# RENESAS

## 4554 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

#### DESCRIPTION

The 4554 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, four 8-bit timers (each timer has one or two reload registers), interrupts, and LCD control circuit.

The various microcomputers in the 4554 Group include variations of the built-in memory size as shown in the table below.

#### **FEATURES**

 $\bullet$  Minimum instruction execution time ...... 0.5  $\mu s$ (at 6 MHz oscillation frequency, in high-speed through-mode)

| <ul> <li>Supply voltage</li> </ul> |                                      |
|------------------------------------|--------------------------------------|
| Mask ROM version                   | 2.0 to 5.5 V                         |
| One Time PROM version              | 2.5 to 5.5 V                         |
| (It depends on oscillation frequer | ncy and operation mode)              |
| ●Timers                            |                                      |
| Timer 1                            | . 8-bit timer with a reload register |
| Timer 2                            | 8-bit timer with a reload register   |
| Timer 3                            | 8-bit timer with a reload register   |

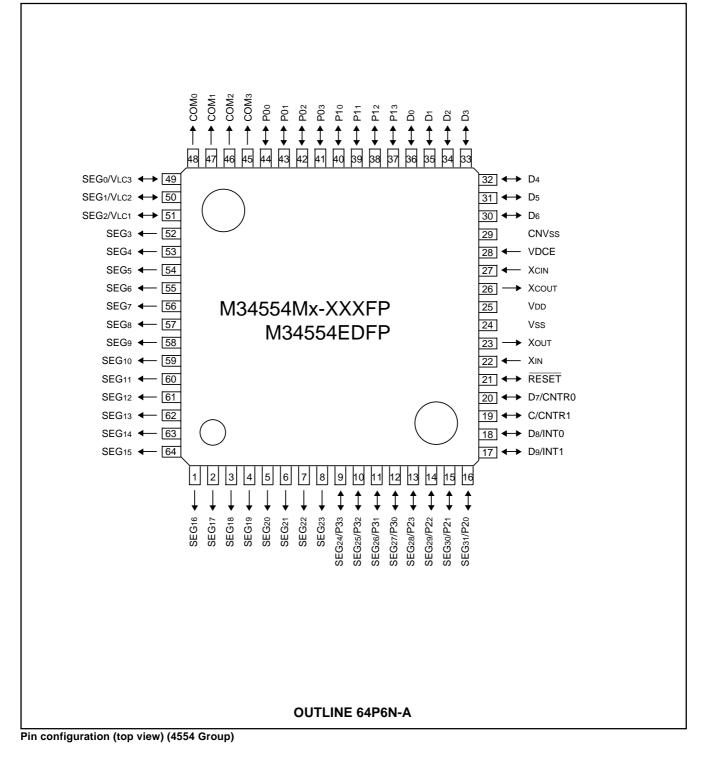
Timer 3 ..... 8-bit timer with a reload register Timer 4 ...... 8-bit timer with two reload registers

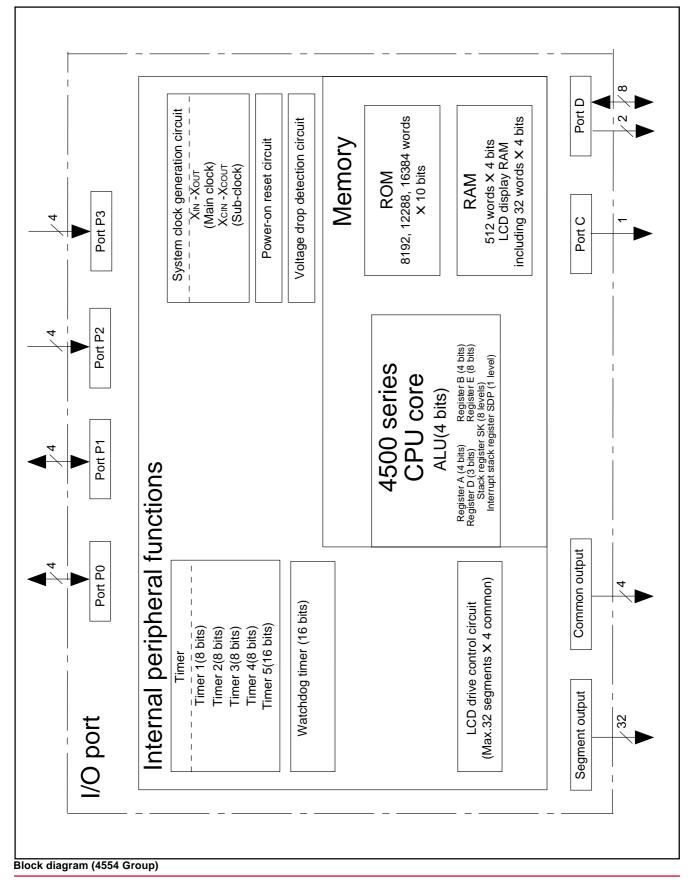
Timer 5 ...... 16-bit timer (fixed dividing frequency)

| Interrupt                                            | 7 sources  |
|------------------------------------------------------|------------|
| Key-on wakeup function pins                          | 10         |
| <ul> <li>LCD control circuit</li> </ul>              |            |
| Segment output                                       | 32         |
| Common output                                        |            |
| Voltage drop detection circuit (Reset)               | Typ. 1.5 V |
| Watchdog timer                                       |            |
| Clock generating circuit                             |            |
| Main clock                                           |            |
| (ceramic resonator/RC oscillation/on-chip oscillator | r)         |
| Sub-clock                                            |            |
| (quartz-crystal oscillation)                         |            |
|                                                      |            |

## ●LED drive directly enabled (port D)

#### **APPLICATION**


Remot control transmitter


| Part number       | ROM (PROM) size<br>(X 10 bits) | RAM size<br>(X 4 bits) | Package | ROM type      |
|-------------------|--------------------------------|------------------------|---------|---------------|
| M34554M8-XXXFP    | 8192 words                     | 512 words              | 64P6N-A | Mask ROM      |
| M34554MC-XXXFP    | 12288 words                    | 512 words              | 64P6N-A | Mask ROM      |
| M34554EDFP (Note) | 16384 words                    | 512 words              | 64P6N-A | One Time PROM |

Note: Shipped in blank.



