC))7 - 4 \\ (A) &\leftarrow (ROM(PC))3 - 0 \\ (PC) &\leftarrow (SK(SP)) \\ (SP) &\leftarrow (SP) - 1 \end{split}$
ration	АМ	0	0	0	0	0	0	1	0	1	0	0	0	А	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithme	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	(A) ← (A) + n n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) AND (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \; OR \; (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \leftarrow 0$
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	→CY→A3A2A1A0
t operation	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	(Mj(DP)) ← 0 j = 0 to 3
	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0	1	0	1		2		2	2	(A) = n ? n = 0 to 15
lote: n is i	0 to 31 for M34	0	0 //4/M	0 14H r	1 1 is 0	1 to 63	1 3 for	n M345	n 52M	n 8/M8	n H/G8/		7	n			

Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	UPTF = 0: Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 9 to 0 are the ROM pattern in ad- dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. UPTF = 1: Transfers bits 9, 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
_	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re- sult in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

Parameter						In	stru	ction	cod	le			er of Is	er of es	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	Number of words	Number o cycles	
	Ва	0	1	1	a 6	a5	a 4	аз	a2	a 1	a 0	1 8 a +a	1	1	(PCL) ← a6–a0
Branch operation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0 E p +p	2	2	(PCH) ← p (Note) (PCL) ← a6–a0
		1	p6	p5	a 6	a 5	a 4	a 3	a2	aı	a0	2 p a +p+a			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	010	2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	p6	p5	р4	0	0	рз	p2	p1	p0	2 p p +p			
	BM a	0	1	0	a 6	a 5	a4	аз	a 2	a 1	a 0	1 a a	1	1	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow 2 \\ (PCL) \leftarrow a6a0 \end{array}$
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	p1	p0	0 C p +p	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine o		1	p6	p5	a 6	a 5	a 4	аз	a2	a 1	a 0	2 p a +p+a			$(PCL) \leftarrow a6-a0$
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	030	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
		1	p6	р5	p4	0	0	рз	p2	p1	p0	2 р р +р			$(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$
_	RTI	0	0	0	1	0	0	0	1	1	0	046	1	1	$\begin{array}{l} (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$
turn ope	RT	0	0	0	1	0	0	0	1	0	0	044	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
	RTS	0	0	0	1	0	0	0	1	0	1	045	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
-	-	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	-	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- scription of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter						In	stru	ction		le					r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number words	Number (cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	$(INTE) \leftarrow 0$
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	А	1	1	l12 = 1 : (INT) = "H" ?
Interrupt operation																	l12 = 0 : (INT) = "L" ?
errupt	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
lnt	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	$(V2) \leftarrow (A)$
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
-	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
-	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	-	When $V10 = 0$: Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "H" However, I12 = 1	-	When $I_{12} = 1$: Skips the next instruction when the level of INT pin is "H." (I12: bit 2 of interrupt control register I1)
(INT) = "L" However, I12 = 0	-	When I12 = 0 : Skips the next instruction when the level of INT pin is "L."
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.

Parameter						In	stru	ction	cod	le					er of s	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do			cimal ion	Number (words	Number o cycles	Function
	TPAA	1	0	1	0	1	0	1	0	1	0	2	A	А	1	1	(PA) ← (A)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	$(W1) \leftarrow (A)$
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	$(A) \leftarrow (W2)$
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	$(W2) \leftarrow (A)$
	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	$(A) \leftarrow (W3)$
	ТѠЗА	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	$(W3) \leftarrow (A)$
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	$(A) \leftarrow (W4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	$(W4) \leftarrow (A)$
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$\begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array}$
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$\begin{array}{l} (RPS7-RPS4) \leftarrow (B) \\ (TPS7-TPS4) \leftarrow (B) \\ (RPS3-RPS0) \leftarrow (A) \\ (TPS3-TPS0) \leftarrow (A) \end{array}$
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
Time	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
	T2HAB	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17–R14) ← (B) (R13–R10) ← (A)
	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	(T27–T20) ← (R2L7–R2L0)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(LC) \leftarrow (A)$ $(RLC) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1: NOP
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 V20 = 1: NOP

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Transfers the contents of register A to timer control register PATransfers the contents of timer control register W1 to register ATransfers the contents of register A to timer control register W1Transfers the contents of timer control register W2 to register ATransfers the contents of register A to timer control register W2Transfers the contents of timer control register W3 to register ATransfers the contents of register A to timer control register W3Transfers the contents of register A to timer control register W3Transfers the contents of timer control register W4 to register ATransfers the contents of timer control register W4.	
 Transfers the contents of register A to timer control register W1. Transfers the contents of timer control register W2 to register A. Transfers the contents of register A to timer control register W2. Transfers the contents of timer control register W3 to register A. Transfers the contents of register A to timer control register A. Transfers the contents of register A to timer control register A. Transfers the contents of register A to timer control register A. Transfers the contents of register A to timer control register W3. Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of timer control register W2 to register A. Transfers the contents of register A to timer control register W2. Transfers the contents of timer control register W3 to register A. Transfers the contents of register A to timer control register W3. Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of register A to timer control register W2. Transfers the contents of timer control register W3 to register A. Transfers the contents of register A to timer control register W3. Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of timer control register W3 to register A. Transfers the contents of register A to timer control register W3. Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of register A to timer control register W3. Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of timer control register W4 to register A. 	
 Transfers the contents of register A to timer control register W4. 	
 Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A. 	bits of prescaler to
 Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler related transfers the contents of register A to the low-order 4 bits of prescaler and prescaler RPS. 	
 Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of ter A. 	of timer 1 to regis-
 Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer 1 reload register A to the low-order 4 bits of timer 1 and timer	
 Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of ter A. 	of timer 2 to regis-
 Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register 	
 Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H, contents of register A to the low-order 4 bits of timer 2 reload register R2H. 	l, and transfers the
 Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, contents of register A to the low-order 4 bits of timer 1 reload register R1. 	, and transfers the
 Transfers the contents of timer 2 reload register R2L to timer 2. 	
- Transfers the contents of register A to timer LC and timer LC reload register RLC.	
V12 = 0: (T1F) = 1 - Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 tents of T1F flag is "1." After skipping, clears (0) to T1F flag.	is "0" and the con-
V13 = 0: (T2F) =1 - Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 i tents of T2F flag is "1." After skipping, clears (0) to T2F flag.	is "0" and the con-
V20 = 0: (T3F) = 1 - Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 tents of T3F flag is "1." After skipping, clears (0) to T3F flag.	is "0" and the con-