## **PIN CONFIGURATION**





## PERFORMANCE OVERVIEW

| Parameter             |                             | er           | Function                                                                                                                                                       |  |  |
|-----------------------|-----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of bas         | sic instruct                | ions         | 136                                                                                                                                                            |  |  |
| Minimum instr         | uction exe                  | cution time  | 0.5 $\mu$ s (at 6 MHz oscillation frequency, in high-speed through mode)                                                                                       |  |  |
| Memory sizes          | ROM                         | M34554M8     | 8192 words X 10 bits                                                                                                                                           |  |  |
|                       |                             | M34554MC     | 12288 words X 10 bits                                                                                                                                          |  |  |
|                       |                             | M34554ED     | 16384 words X 10 bits                                                                                                                                          |  |  |
|                       | RAM                         |              | 512 words X 4 bits (including LCD display RAM 32 words X 4 bits)                                                                                               |  |  |
| Input/Output<br>ports | D0–D7                       | I/O          | Eight independent I/O ports.<br>Input is examined by skip decision.<br>The output structure can be switched by software.<br>Port D7 is also used as CNTR0 pin. |  |  |
|                       | D8, D9                      | Output       | Two independent output ports.<br>Ports D8 and D9 are also used as INT0 and INT1, respectively.                                                                 |  |  |
|                       | P00-P03                     | I/O          | 4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.                                                 |  |  |
|                       | P10–P13                     | I/O          | 4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.                                                 |  |  |
|                       | P20-P23                     | Input        | 4-bit input port; Port P20–P23 are also used as SEG31–SEG28 pins.                                                                                              |  |  |
|                       | P30-P33                     | Input        | 4-bit input port; Port P30–P33 are also used as SEG27–SEG24 pins.                                                                                              |  |  |
|                       | С                           | Output       | 1-bit output; Port C is also used as CNTR1 pin.                                                                                                                |  |  |
| Timers                | Timer 1                     |              | 8-bit programmable timer with a reload register and has an event counter.                                                                                      |  |  |
|                       | Timer 2                     |              | 8-bit programmable timer with a reload register.                                                                                                               |  |  |
|                       | Timer 3                     |              | 8-bit programmable timer with a reload register and has an event counter.                                                                                      |  |  |
|                       | Timer 4                     |              | 8-bit programmable timer with two reload registers.                                                                                                            |  |  |
|                       | Timer 5                     |              | 16-bit timer, fixed dividing frequency                                                                                                                         |  |  |
| LCD control           | Selective                   | bias value   | 1/2, 1/3 bias                                                                                                                                                  |  |  |
| circuit               | Selective                   | duty value   | 2, 3, 4 duty                                                                                                                                                   |  |  |
|                       | Common                      | output       | 4                                                                                                                                                              |  |  |
|                       | Segment                     | output       | 32                                                                                                                                                             |  |  |
|                       | Internal re<br>power sup    |              | 2r X 3, 2r X 2, r X 3, r X 2 (they can be switched by software.)                                                                                               |  |  |
| Interrupt             | Sources                     |              | 7 (two for external, five for timer)                                                                                                                           |  |  |
|                       | Nesting                     |              | 1 level                                                                                                                                                        |  |  |
| Subroutine ne         | sting                       |              | 8 levels                                                                                                                                                       |  |  |
| Device structu        | ıre                         |              | CMOS silicon gate                                                                                                                                              |  |  |
| Package               | Package                     |              | 64-pin plastic molded QFP (64P6N)                                                                                                                              |  |  |
| Operating terr        | Operating temperature range |              | -20 °C to 85 °C                                                                                                                                                |  |  |
| Supply                | Mask ROM version            |              | 2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)                                                               |  |  |
| voltage               | One Time                    | PROM version | 2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)                                                             |  |  |
| Power                 | Active mo                   | de           | 2.8 mA (Ta=25°C, VDD = 5 V, f(XIN) = 6 MHz, f(XCIN) = 32 kHz, f(STCK) = f(XIN))                                                                                |  |  |
| dissipation           | Clock ope                   | erating mode | 20 μA (Ta=25°C, VDD = 5 V, f(XciN) = 32 kHz)                                                                                                                   |  |  |
|                       | At RAM back-up              |              | $0.1 \mu\text{A} (\text{Ta}=25^{\circ}\text{C}, \text{VDD} = 5 \text{ V})$                                                                                     |  |  |

## **PIN DESCRIPTION**

| Pin             | Name                                                 | Input/Output    | Function                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------|------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| VDD             | Power supply                                         |                 | Connected to a plus power supply.                                                                                                                                                                                                                                                                                                                            |  |  |
| Vss             | Ground                                               |                 | Connected to a 0 V power supply.                                                                                                                                                                                                                                                                                                                             |  |  |
| CNVss           | CNVss                                                |                 | Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.                                                                                                                                                                                                                                                                                                  |  |  |
| VDCE            | Voltage drop<br>detection circuit<br>enable          | Input           | This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit starts operating.                                                                                                                                                   |  |  |
| RESET           | Reset input/output                                   | I/O             | An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.                                                                                                                                               |  |  |
| XIN             | Main clock input                                     | Input           | I/O pins of the main clock generating circuit. When using a ceramic resonator, con-<br>nect it between pins XIN and XOUT. A feedback resistor is built-in between them.<br>When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave                                                                                               |  |  |
| Хоит            | Main clock output                                    | Output          | XOUT pin open.                                                                                                                                                                                                                                                                                                                                               |  |  |
| XCIN<br>XCOUT   | Sub-clock input<br>Sub-clock output                  | Input<br>Output | I/O pins of the sub-clock generating circuit. Connect a 32 kHz quartz-crystal oscillator between pins XCIN and XCOUT. A feedback resistor is built-in between them.                                                                                                                                                                                          |  |  |
| D0-D7           | I/O port D<br>Input is examined by<br>skip decision. | I/O             | Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D7 is also used as CNTR0 pin.                                                                            |  |  |
| D8, D9          | Output port D                                        | Output          | Each pin of port D has an independent 1-bit wide output function. The output struc-<br>ture is N-channel open-drain. Ports D <sub>8</sub> and D <sub>9</sub> are also used as INT0 pin and INT1<br>pin, respectively.                                                                                                                                        |  |  |
| P00-P03         | I/O port P0                                          | I/O             | Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.                                 |  |  |
| P10-P13         | I/O port P1                                          | I/O             | Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.                                 |  |  |
| P20-P23         | Input port P2                                        | Input           | Port P2 serves as a 4-bit input port.<br>Ports P20–P23 are also used as SEG31–SEG28, respectively.                                                                                                                                                                                                                                                           |  |  |
| P30-P33         | Input port P3                                        | Input           | Port P3 serves as a 4-bit input port.<br>Ports P30–P33 are also used as SEG27–SEG24, respectively.                                                                                                                                                                                                                                                           |  |  |
| Port C          | Output port C                                        | Output          | 1-bit output port. The output structure is CMOS. Port C is also used as CNTR1 pin.                                                                                                                                                                                                                                                                           |  |  |
| COM0–<br>COM3   | Common output                                        | Output          | LCD common output pins. Pins COM <sub>0</sub> and COM <sub>1</sub> are used at 1/2 duty, pins COM <sub>0</sub> – COM <sub>2</sub> are used at 1/3 duty and pins COM <sub>0</sub> –COM <sub>3</sub> are used at 1/4 duty.                                                                                                                                     |  |  |
| SEG0-SEG31      | Segment output                                       | Output          | LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively.                                                                                                                                                                                                                                                                            |  |  |
| VLC3–VLC1       | LCD power supply                                     | _               | LCD power supply pins.<br>When the internal resistor is used, VDD pin is connected to VLC3 pin (if luminance adjustment is required, VDD pin is connected to VLC3 pin through a resistor).<br>When the external power supply is used, apply the voltage $0 \le VLC1 \le VLC2 \le VLC3 \le VDD$ .<br>VLC3–VLC1 pins are used as SEG0–SEG2 pins, respectively. |  |  |
| CNTR0,<br>CNTR1 | Timer input/output                                   | I/O             | CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2.<br>CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D7 and C, respectively.    |  |  |
| INTO, INT1      | Interrupt input                                      | Input           | INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup func-<br>tion which can be switched by software. INT0 pin and INT1 pin are also used as<br>Ports D8 and D9, respectively.                                                                                                                                                      |  |  |

#### MULTIFUNCTION

| Pin  | Multifunction | Pin   | Multifunction | Pin | Multifunction | Pin   | Multifunction |
|------|---------------|-------|---------------|-----|---------------|-------|---------------|
| С    | CNTR1         | CNTR1 | С             | P20 | SEG31         | SEG31 | P20           |
| D7   | CNTR0         | CNTR0 | D7            | P21 | SEG30         | SEG30 | P21           |
| D8   | INT0          | INT0  | D8            | P22 | SEG29         | SEG29 | P22           |
| D9   | INT1          | INT1  | D9            | P23 | SEG28         | SEG28 | P23           |
| VLC3 | SEG0          | SEG0  | VLC3          | P30 | SEG27         | SEG27 | P30           |
| VLC2 | SEG1          | SEG1  | VLC2          | P31 | SEG26         | SEG26 | P31           |
| VLC1 | SEG2          | SEG2  | VLC1          | P32 | SEG25         | SEG25 | P32           |
|      |               |       |               | P33 | SEG24         | SEG24 | P33           |
|      |               |       |               |     |               |       |               |

Notes 1: Pins except above have just single function.

2: The output of D8 and D9 can be used even when INT0 and INT1 are selected.

3: The input/output of D7 can be used even when CNTR0 (input) is selected.

4: The input of D7 can be used even when CNTR0 (output) is selected.

5: The port C "H" output function can be used even when CNTR1 (output) is selected.

## **DEFINITION OF CLOCK AND CYCLE**

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

#### Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

#### Table Selection of system clock

|     | Register MR |        |     | System clock                      | Operation mode                         |
|-----|-------------|--------|-----|-----------------------------------|----------------------------------------|
| MR3 | MR2         | MR1    | MR0 |                                   |                                        |
| 0   | 0           | 0      | 0   | f(STCK) = f(XIN) or f(RING)       | High-speed through mode                |
|     |             | 0 or 1 | 1   | f(STCK) = f(XCIN)                 | Low-speed through mode                 |
| 0   | 1           | 0      | 0   | f(STCK) = f(XIN)/2  or  f(RING)/2 | High-speed frequency divided by 2 mode |
|     |             | 0 or 1 | 1   | f(STCK) = f(XCIN)/2               | Low-speed frequency divided by 2 mode  |
| 1   | 0           | 0      | 0   | f(STCK) = f(XIN)/4  or  f(RING)/4 | High-speed frequency divided by 4 mode |
|     |             | 0 or 1 | 1   | f(STCK) = f(XCIN)/4               | Low-speed frequency divided by 4 mode  |
| 1   | 1           | 0      | 0   | f(STCK) = f(XIN)/8  or  f(RING)/8 | High-speed frequency divided by 8 mode |
|     |             | 0 or 1 | 1   | f(STCK) = f(XCIN)/8               | Low-speed frequency divided by 8 mode  |

Note: The f(RING)/8 is selected after system is released from reset.

## PORT FUNCTION

| Port    | Pin                 | Input  | Output structure      | I/O  | Control      | Control   | Remark                        |  |
|---------|---------------------|--------|-----------------------|------|--------------|-----------|-------------------------------|--|
| 1 011   | 1 111               | Output |                       | unit | instructions | registers | Kenlark                       |  |
| Port D  | D0-D6, D7/CNTR0     | I/O    | N-channel open-drain/ | 1    | SD, RD       | FR1, FR2  | Output structure selection    |  |
|         |                     | (8)    | CMOS                  |      | SZD          | W6        | function (programmable)       |  |
|         |                     |        |                       |      | CLD          |           |                               |  |
|         | D8/INT0, D9/INT1    | Output | N-channel open-drain  | 1    |              | l1, l2    | Key-on wakeup function        |  |
|         |                     | (2)    |                       |      |              | K2        | (programmable)                |  |
| Port P0 | P00–P03             | I/O    | N-channel open-drain/ | 4    | OP0A         | FR0       | Built-in programmable pull-up |  |
|         |                     | (4)    | CMOS                  |      | IAP0         | PU0       | functions and key-on wakeup   |  |
|         |                     |        |                       |      |              | K0        | functions (programmable)      |  |
| Port P1 | P10–P13             | I/O    | N-channel open-drain/ | 4    | OP1A         | FR0       | Built-in programmable pull-up |  |
|         |                     | (4)    | CMOS                  |      | IAP1         | PU1       | functions and key-on wakeup   |  |
|         |                     |        |                       |      |              | K1        | functions (programmable)      |  |
| Port P2 | SEG31/P20-SEG28/P23 | Input  |                       | 4    | IAP2         | L3        |                               |  |
|         |                     | (4)    |                       |      |              |           |                               |  |
| Port P3 | SEG27/P30-SEG24/P33 | Input  |                       | 4    | IAP3         | L3        |                               |  |
|         |                     | (4)    |                       |      |              |           |                               |  |
| Port C  | C/CNTR1             | Output | CMOS                  | 1    | RCP          | W4        |                               |  |
|         |                     | (1)    |                       |      | SCP          |           |                               |  |