Parameter						In	stru	ction	cod	e					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otat	cimal ion	Number of words	Number o cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A) \leftarrow (P2)$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	$(P2) \leftarrow (A)$
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0?
u		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(Y) = 0 to 7
perati	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	$(C) \leftarrow 0$
Input/Output operation	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← 1
/Outp	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	$(A) \leftarrow (PU0)$
Input	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)
	ТАКО	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	ТКОА	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	А	1	1	(A) ← (K2)
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	$(FR0) \leftarrow (A)$
	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	$(FR1) \leftarrow (A)$
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	А	1	1	$(FR2) \leftarrow (A)$

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to register A.
-	-	Outputs the contents of register A to port P2.
-	-	Sets (1) to all port D.
-	-	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 7	-	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
-	_	Clears (0) to port C.
-	_	Sets (1) to port C.
_	_	Transfers the contents of pull-up control register PU0 to register A.
-	_	Transfers the contents of register A to pull-up control register PU0.
-	_	Transfers the contents of pull-up control register PU1 to register A.
-	_	Transfers the contents of register A to pull-up control register PU1.
-	_	Transfers the contents of key-on wakeup control register K0 to register A.
-	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
-	_	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K2 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
-	-	Transferts the contents of register A to port output format control register FR0.
-	-	Transferts the contents of register A to port output format control register FR1.
-	-	Transferts the contents of register A to port output format control register FR2.

Parameter						In	stru	ction		le					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otati	cimal on	Number (words	Number of cycles	Function
	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	А	1	1	$(A) \leftarrow (L1)$
L C	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	А	1	1	(L1) ← (A)
eratio	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	В	1	1	$(L2) \leftarrow (A)$
LCD operation	TL3A	1	0	0	0	0	0	1	1	0	0	2	0	С	1	1	(L3) ← (A)
LCI	TC1A	1	0	1	0	1	0	1	0	0	0	2	A	8	1	1	$(C1) \leftarrow (A)$
	TC2A	1	0	1	0	1	0	1	0	0	1	2	A	9	1	1	$(C2) \leftarrow (A)$
u	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
ck op	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$
Clo	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	$(RG) \leftarrow (A)$
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	в	1	1	POF, POF2 instructions valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
			•	Ţ	Ţ	•	Ţ	Ţ	-				•	•			
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ? After skipping, (WDF1) \leftarrow 0
her op	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
ō	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(UPTF) \leftarrow 0$
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1
	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At power down mode, voltage drop detection circuit valid

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: SVDE instruction can be used only in H version.

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of LCD control register L1 to register A.
-	-	Transfers the contents of register A to LCD control register L1.
-	-	Transfers the contents of register A to LCD control register L2.
-	-	Transfers the contents of register A to LCD control register L3.
-	-	Transfers the contents of register A to LCD control register C1.
-	-	Transfers the contents of register A to LCD control register C2.
-	-	Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).
-	-	Transfers the contents of clock control regiser MR to register A.
-	-	Transfers the contents of register A to clock control register MR.
-	-	Transfers the contents of register A to clock control register RG.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
-	-	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
-	-	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	-	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	-	Stops the watchdog timer function by the WRST instruction.
-	-	System reset occurs.
-	-	Clears (0) to the high-order bit reference enable flag UPTF.
-	-	Sets (1) to the high-order bit reference enable flag UPTF.
_	-	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode).

INSTRUCTION CODE TABLE

		-																	
[[D9–D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000 011111
D3–D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F		18–1F
0000	0	NOP	BLA	SZB 0	BMLA	I	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	ВМ	в
0001	1	SRST	CLD	SZB 1	-	-	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	BM	В
0010	2	POF	_	SZB 2	_	_	ТАХ	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	BM	в
0011	3	SNZP	INY	SZB 3	_	-	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	ВМ	в
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	BM	В
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	BM	В
0110	6	RC	-	SEAM	-	RTI	-	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	BM	В
0111	7	SC	DEY	-	_	_	_	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	BM	В
1000	8	POF2	AND	-	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	BM	в
1001	9	_	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	BM	в
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	ВМ	в
1011	в	AMC	_	-	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	BM	в
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	вм	в
1101	D	_	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	BM	в
1110	E	тва	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	BM	в
1111	F	-	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	BM	в

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1р	paaa	aaaa
BLA	1p	pp00	рррр
BMLA	1p	pp00	рррр
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M3455xM4/M4H.

D9–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0	_	ТѠЗА	OP0A	T1AB	_	_	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
1	_	TW4A	OP1A	T2AB	_	_	IAP1	TAB2	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
2	-	-	OP2A	-	-	TAMR	IAP2	-	SNZT3	_	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
3	_	-	_	-	_	TAI1	_	_	-	SVDE**	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
4	-	TK1A	_	-	-	_	-	-	-	T2HAB	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
5	_	TK2A	_	TPSAB	_	_	_	TABPS	_	T2R2L	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
6	_	TMRA	_	_	_	TAK0	_	_	-	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
7	_	TI1A	_	-	_ '	TAPU0	_	_	_	_	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
8	_	_	TFR0A	_	_	_	_	_	-	_	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
9	TRGA	_	TFR1A	_	_	TAK1	_	_	_	_	TC2A	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
А	TL1A	_	TFR2A	_	TAL1	TAK2	_	_	_	_	ТРАА	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
В	TL2A	TK0A	_	-	TAW1	_	-	-	-	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
С	TL3A	_	_	_	TAW2	-	_	-	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
D	TLCA	_	TPU0A	_	TAW3	_	_	_	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
Е	TW1A	_	TPU1A	. –	TAW4	TAPU1	_	_	-	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
F	TW2A	-	-	TR1AB	-	-	-	-	-	-	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY
	Hex. notation 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 8 9 A 8 9 A B C D E	Hex. notation 20 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 TRGA A TL1A B TL2A C TL3A D TLCA E TW1A	Hex. notation 20 21 0 - TW3A 1 - TW4A 2 - - 3 - - 4 - TK1A 5 - TK2A 6 - TMRA 7 - TI1A 8 - - 9 TRGA - A TL1A - B TL2A TK0A C TL3A - D TLCA - E TW1A -	Hex. 20 21 22 0 - TW3A OP0A 1 - TW4A OP1A 2 - - OP2A 3 - - - 4 - TK1A - 5 - TK2A - 6 - TMRA - 7 - TI1A - 8 - - TFR0A 9 TRGA - TFR1A A TL1A - TFR2A B TL2A TK0A - C TL3A - - D TLCA - TPU0A E TW1A - TPU1A	Hex. 20 21 22 23 0 - TW3A OP0A T1AB 1 - TW4A OP1A T2AB 2 - - OP2A - 3 - - OP2A - 4 - TK1A - - 5 - TK2A - TPSAB 6 - TMRA - - 7 - TI1A - - 8 - - TFR0A - 9 TRGA - TFR1A - A TL1A - TFR2A - B TL2A TK0A - - C TL3A - - - D TLCA - TPU0A - E TW1A - TPU1A -	Hex. 20 21 22 23 24 0 - TW3A OP0A T1AB - 1 - TW4A OP1A T2AB - 2 - - OP2A - - 3 - - OP2A - - 4 - TK1A - - - 5 - TK2A - TPSAB - 6 - TMRA - - - - 7 - TI1A - - - - 6 - TMRA - - - - 7 - TI1A - - - - - 7 - TI1A - - - - - 8 - - TFR0A - - - - 9 TRGA - TF	Hex. 20 21 22 23 24 25 0 - TW3A OP0A T1AB - - 1 - TW4A OP1A T2AB - - 2 - - OP2A - - TAMR 3 - - OP2A - - TAMR 3 - - OP2A - - TAMR 4 - TK1A - - - - 5 - TK2A - TPSAB - - 6 - TMRA - - - TAK0 7 - T11A - - - TAPU0 8 - - TFR0A - - - 9 TRGA - TFR1A - - TAK1 A TL1A - TFR2A - TAW1	Hex. 20 21 22 23 24 25 26 0 - TW3A OP0A T1AB - - IAP0 1 - TW3A OP0A T1AB - - IAP0 1 - TW4A OP1A T2AB - - IAP1 2 - - OP2A - - TAMR IAP2 3 - TK1A - TA TAI1 - TAI1 - 4 - TK2A - TPSAB - - - 5 - TK2A - TPSAB - - - 6 <t< td=""><td>Hex. 20 21 22 23 24 25 26 27 0 - TW3A OP0A T1AB - - IAP0 TAB1 1 - TW4A OP1A T2AB - - IAP0 TAB1 1 - TW4A OP1A T2AB - - IAP1 TAB2 2 - - OP2A - - TAMR IAP2 - 3 - - OP2A - - TAMR IAP2 - 4 - TK1A - - TAMR IAP2 - 5 - TK1A - - TAI1 - - 5 - TK2A - TPSAB - - TABPS 6 - TMRA - TPSAB - - - - 7 - TIARA -</td><td>Hex. 20 21 22 23 24 25 26 27 28 0 - TW3A OPOA T1AB - - IAPO TAB1 SNZT1 1 - TW4A OP1A T2AB - - IAPO TAB1 SNZT2 2 - - OP2A - - TAMR IAP2 - SNZT3 3 - - OP2A - - TAI1 - - SNZT3 3 - - OP2A - - TAMR IAP2 - SNZT3 3 - - OP2A - - TAMR IAP2 - SNZT3 3 - TK1A - - TAI1 - - - - - - - - - - - - - - - - - - <td< td=""><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 0 - TW3A OPOA T1AB - - IAPO TAB1 SNZT1 - 1 - TW4A OP1A T2AB - - IAPO TAB1 SNZT2 - 2 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - - - TAMR IAP2 - SNZT3 - 3 - - - - TAI1 - - SNZT3 - 4 - TK1A - - TAI1 - - T2HAB 5 - TK2A - TPSAB - - TABPS - T2R2L 6 - TMRA - TPSAB - TAK0<</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST 1 - TW4A OP1A T2AB - - IAP0 TAB1 SNZT2 - - 2 - - OP2A - - TAMR IAP2 SNZT3 - - 3 - - OP2A - - TAMR IAP2 - SNZT3 - - 4 - TK1A - - TAI1 - - SNZT3 - - 5 - TK1A - T - TAI1 - - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - TAK0 - -</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 2 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - - TAI1 - - SNZT3 - - TMA 2 4 - TK1A - - TA - TA TA TA TA TA TMA 5 - TK2A -</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA TAM 0 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM TAM</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 TAM XAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 TAM XAM 0 0 2 - - OP2A - - TAIR IAP2 SNZT3 - - TMA TAM XAM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM XAM XAMI OPIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></td<><td>Hex. Instation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 0 - TW3A OPOA T1AB - - IAPO TABI SNZTI - WRST TMA TAM XAM XAMI <</td></td></t<>	Hex. 20 21 22 23 24 25 26 27 0 - TW3A OP0A T1AB - - IAP0 TAB1 1 - TW4A OP1A T2AB - - IAP0 TAB1 1 - TW4A OP1A T2AB - - IAP1 TAB2 2 - - OP2A - - TAMR IAP2 - 3 - - OP2A - - TAMR IAP2 - 4 - TK1A - - TAMR IAP2 - 5 - TK1A - - TAI1 - - 5 - TK2A - TPSAB - - TABPS 6 - TMRA - TPSAB - - - - 7 - TIARA -	Hex. 20 21 22 23 24 25 26 27 28 0 - TW3A OPOA T1AB - - IAPO TAB1 SNZT1 1 - TW4A OP1A T2AB - - IAPO TAB1 SNZT2 2 - - OP2A - - TAMR IAP2 - SNZT3 3 - - OP2A - - TAI1 - - SNZT3 3 - - OP2A - - TAMR IAP2 - SNZT3 3 - - OP2A - - TAMR IAP2 - SNZT3 3 - TK1A - - TAI1 - - - - - - - - - - - - - - - - - - <td< td=""><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 0 - TW3A OPOA T1AB - - IAPO TAB1 SNZT1 - 1 - TW4A OP1A T2AB - - IAPO TAB1 SNZT2 - 2 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - - - TAMR IAP2 - SNZT3 - 3 - - - - TAI1 - - SNZT3 - 4 - TK1A - - TAI1 - - T2HAB 5 - TK2A - TPSAB - - TABPS - T2R2L 6 - TMRA - TPSAB - TAK0<</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST 1 - TW4A OP1A T2AB - - IAP0 TAB1 SNZT2 - - 2 - - OP2A - - TAMR IAP2 SNZT3 - - 3 - - OP2A - - TAMR IAP2 - SNZT3 - - 4 - TK1A - - TAI1 - - SNZT3 - - 5 - TK1A - T - TAI1 - - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - TAK0 - -</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 2 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - - TAI1 - - SNZT3 - - TMA 2 4 - TK1A - - TA - TA TA TA TA TA TMA 5 - TK2A -</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA TAM 0 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM TAM</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 TAM XAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 TAM XAM 0 0 2 - - OP2A - - TAIR IAP2 SNZT3 - - TMA TAM XAM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM XAM XAMI OPIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></td<> <td>Hex. Instation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 0 - TW3A OPOA T1AB - - IAPO TABI SNZTI - WRST TMA TAM XAM XAMI <</td>	Hex. notation 20 21 22 23 24 25 26 27 28 29 0 - TW3A OPOA T1AB - - IAPO TAB1 SNZT1 - 1 - TW4A OP1A T2AB - - IAPO TAB1 SNZT2 - 2 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - OP2A - - TAMR IAP2 - SNZT3 - 3 - - - - TAMR IAP2 - SNZT3 - 3 - - - - TAI1 - - SNZT3 - 4 - TK1A - - TAI1 - - T2HAB 5 - TK2A - TPSAB - - TABPS - T2R2L 6 - TMRA - TPSAB - TAK0<	Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST 1 - TW4A OP1A T2AB - - IAP0 TAB1 SNZT2 - - 2 - - OP2A - - TAMR IAP2 SNZT3 - - 3 - - OP2A - - TAMR IAP2 - SNZT3 - - 4 - TK1A - - TAI1 - - SNZT3 - - 5 - TK1A - T - TAI1 - - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - T2R2A - TAK0 - -	Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 2 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - OP2A - - TAMR IAP2 - SNZT3 - - TMA 2 3 - - - TAI1 - - SNZT3 - - TMA 2 4 - TK1A - - TA - TA TA TA TA TA TMA 5 - TK2A -	Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA TAM 0 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM 2 - - OP2A - - TAM IAP2 - SNZT3 - - TMA TAM TAM	Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 0 - TW3A OP0A T1AB - - IAP0 TAB1 SNZT1 - WRST TMA 0 TAM XAM 0 1 - TW4A OP1A T2AB - - IAP1 TAB2 SNZT2 - - TMA 1 TAM XAM 0 0 2 - - OP2A - - TAIR IAP2 SNZT3 - - TMA TAM XAM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Hex. notation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 0 - TW3A OPOA T1AB - - IAP0 TAB1 SNZT1 - WRST TMA TAM XAM XAMI OPIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hex. Instation 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 0 - TW3A OPOA T1AB - - IAPO TABI SNZTI - WRST TMA TAM XAM XAMI <