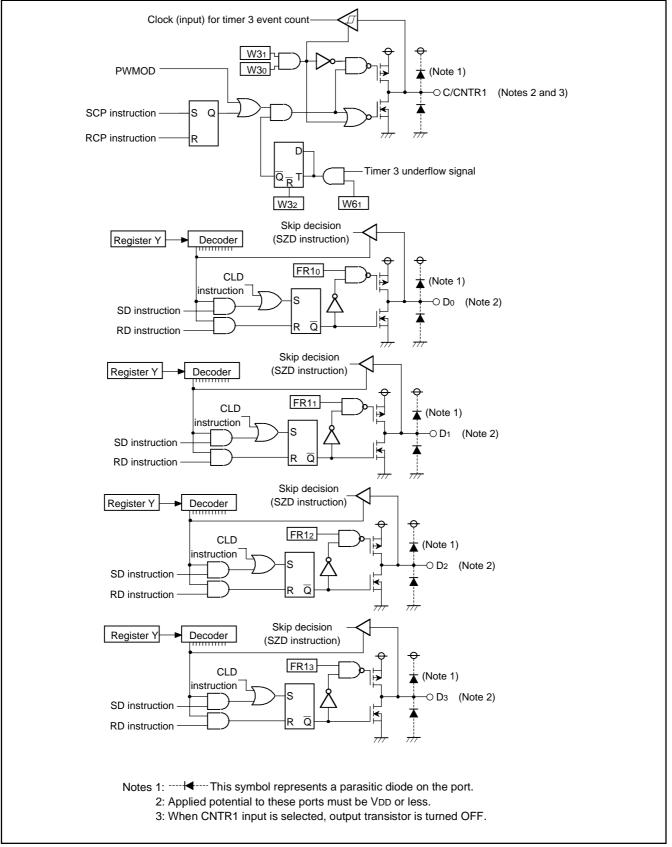
## CONNECTIONS OF UNUSED PINS

| Pin           | Connection      | Usage condition                                                                 |  |  |  |
|---------------|-----------------|---------------------------------------------------------------------------------|--|--|--|
| Xin           | Connect to Vss. | Internal oscillator is selected (CMCK and CRCK instructions are not executed.)  |  |  |  |
|               |                 | (Note 1)                                                                        |  |  |  |
|               |                 | Sub-clock input is selected for system clock (MR0=1). (Note 2)                  |  |  |  |
| Хоит          | Open.           | Internal oscillator is selected (CMCK and CRCK instructions are not executed.)  |  |  |  |
|               |                 | (Note 1)                                                                        |  |  |  |
|               |                 | RC oscillator is selected (CRCK instruction is executed)                        |  |  |  |
|               |                 | External clock input is selected for main clock (CMCK instruction is executed). |  |  |  |
|               |                 | (Note 3)                                                                        |  |  |  |
|               |                 | Sub-clock input is selected for system clock (MR0=1). (Note 2)                  |  |  |  |
| XCIN          | Connect to Vss. | Sub-clock is not used.                                                          |  |  |  |
| Хсоит         | Open.           | Sub-clock is not used.                                                          |  |  |  |
|               |                 | External clock input is selected for sub-clock.                                 |  |  |  |
| D0-D6         | Open.           | (Note 4)                                                                        |  |  |  |
|               | Connect to Vss. | N-channel open-drain is selected for the output structure.                      |  |  |  |
| D7/CNTR0      | Open.           | CNTR0 input is not selected for timer 1 count source.                           |  |  |  |
|               | Connect to Vss. | N-channel open-drain is selected for the output structure.                      |  |  |  |
| D8/INT0 Open. |                 | "0" is set to output latch.                                                     |  |  |  |
|               | Connect to Vss. |                                                                                 |  |  |  |
| D9/INT1       | Open.           | "0" is set to output latch.                                                     |  |  |  |
|               | Connect to Vss. |                                                                                 |  |  |  |
| C/CNTR1       | Open.           | CNTR1 input is not selected for timer 3 count source.                           |  |  |  |
| P00-P03       | Open.           | The key-on wakeup function is not selected. (Note 4)                            |  |  |  |
|               | Connect to Vss. | N-channel open-drain is selected for the output structure. (Note 5)             |  |  |  |
|               |                 | The pull-up function is not selected. (Note 4)                                  |  |  |  |
|               |                 | The key-on wakeup function is not selected. (Note 4)                            |  |  |  |
| P10-P13       | Open.           | The key-on wakeup function is not selected. (Note 4)                            |  |  |  |
|               | Connect to Vss. | N-channel open-drain is selected for the output structure. (Note 5)             |  |  |  |
|               |                 | The pull-up function is not selected. (Note 4)                                  |  |  |  |
|               |                 | The key-on wakeup function is not selected. (Note 4)                            |  |  |  |
| SEG31/P20-    | Open.           |                                                                                 |  |  |  |
| SEG28/P23     | Connect to Vss. | Ports P20–P23 selected.                                                         |  |  |  |
| SEG27/P30-    | Open.           |                                                                                 |  |  |  |
| SEG24/P33     | Connect to Vss. | Ports P30-P33 selected.                                                         |  |  |  |
| COM0–COM3     | Open.           |                                                                                 |  |  |  |
| SEG0/VLC3     | Open.           | SEGo pin is selected.                                                           |  |  |  |
| SEG1/VLC2     | Open.           | SEG1 pin is selected.                                                           |  |  |  |
| SEG2/VLC1     | Open.           | SEG2 pin is selected.                                                           |  |  |  |
| SEG3-SEG23    | Open.           |                                                                                 |  |  |  |

Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.

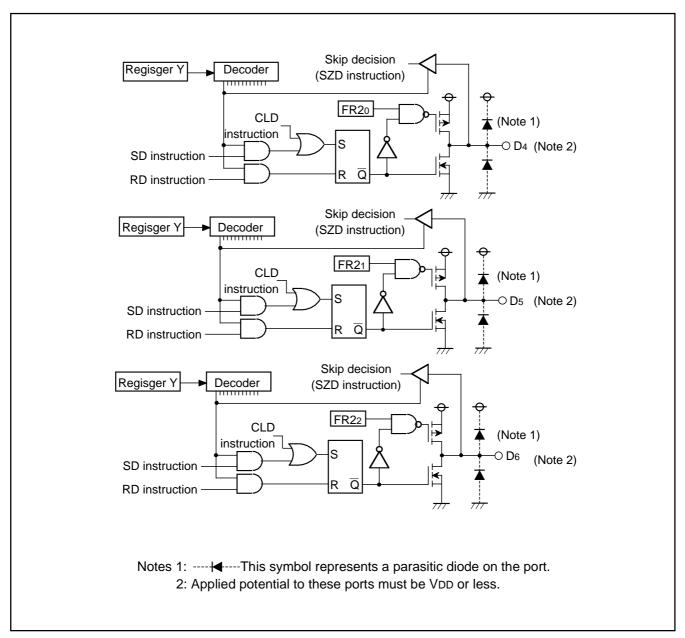
2: When sub-clock (XCIN) input is selected (MR0 = 1) for the system clock by setting "1" to bit 1 (MR1) of clock control register MR, main clock is stopped. 3: Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.

4: Be sure to select the output structure of ports D0–D6 and the pull-up function and key-on wakeup function of P00–P03 and P10–P13 with every one port. Set the corresponding bits of registers for each port.


5: Be sure to select the output structure of ports P00–P03 and P10–P13 with every two ports. If only one of the two pins is used, leave another one open.