INSTRUCTION CODE TABLE (continued)

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1р	paaa	aaaa
BLA	1р	pp00	рррр
BMLA	1р	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

• ** can be used only in the M3455xM4H/M8H/G8H.

ELECTRICAL CHARACTERISTICS

(1) Mask ROM version

ABSOLUTE MAXIMUM RATINGS (Mask ROM version)

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, D0–D5, RESET, INT, XIN, XCIN		-0.3 to VDD+0.3	V
VI	Input voltage CNTR		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D7, RESET, CNTR	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, XOUT, XCOUT		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG28, COM0-COM3 (Note)		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

Note: SEG13 pin is not equipped with the 4552 Group.

RECOMMENDED OPERATING CONDITIONS 1

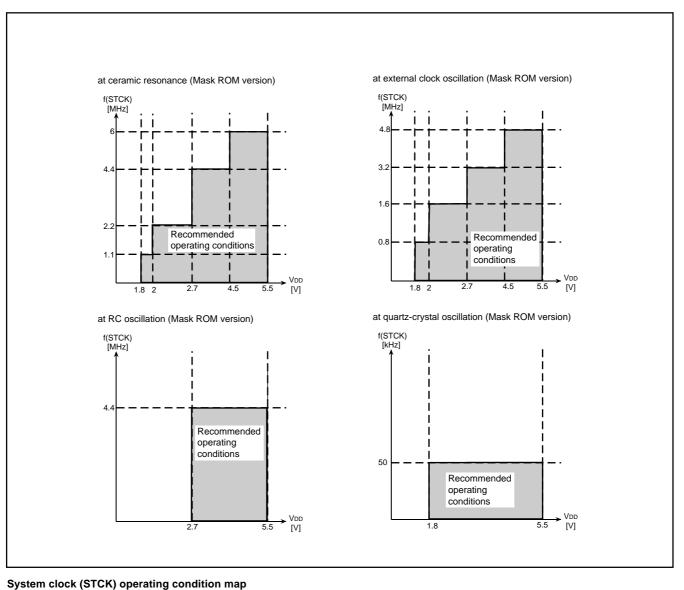
(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condi	tions		Limits		Unit
Cymbol				Min.	Тур.	Max.	
Vdd	Supply voltage	f(STCK) ≤ 6 MHz		4		5.5	V
	(when ceramic resonator is used)	f(STCK) ≤ 4.4 MHz		2.7		5.5	
		f(STCK) ≤ 2.2 MHz		2		5.5	
		f(STCK) ≤ 1.1 MHz		1.8		5.5	
Vdd	Supply voltage			1.8		5.5	V
	(when quartz-crystal/on-chip						
	oscillation is used)						
Vdd	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
	(when RC oscillation is used)						
Vram	RAM back-up voltage	at RAM back-up mode		1.6			V
Vss	Supply voltage				0		V
VLC3	LCD power supply (Note 1)			1.8		Vdd	V
Viн	"H" level input voltage	P0, P1, P2, D0-D5		0.8Vdd		Vdd	V
		XIN, XCIN	0.7Vdd		Vdd		
		RESET		0.85VDD		Vdd	
		INT	0.85Vdd		Vdd	-	
		CNTR		0.8Vdd		Vdd	
VIL	"L" level input voltage	P0, P1, P2, D0-D5		0		0.2Vdd	V
		XIN, XCIN		0		0.3Vdd	
		RESET		0		0.3Vdd	
		INT		0		0.15Vdd]
		CNTR		0		0.15Vdd	
IOн(peak)	"H" level peak output current	P0, P1, P2, D0–D5	VDD = 5 V			-20	mA
			VDD = 3 V			-10	
		С	VDD = 5 V			-30	
		CNTR	VDD = 3 V			-15	
loн(avg)	"H" level average output current	P0, P1, P2, D0–D5	VDD = 5 V			-10	mA
	(Note 2)		VDD = 3 V			-5]
		С	VDD = 5 V			-20	1
		CNTR	VDD = 3 V			-10	-
IOL(peak)	"L" level peak output current	P0, P1, P2, D0–D7, C	VDD = 5 V			24	mA
. ,		CNTR	VDD = 3 V			12	-
		RESET	VDD = 5 V			10	1
			VDD = 3 V			4	1
loL(avg)	"L" level average output current	P0, P1, P2, D0–D7, C	VDD = 5 V			15	mA
、 0/	(Note 2)	CNTR	VDD = 3 V			7	1
		RESET	VDD = 5 V			5	1
			VDD = 3 V			2	1
ΣIOH(avg)	"H" level total average current	P0, P1, P2, D0–D5, C, C				-40	mA
Σ IOL(avg)	"L" level total average current	P0, P1, P2, D0–D5, C, C				60	mA
		D6, D7, RESET				60	-

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

2: The average output current is the average value during 100 ms.


RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conc	litions		Limits		Unit
Cymbol				Min.	Тур.	Max.	
f(XIN)	Oscillation frequency	Through mode	VDD = 4 to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 to 5.5 V			4.4	
			VDD = 2 to 5.5 V			2.2	
			VDD = 1.8 to 5.5 V			1.1	
		Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
			VDD = 2 to 5.5 V			4.4	
			VDD = 1.8 to 5.5 V			2.2	
		Frequency/4 mode	VDD = 2 to 5.5 V			6	
			VDD = 1.8 to 5.5 V			4.4	
		Frequency/8 mode	VDD = 1.8 to 5.5 V			6	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V	•			4.4	MHz
	(at RC oscillation) (Note)						
f(XIN)	Oscillation frequency	Through mode	VDD = 4 to 5.5 V			4.8	MHz
	(with a ceramic resonator selected,		VDD = 2.7 to 5.5 V			3.2	
	external clock input)		VDD = 2 to 5.5 V			1.6	
	. ,		VDD = 1.8 to 5.5 V			0.8	_
		Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
			VDD = 2 to 5.5 V			3.2	
			VDD = 1.8 to 5.5 V			1.6	
		Frequency/4 mode	VDD = 2 to 5.5 V			4.8	
			VDD = 1.8 to 5.5 V			3.2	
		Frequency/8 mode	VDD = 1.8 to 5.5 V			4.8	
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal oscillator	ŀ			50	kHz
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR		3/f(STCK)			S
	("H" and "L" pulse width)						
TPON	Power-on reset circuit	$VDD = 0 \rightarrow 1.8 V$				100	μs
	valid supply voltage rising time						

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

RENESAS

(Mask ROM version)

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	То	st conditions		Limits		Unit
Cymbol	T diameter			Min.	Тур.	Max.	Onit
Vон	"H" level output voltage	VDD = 5 V	Iон = -10 mA	3			V
	P0, P1, P2, D0–D5		Iон = –3 mA	4.1			
		VDD = 3 V	Iон = -5 mA	2.1			
			Iон = -1 mA	2.4			
Vон	"H" level output voltage	VDD = 5 V	Iон = -20 mA	3			V
	C, CNTR		Iон = -6 mA	4.1			
		VDD = 3 V	Iон = -10 mA	2.1			
			Iон = -3 mA	2.4			
Vol	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V
	P0, P1, P2, D0–D7, C, CNTR		IOL = 5 mA			0.9	
		VDD = 3 V	IOL = 9 mA			1.4	
			IOL = 3 mA			0.9	1
Vol	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V
	RESET		IOL = 1 mA			0.6	1
		VDD = 3 V	IOL = 2 mA			0.9	
Іін	"H" level input current P0, P1, P2, D0–D5, XIN, XCIN, RESET CNTR, INT	VI = VDD				2	μA
liL	"L" level input current P0, P1, P2, D0–D5, XIN, XCIN, RESET CNTR, INT	VI = 0 V P0, P1 No			-2	μA	
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5 V	30	60	125	kΩ
IXFU	P0, P1, RESET	VI = 0 V	VDD = 3 V VDD = 3 V	50	120	250	
Vt+ – Vt–		VDD = 5 V	1 100 - 0 1		1	200	V
VI+ - VI-		VDD = 3V VDD = 3V			0.4		v
VT+ – VT–	Hysteresis INT	VDD = 5 V			0.4		v
v i + - v i -		VDD = 3 V VDD = 3 V			0.0		v
Vt+ – Vt–	Hysteresis CNTR	VDD = 5 V			0.3		V
vi+ - vi-		VDD = 3 V VDD = 3 V			0.2		v
f(RING)	On akin appillator alaph frequency	VDD = 5 V		200	500	700	kHz
I(KING)	On-chip oscillator clock frequency	VDD = 3 V VDD = 3 V		100	250	400	
Δf(Xin)	Frequency error	VDD = 3 V VDD = 5 V ± 10 %,	Ta – 25 °C	100	200	±17	%
	(with RC oscillation,	$VDD = 5 V \pm 10 70,$	1a = 25°C			±17	/0
	error of external R, C not included)	VDD = 3 V ± 10 %,	Ta = 25 °C			±17	
	(Note 1)						
RCOM	COM output impedance	VDD = 5 V			1.5	7.5	kΩ
	(Note 2)	VDD = 3 V			2	10	
RSEG	SEG output impedance	VDD = 5 V			1.5	7.5	kΩ
	(Note 2)	VDD = 3 V			2	10	
RVLC	Internal resistor for LCD power supply		stor 2r X 3 selected	300	480	960	kΩ
				200	320	640	
		When dividing resistor 2r X 2 selected When dividing resistor r X 3 selected		150	240	480	
		When dividing resis		100	160	320	·

Notes 1: When RC oscillation is used, use the external 33 pF capacitor (C).

2: The impedance state is the resistor value of the output voltage.

at VLC3 level output: VO = 0.8 VLC3

at VLC2 level output: VO = 0.8 VLC2 at VLC1 level output: VO = 0.2 VLC2 + VLC1

at Vss level output: VO = 0.2 Vss

Rev.3.00 Jul 09, 2004 page 124 of 136 REJ03B0023-0300Z

RENESAS

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter		Test	conditions	Limits			Unit
-,					Min.	Тур.	Max.	
IDD	Supply current	at active mode	Vdd = 5 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	
			f(XCIN) = stop	f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5 V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1	2	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	
			f(XCIN) = stop	f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.3	0.6	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.4	0.8	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.5	1.0	1
			f(XCIN) = stop	f(STCK) = f(XIN)		0.7	1.4	
		at active mode	VDD = 5 V	f(STCK) = f(RING)/8		50	100	μA
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	1
			f(RING) = active	f(STCK) = f(RING)/2		80	160	1
			f(XCIN) = stop	f(STCK) = f(RING)		120	240	1
			VDD = 3 V	f(STCK) = f(RING)/8		10	20	μA
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = active	f(STCK) = f(RING)/2		19	38	1
			f(XCIN) = stop	f(STCK) = f(RING)		31	62	1
		at active mode	Vdd = 5 V	f(STCK) = f(XCIN)/8		7	14	μA
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XCIN)/4		8	16	1
		oscillator)	f(RING) = stop	f(STCK) = f(XCIN)/2		10	20	1
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		14	28	1
			VDD = 3 V	f(STCK) = f(XCIN)/8		5	10	μA
			f(XIN) = stop	f(STCK) = f(XCIN)/4		6	12	1
			f(RING) = stop	f(STCK) = f(XCIN)/2		7	14	1
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		8	16	1
		at clock operation mode	f(XCIN) = 32 kHz	VDD = 5 V		6	12	μA
		(POF instruction execution)		VDD = 3 V		5	10]
		at RAM back-up mode	Ta = 25 °C			0.1	2	μA
		(POF2 instruction execution)	Vdd = 5 V				10	1
		,	VDD = 3 V				6	1