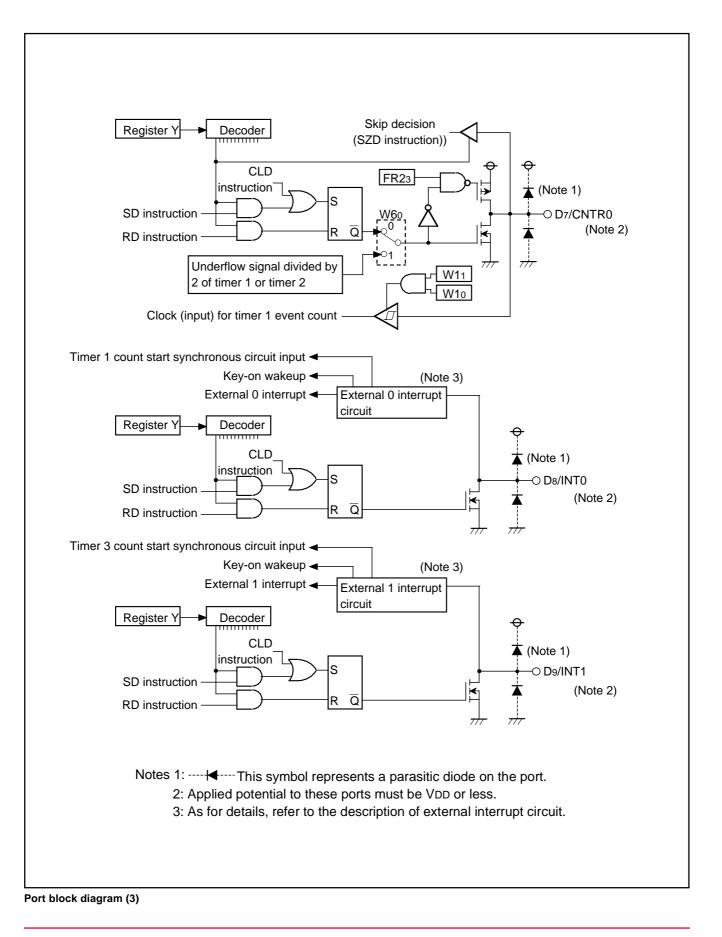
(Note when connecting to Vss and VDD)

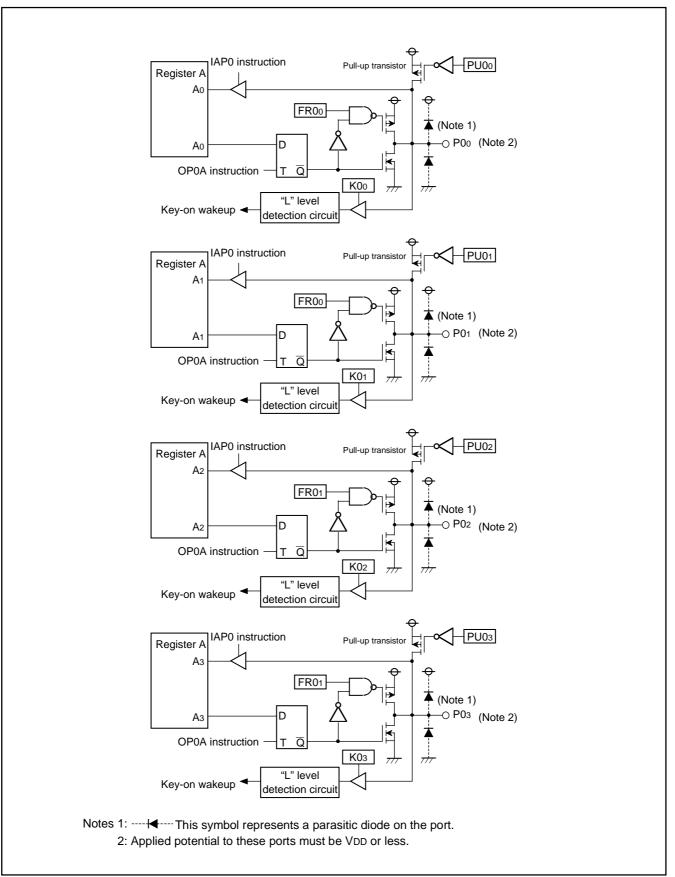
• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.




#### PORT BLOCK DIAGRAMS

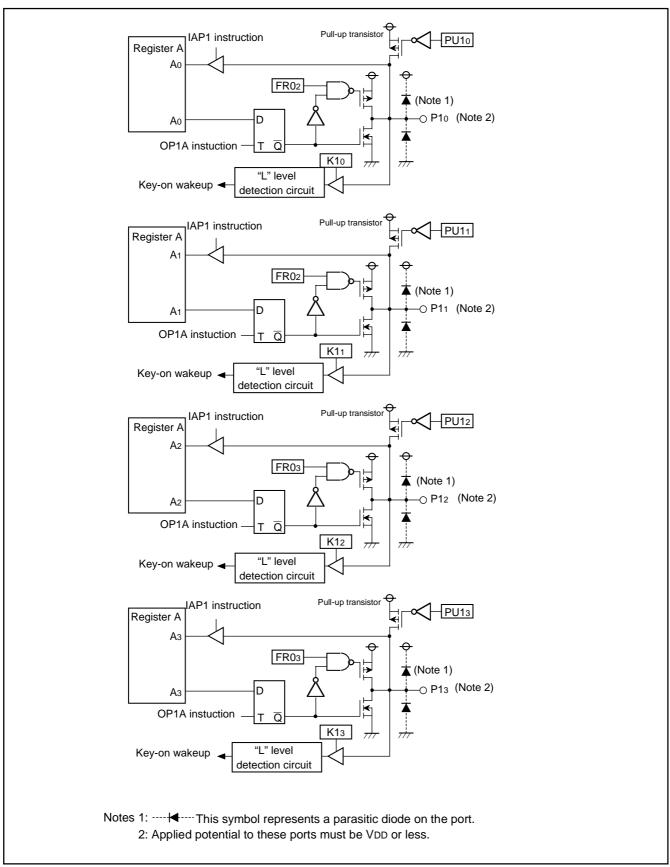



Port block diagram (1)