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(Mask ROM version: Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		– Unit
Symbol	Falameter		Min.	Тур.	Max.	
Vrst-	Detection voltage	Ta = 25 °C	1.6	1.8	2	V
	(reset occurs) (Note 2)	Ta = -20 to 0 °C	1.7		2.3	
		Ta = 0 to 50 °C	1.4		2.2	
		Ta = 50 to 85 °C	1.2		1.9	-
	Detection voltage	Ta = 25 °C	1.7	1.9	2.1	V
	(reset release) (Note 3)	Ta = -20 to 0 °C	1.8		2.4	_
		Ta = 0 to 50 °C	1.5		2.3	
		Ta = 50 to 85 °C	1.3		2	
Vrst+-	Detection voltage hysteresis			0.1		V
Vrst-						
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μA
		VDD = 3 V		30	60	1
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms

Notes 1: The voltage drop detection circuit is equipped with only the H version.

2: The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

3: The detection voltage (VRST*) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

4: In the H version, IRST is added to IDD (power current).

5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

6: The detection voltages (VRST⁺, VRST⁻) are set up lower than the minimum value of the supply voltage of the recommended operating conditions. As for details, refer to the LIST OF PRECAUTIONS.

(2) One Time PROM version

ABSOLUTE MAXIMUM RATINGS (One Time PROM version)

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 4.0	V
VI	Input voltage P0, P1, P2, D0–D5, RESET, INT, XIN, XCIN		-0.3 to VDD+0.3	V
VI	Input voltage CNTR		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D7, RESET, CNTR	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, XOUT, XCOUT		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG28, COM0-COM3 (Note)		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

Note: SEG13 pin is not equipped with the 4552 Group.

RECOMMENDED OPERATING CONDITIONS 1

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

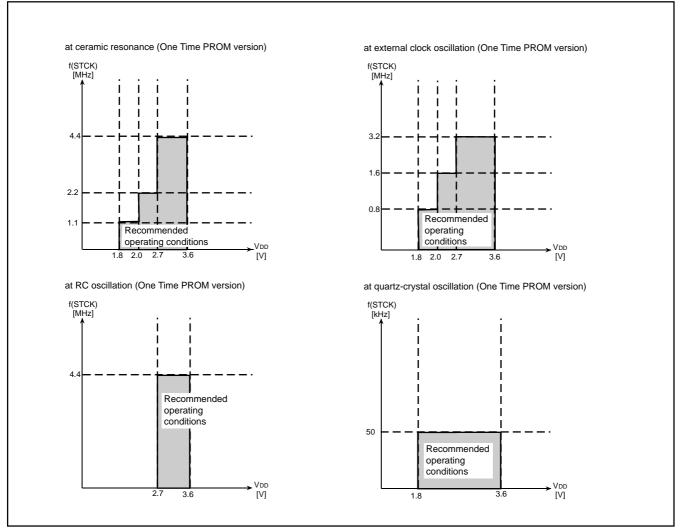
Symbol	Parameter	Con	ditions		Limits			
Symbol	Parameter	Conc	litions	Min.	Тур.	Max.	Unit	
Vdd	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		3.6	V	
	(when ceramic resonator is used)	f(STCK) ≤ 2.2 MHz		2		3.6	1	
		f(STCK) ≤ 1.1 MHz		1.8		3.6	1	
Vdd	Supply voltage			1.8		3.6	V	
	(when quartz-crystal/on-chip							
	oscillation is used)							
Vdd	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		3.6	V	
	(when RC oscillation is used)							
Vram	RAM back-up voltage	at RAM back-up mode		1.6			V	
Vss	Supply voltage				0		V	
VLC3	LCD power supply (Note 1)			1.8		Vdd	V	
Viн	"H" level input voltage	P0, P1, P2, D0–D5		0.8Vdd		Vdd	V	
		XIN, XCIN		0.7Vdd		Vdd	1	
		RESET		0.85Vdd		Vdd	1	
		INT		0.85Vdd		Vdd	1	
		CNTR		0.8Vdd		Vdd	1	
VIL	"L" level input voltage	P0, P1, P2, D0–D5		0		0.2Vdd	V	
		XIN, XCIN		0		0.3Vdd		
		RESET		0		0.3Vdd		
		INT		0		0.15Vdd	1	
		CNTR		0		0.15Vdd]	
IOн(peak)	"H" level peak output current	P0, P1, P2, D0–D5	VDD = 3 V			-10	mA	
. ,		C, CNTR	VDD = 3 V			-15	1	
IOн(avg)	"H" level average output current	P0, P1, P2, D0–D5	VDD = 3 V			-5	mA	
	(Note 2)	C, CNTR	VDD = 3 V			-10	1	
IOL(peak)	"L" level peak output current	P0, P1, P2, D0–D7,	VDD = 3 V			12	mA	
. ,		C, CNTR						
		RESET	VDD = 3 V			4	1	
IOL(avg)	"L" level average output current	P0, P1, P2, D0–D7,	VDD = 3 V			7	mA	
(0)	(Note 2)	C, CNTR						
		RESET	VDD = 3 V			2	1	
Σloн(avg)	"H" level total average current	P0, P1, P2, D0–D5, C,	CNTR			-40	mA	
ΣIOL(avg)	"L" level total average current	P0, P1, P2, D0–D5, C, CNTR				60	mA	
、 3 /		D6, D7, RESET				60	1	

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

2: The average output current is the average value during 100 ms.

RENESAS


RECOMMENDED OPERATING CONDITIONS 2

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

Symbol	Parameter	Cond	itions		Limits	_	Unit
Cymbol	T arameter	Cond		Min.	Тур.	Max.	01111
f(XIN)	Oscillation frequency	Through mode	VDD = 2.7 to 3.6 V			4.4	MHz
	(with a ceramic resonator)		VDD = 2 to 3.6 V			2.2	
			VDD = 1.8 to 3.6 V			1.1	
		Frequency/2 mode	VDD = 2.7 to 3.6 V			6	
			VDD = 2 to 3.6 V			4.4	
			VDD = 1.8 to 3.6 V			2.2	
		Frequency/4 mode	VDD = 2 to 3.6 V			6	
			VDD = 1.8 to 3.6 V			4.4	
		Frequency/8 mode	VDD = 1.8 to 3.6 V			6	
f(XIN)	Oscillation frequency	VDD = 2.7 to 3.6 V				4.4	MHz
	(at RC oscillation) (Note)						
` '	Oscillation frequency	Through mode	VDD = 2.7 to 3.6 V			3.2	MHz
	(with a ceramic resonator selected,		VDD = 2 to 3.6 V			1.6	1
	external clock input)		VDD = 1.8 to 3.6 V			0.8	
		Frequency/2 mode	VDD = 2.7 to 3.6 V			4.8	
			VDD = 2 to 3.6 V			3.2	
			VDD = 1.8 to 3.6 V			1.6	
		Frequency/4 mode	VDD = 2 to 3.6 V			4.8	
			VDD = 1.8 to 3.6 V			3.2	
		Frequency/8 mode	VDD = 1.8 to 3.6 V			4.8	
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal oscillator				50	kHz
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR		3/f(STCK)			s
	("H" and "L" pulse width)						
TPON	Power-on reset circuit	$VDD = 0 \rightarrow 1.8 V$				100	μs
	valid supply voltage rising time						