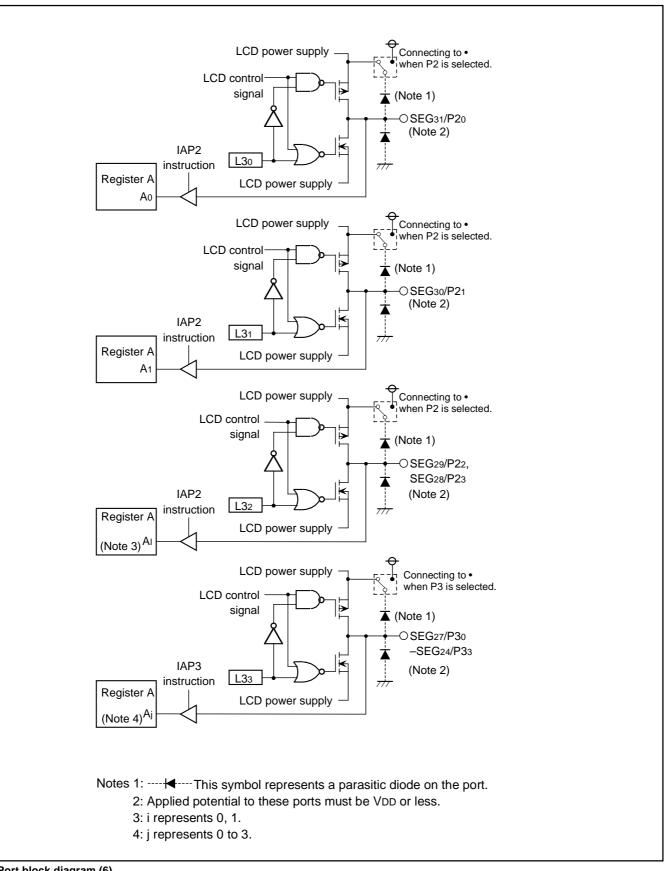




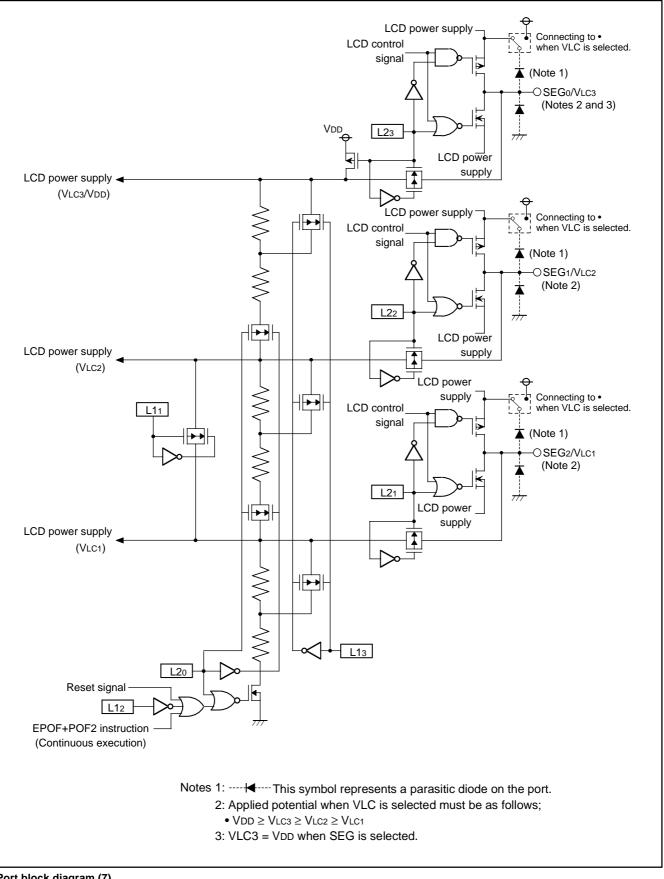

Port block diagram (2)



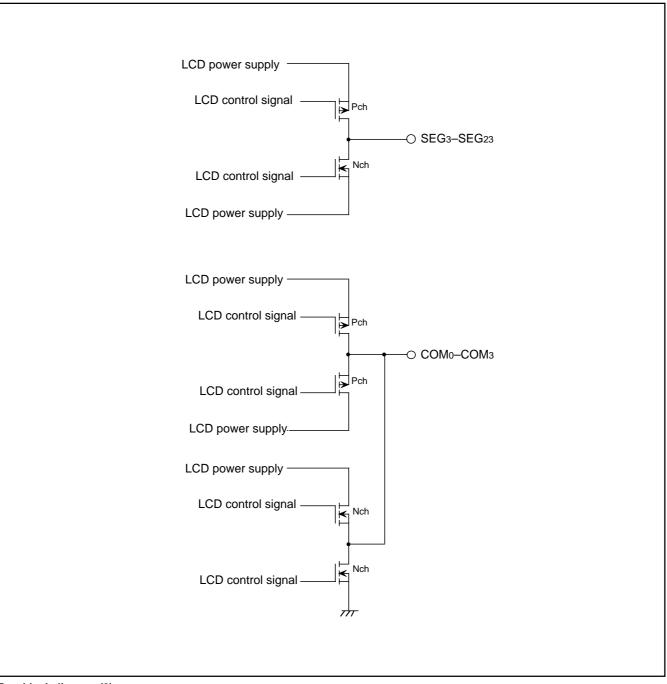



Port block diagram (4)







Port block diagram (5)



Port block diagram (6)



Port block diagram (7)



Port block diagram (8)

## FUNCTION BLOCK OPERATIONS CPU

#### (1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

## (2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

## (3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

## (4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

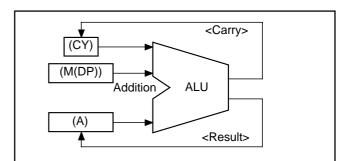



Fig. 1 AMC instruction execution example

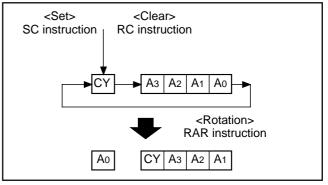



Fig. 2 RAR instruction execution example

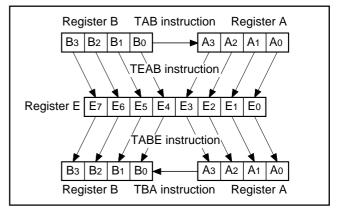



Fig. 3 Registers A, B and register E

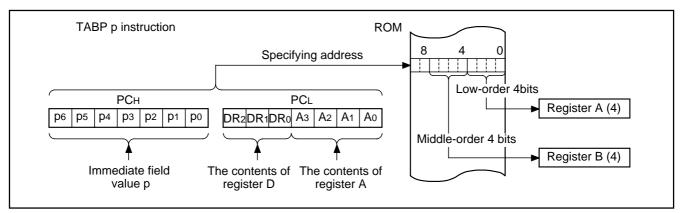



Fig. 4 TABP p instruction execution example

#### (5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

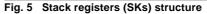
Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

#### (6) Interrupt stack register (SDP)


Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

## (7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

| Program                                                                                                                                                                                                                                                                                                                                 | counter (PC)               |          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|--|
| Executing <b>BM</b><br>instruction                                                                                                                                                                                                                                                                                                      | Executing F<br>instruction |          |  |
|                                                                                                                                                                                                                                                                                                                                         | SK0                        | (SP) = 0 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK1                        | (SP) = 1 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK2                        | (SP) = 2 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK3                        | (SP) = 3 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK4                        | (SP) = 4 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK5                        | (SP) = 5 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK6                        | (SP) = 6 |  |
|                                                                                                                                                                                                                                                                                                                                         | SK7                        | (SP) = 7 |  |
| Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first <b>BM</b> instruction, and the contents of program counter is stored in SKo. When the <b>BM</b> instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed. |                            |          |  |



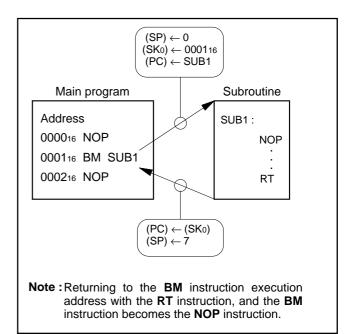



Fig. 6 Example of operation at subroutine call



## (8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the  $\mathsf{PCH}$  does not specify after the last page of the built-in ROM.

## (9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

#### Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

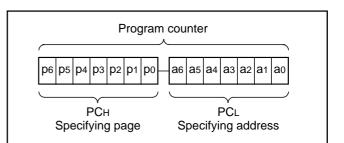



Fig. 7 Program counter (PC) structure

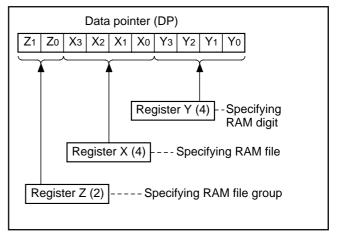



Fig. 8 Data pointer (DP) structure

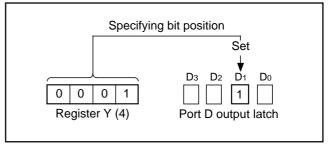



Fig. 9 SD instruction execution example

#### **PROGRAM MEMORY (ROM)**

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34554ED.

#### Table 1 ROM size and pages

| Part number | ROM (PROM) size<br>(X 10 bits) | Pages          |
|-------------|--------------------------------|----------------|
| M34554M8    | 8192 words                     | 64 (0 to 63)   |
| M34554MC    | 12288 words                    | 96 (0 to 95)   |
| M34554ED    | 16384 words                    | 128 (0 to 127) |

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.

Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP  $\ensuremath{\mathsf{p}}$  instruction.

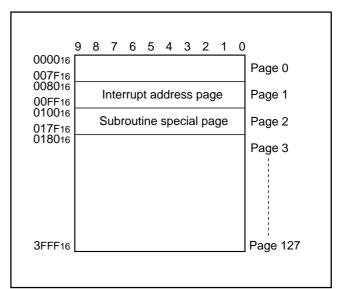



Fig. 10 ROM map of M34554ED

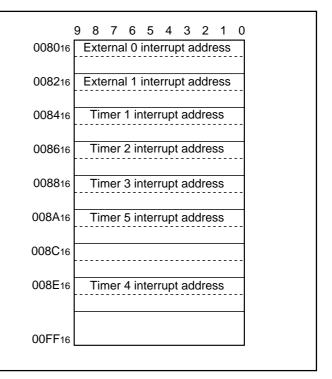



Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

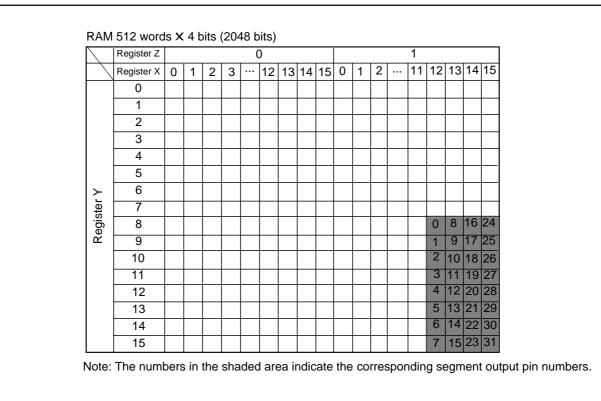


## DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.


#### Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

#### Table 2 RAM size

| Part number | RAM size                       |
|-------------|--------------------------------|
| M34554M8    | 512 words X 4 bits (2048 bits) |
| M34554MC    | 512 words X 4 bits (2048 bits) |
| M34554ED    | 512 words X 4 bits (2048 bits) |



#### Fig. 12 RAM map



#### **INTERRUPT FUNCTION**

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

• An interrupt activated condition is satisfied (request flag = "1")

- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

## (1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

#### (2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

## (3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

#### Table 3 Interrupt sources

|                   | terrupt sources      |                             |                        |
|-------------------|----------------------|-----------------------------|------------------------|
| Priority<br>level | Interrupt name       | Activated condition         | Interrupt<br>address   |
| 1                 | External 0 interrupt | Level change of<br>INT0 pin | Address 0<br>in page 1 |
| 2                 | External 1 interrupt | Level change of INT1 pin    | Address 2<br>in page 1 |
| 3                 | Timer 1 interrupt    | Timer 1 underflow           | Address 4<br>in page 1 |
| 4                 | Timer 2 interrupt    | Timer 2 underflow           | Address 6<br>in page 1 |
| 5                 | Timer 3 interrupt    | Timer 3 underflow           | Address 8<br>in page 1 |
| 6                 | Timer 5 interrupt    | Timer 5 underflow           | Address A<br>in page 1 |
| 7                 | Timer 4 interrupt    | Timer 4 underflow           | Address E<br>in page 1 |

#### Table 4 Interrupt request flag, interrupt enable bit and skip instruction

| Interrupt name       | Interrupt<br>request flag | Skip instruction | Interrupt<br>enable bit |
|----------------------|---------------------------|------------------|-------------------------|
| External 0 interrupt | EXF0                      | SNZ0             | V10                     |
| External 1 interrupt | EXF1                      | SNZ1             | V11                     |
| Timer 1 interrupt    | T1F                       | SNZT1            | V12                     |
| Timer 2 interrupt    | T2F                       | SNZT2            | V13                     |
| Timer 3 interrupt    | T3F                       | SNZT3            | V20                     |
| Timer 5 interrupt    | T5F                       | SNZT5            | V21                     |
| Timer 4 interrupt    | T4F                       | SNZT4            | V23                     |

#### Table 5 Interrupt enable bit function

| Interrupt enable bit | Occurrence of interrupt | Skip instruction |
|----------------------|-------------------------|------------------|
| 1                    | Enabled                 | Invalid          |
| 0                    | Disabled                | Valid            |



#### (4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

• Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)
- INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
   Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
- The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

## (5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

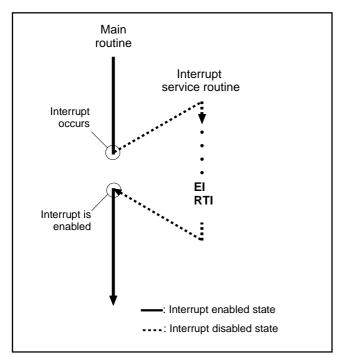
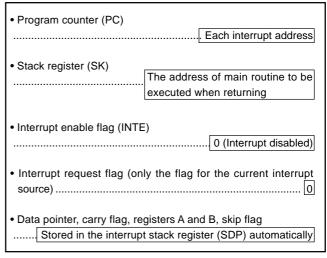
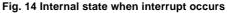
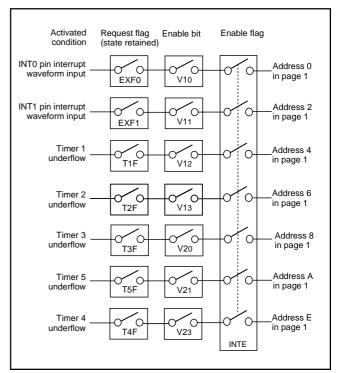