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

System clock (STCK) operating condition map (One Time PROM version)

ELECTRICAL CHARACTERISTICS

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

Symbol		Parameter Test conditions		Unit				
Symbol		Falameter	10:		Min.	Тур.	Max.	Unit
Vон	"H" level output	voltage	Vdd = 3 V	Iон = -5 mA	2.1			V
	P0, P1, P2, D0-	-D5		Iон = -1 mA	2.4			
Vон	"H" level output	voltage	VDD = 3 V	Iон = -10 mA	2.1			V
	C, CNTR			IOH = -3 mA	2.4			
Vol	"L" level output	voltage	Vdd = 3 V	IOL = 9 mA			1.4	V
	P0, P1, P2, D0-	-D7, C, CNTR		IOL = 3 mA			0.9	1
Vol	"L" level output RESET	voltage	VDD = 3 V	IOL = 2 mA			0.9	V
Ін	"H" level input o	current	VI = VDD	I			2	μA
		-D5, XIN, XCIN, RESET						
	CNTR, INT	, , ,						
lil	"L" level input c	urrent	VI = 0 V P0, P1 No	pull-up			-2	μA
		-D5, XIN, XCIN, RESET						
	CNTR, INT							
Rpu	Pull-up resistor	value	VI = 0 V		50	120	250	kΩ
	P0, P1, RESET		VI = 0 V VDD = 3 V					
VT+ – VT–	Hysteresis RES	FT	VDD = 3 V			0.4		V
VT+ – VT–			VDD = 3 V			0.3		V
VT+ – VT–		R	VDD = 3 V			0.2		V
f(RING)	, ·	or clock frequency	VDD = 3 V		100	250	400	kH:
Δf(XiN)	Frequency erro	, ,	$VDD = 3 V \pm 10 \%$	[a = 25 °C	100	200	±17	%
	(with RC oscilla		VDD = 0 V ± 10 %,					
	1	I R, C not included)						
	(Note 1)	IR, Chot Included)						
	· ,	nadanaa (Nata 2)	VDD = 3 V			2	10	kΩ
RCOM		pedance (Note 2)	VDD = 3 V VDD = 3 V					
RSEG		bedance (Note 2)	-	tor Or V 2 colocted	200	2	10	kΩ
RVLC	Internal resistor	for LCD power supply	When dividing resis		300	480	960	kΩ
			When dividing resis		200	320	640	-
			When dividing resis		150	240	480	-
			When dividing resis		100	160	320	
IDD	Supply current	at active mode	VDD = 3 V	f(STCK) = f(XIN)/8		0.3	0.6	mA
		(with a ceramic resonator)	f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.4	0.8	-
			f(RING) = stop	f(STCK) = f(XIN)/2		0.6	1.2	-
		at a strain a	f(XCIN) = stop	f(STCK) = f(XIN)		0.9	1.8	
		at active mode	VDD = 3 V	f(STCK) = f(RING)/8		12	24	μA
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		17	34	
			f(RING) = active	f(STCK) = f(RING)/2		27	54	-
			f(XCIN) = stop	f(STCK) = f(RING)		48	96	
		at active mode	VDD = 3 V	f(STCK) = f(XCIN)/8		5	10	μA
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XCIN)/4	_	6	12	
		oscillator)	f(RING) = stop	f(STCK) = f(XCIN)/2		7	14	
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		9	18	
		at clock operation mode	VDD = 3 V			5	10	μA
		(POF instruction execution)	f(XCIN) = 32 kHz					
		at RAM back-up mode	Ta = 25 °C			0.1	2	μA
		(POF2 instruction execution)	VDD = 3 V				6	

Notes 1: When RC oscillation is used, use the external 33 pF capacitor (C).

2: The impedance state is the resistor value of the output voltage.

at VLC3 level output: VO = 0.8 VLC3

at VLC2 level output: VO = 0.8 VLC2

at VLC1 level output: VO = 0.2 VLC2 + VLC1

at Vss level output: Vo = 0.2 Vss

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(One Time PROM version: Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol	Falameter	Test conditions	Min.	Тур.	Max.	- Unit	
Vrst-	Detection voltage	Ta = 25 °C	1.6	1.8	2	V	
	(reset occurs) (Note 2)	Ta = -20 to 0 °C	1.7		2.3		
		Ta = 0 to 50 °C	1.4		2.2	1	
		Ta = 50 to 85 °C	1.2		1.9	-	
Vrst+	Detection voltage	Ta = 25 °C	1.7	1.9	2.1	V	
	(reset release) (Note 3)	Ta = -20 to 0 °C	1.8		2.4	_	
		Ta = 0 to 50 °C	1.5		2.3		
		Ta = 50 to 85 °C	1.3		2		
Vrst+-	Detection voltage hysteresis			0.1		V	
Vrst-							
IRST	Operation current (Note 4)	VDD = 3 V		30	60	μA	
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms	

Notes 1: The voltage drop detection circuit is equipped with only the H version.

2: The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

3: The detection voltage (VRST⁺) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

4: In the H version, IRST is added to IDD (power current).

5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST – 0.1 V].

6: The detection voltages (VRST⁺, VRST⁻) are set up lower than the minimum value of the supply voltage of the recommended operating conditions. As for details, refer to the LIST OF PRECAUTIONS.

BASIC TIMING DIAGRAM

Machine cycle Parameter Pin (signal) name			Mi	Mi+1		
System clock	STCK					
Port D output	Do-D7		X			
Port D input	D0D5			X		
Ports P0, P1, P2 output	P00–P03 P10–P13 P20–P23		X			×
Ports P0, P1, P2 input	P00–P03 P10–P13 P20–P23			X		
Interrupt input	INT			X		×

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4552 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 19 Product of built-in PROM version

Table 19 shows the product of built-in PROM version. Figure 56 shows the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Part number	PROM size	RAM size	Package	ROM type		
	(X 10 bits)	(X 4 bits)	Гаскаде			
M34552G8FP	8192 words	288 words	48P6S-A	One Time PROM [shipped in blank]		
M34552G8HFP						

(1) PROM mode

The 4552 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by muddog entry after powering on the VDD pin. In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial

(2) Notes on handling

I/O is used, beginning from the LSB (LSB first).

^①For the One Time PROM version shipped in blank, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 56 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

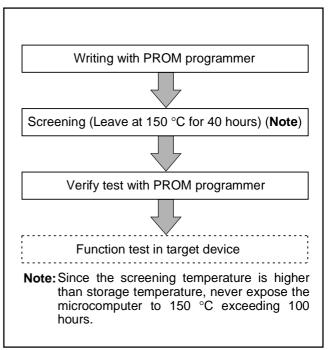


Fig. 56 Flow of writing and test of the product shipped in blank

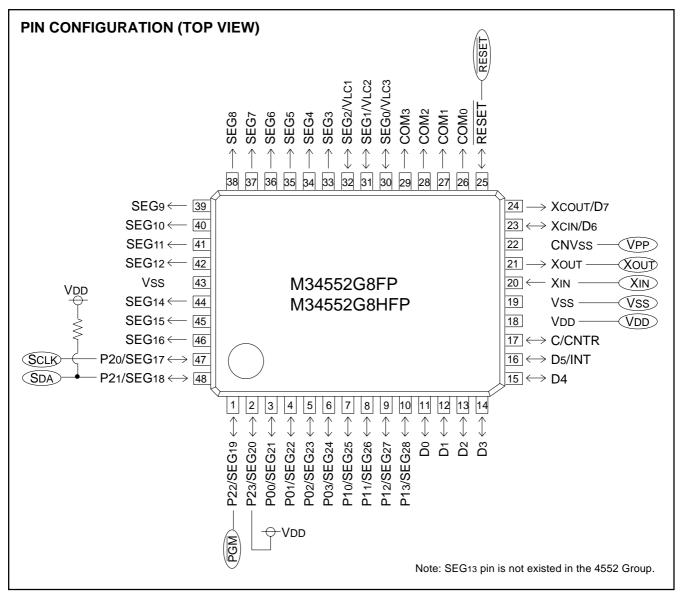


Fig. 57 Pin configuration of built-in PROM version

ROM CODE ACCESS PROTECTION

We would like to support a simple ROM code protection function that prevents a party other than the ROM-code owner to read and reprogram the built-in PROM code of the MCU.

First, Programmers must check the ID-code of the MCU.

If the ID-code is not blank, Programmer verifies it with the input IDcode. When the ID-codes do not match, Programmer will reject all further operations.

The MCU has each 10 bits of dedicated ROM spaces in address 009016 to 009616, as an ID-code (referred to as "the ID-code") enabling a Programmer to verify with the input ID-code and validate further operations.

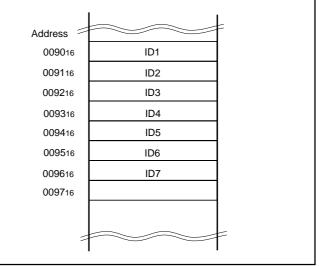
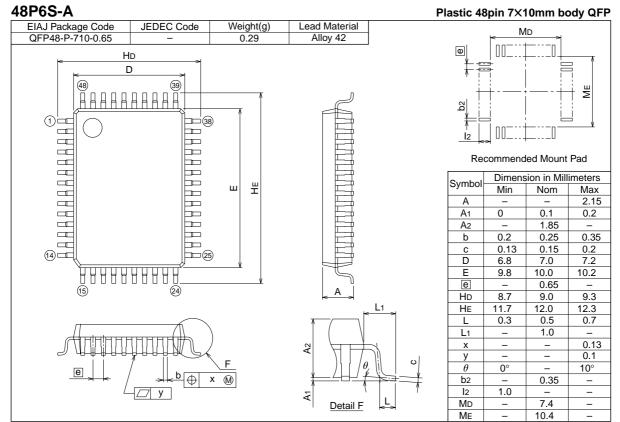



Fig. 58 ROM-Code Protection ID Location

RENESAS

PACKAGE OUTLINE

REVISION HISTORY

4552 Group Data Sheet

Rev.	Date		Description	
		Page	Summary	
1.00	Jul. 23, 2003	_	First edition issued	
1.01	Sep. 17, 2003	50	Voltage drop detection circuit (only in H version) revised.	
		51	Table 15 revised.	
			Timer functions, Timer control registers, Port level, and Notes 6 and 7)	
		61	(19) Voltage drop detection circuit (only in H version) revised.	
		128	Fig.57 revised.	
2.00	Feb. 24, 2004		FEATURES:	
			Minimum instruction execution time: time for One Time PROM version added.	
			 Supply voltage of One Time PROM version revised. 	
		2	PIN CONFIGURATION: Note added.	
		4	PERFORMANCE OVERVIEW:	
			Minimum instruction execution time: time for One Time PROM version added.	
			Supply voltage of One Time PROM version revised.	
			Power dissipation: Values only for Mask ROM version are listed.	
		29	Table 9: Timer 3; Count source and Use of output signal revised.	
		48	(1) Power-on reset : "(only for H version)" eliminated.	
			Description revised.	
			Fig.37: "(only for H version)" added to Voltage drop detection circuit.	
		50	Fig.40: Note revised.	
		58	ROM ORDERING METHOD revised.	
		61	Note on (B) Power-on reset : revised.	
		120 to 132	ELECTRICAL CHARACTERISTICS revised.	
			The table is separated to Mask ROM version and One Time PROM version.	
			Supply voltage and supply current revised mainly.	
			Note 6 is added to VOLTAGE DTOP DETECTION CIRCUIT CHARACTERISTICS.	
		135	Fig.57: Note added.	
3.00	Jul. 09, 2004	All pages	Words standardized: On-chip oscillator	
		5	Description of RESET pin revised.	
		31	Fig.23: Note added.	
		39	Some description revised.	
		40	Fig.28: "DI" instruction added.	
		46	(5) LCD power supply circuit	
			 Internal dividing resistor revised. 	
			Fig.34 d): "VLC3, VLC2, VLC1" added.	
		47	Fig.35, Fig.36: Count revised.	
		49	Fig.38: State of quartz-crystal oscillator added.	
		61	Note on Power Source Voltage added.	
		128	RECOMMENDED OPERATING CONDITIONS 1	
			VDD (RC oscillation) Max.: 3.6	
			IVIAX J.U	

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, ilability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for unter loss resu

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
- a mode products of country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

©2003, 2004. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .1.0

http://www.renesas.com