Fig. 13 Program example of interrupt processing











#### (6) Interrupt control registers

Interrupt control register V1

Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

#### Table 6 Interrupt control registers

• Interrupt control register V2

The timer 3, timer 5, timer 4 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

|               | Interrupt control register V1   | at | reset : 00002       | at power down : 00002         | R/W<br>TAV1/TV1A |
|---------------|---------------------------------|----|---------------------|-------------------------------|------------------|
| V13           | Timer 2 interrupt enable bit    | 0  | Interrupt disabled  | (SNZT2 instruction is valid)  |                  |
| V 13          |                                 | 1  | Interrupt enabled ( | SNZT2 instruction is invalid) |                  |
| V12           | Timer 1 interrupt enable bit    | 0  | Interrupt disabled  | (SNZT1 instruction is valid)  |                  |
| VIZ           |                                 | 1  | Interrupt enabled ( | SNZT1 instruction is invalid) |                  |
| V11           | External 1 interrupt enable bit | 0  | Interrupt disabled  | (SNZ1 instruction is valid)   |                  |
| VII           |                                 | 1  | Interrupt enabled ( | SNZ1 instruction is invalid)  |                  |
| \/ <b>1</b> 0 | External Q interrupt anable bit | 0  | Interrupt disabled  | (SNZ0 instruction is valid)   |                  |
| V10           | External 0 interrupt enable bit | 1  | Interrupt enabled ( | SNZ0 instruction is invalid)  |                  |

|      | Interrupt control register V2    | at | reset : 00002                | at power down : 00002             | R/W<br>TAV2/TV2A    |                               |  |
|------|----------------------------------|----|------------------------------|-----------------------------------|---------------------|-------------------------------|--|
| V23  | Timer 4 interrupt enable bit     | 0  | Interrupt disabled (         | (SNZT4 instruction is valid)      |                     |                               |  |
| V23  |                                  | 1  | Interrupt enabled (          | SNZT4 instruction is invalid)     |                     |                               |  |
| V22  | Not used                         | 0  | This bit has no fun          | ction, but read/write is enabled. |                     |                               |  |
| VZZ  |                                  | 1  |                              |                                   |                     |                               |  |
| V21  | Timer 5 interrupt enable bit     | 0  | Interrupt disabled (         | (SNZT5 instruction is valid)      |                     |                               |  |
| VZ1  |                                  | 1  | Interrupt enabled (          | SNZT5 instruction is invalid)     |                     |                               |  |
| 1/20 | Timor 2 interrupt enable bit     | 0  | Interrupt disabled (         | (SNZT3 instruction is valid)      |                     |                               |  |
| v20  | V20 Timer 3 interrupt enable bit |    | Timer 3 interrupt enable bit |                                   | Interrupt enabled ( | SNZT3 instruction is invalid) |  |

Note: "R" represents read enabled, and "W" represents write enabled.

#### (7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20, V21, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).



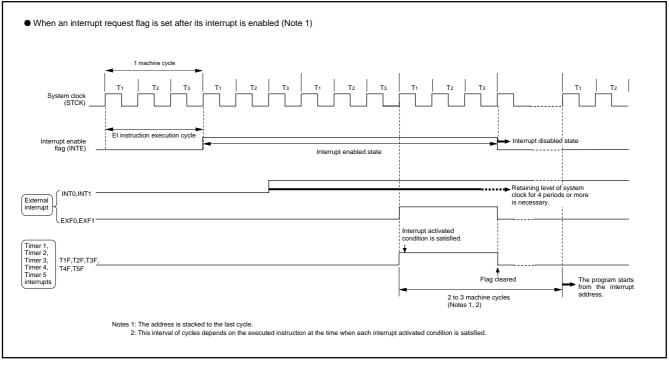



Fig. 16 Interrupt sequence



#### **EXTERNAL INTERRUPTS**

The 4554 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

#### Table 7 External interrupt activated conditions

| Name                 | Input pin | Activated condition                                   | Valid waveform<br>selection bit |
|----------------------|-----------|-------------------------------------------------------|---------------------------------|
| External 0 interrupt | D8/INT0   | When the next waveform is input to D8/INT0 pin        | l11                             |
|                      |           | <ul> <li>Falling waveform ("H"→"L")</li> </ul>        | l12                             |
|                      |           | <ul> <li>Rising waveform ("L"→"H")</li> </ul>         |                                 |
|                      |           | <ul> <li>Both rising and falling waveforms</li> </ul> |                                 |
| External 1 interrupt | D9/INT1   | When the next waveform is input to D9/INT1 pin        | l21                             |
|                      |           | <ul> <li>Falling waveform ("H"→"L")</li> </ul>        | 122                             |
|                      |           | <ul> <li>Rising waveform ("L"→"H")</li> </ul>         |                                 |
|                      |           | <ul> <li>Both rising and falling waveforms</li> </ul> |                                 |

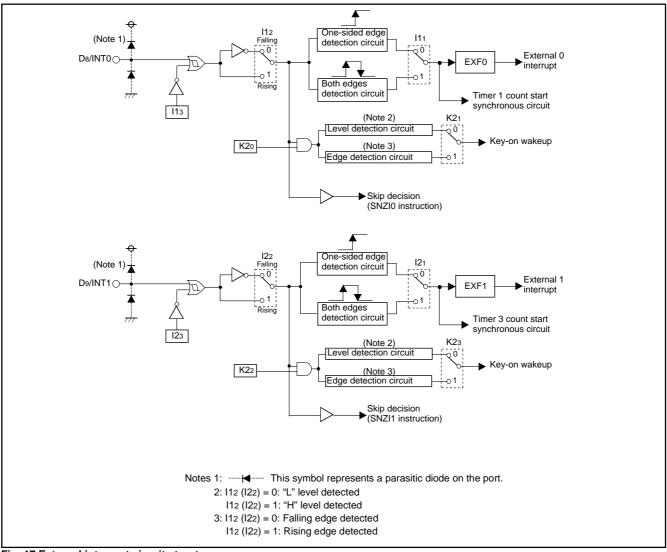



Fig. 17 External interrupt circuit structure

## (1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D8/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
- External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- $\odot$  Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- <sup>②</sup> Select the valid waveform with the bits 1 and 2 of register I1.
- $\ensuremath{\textcircled{3}}$  Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- ⑤ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D $_8$ /INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

## (2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to D9/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition
- External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.

- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- <sup>②</sup> Select the valid waveform with the bits 1 and 2 of register I2.
- $\ensuremath{\textcircled{3}}$  Clear the EXF1 flag to "0" with the SNZ1 instruction.
- ④ Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
- ⑤ Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid wave-form is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

## (3) External interrupt control registers

Interrupt control register I1

Register 11 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

#### Table 8 External interrupt control register

#### • Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

|             | Interrupt control register I1                | at | reset : 00002       | at power down : state retained          | R/W<br>TAI1/TI1A |
|-------------|----------------------------------------------|----|---------------------|-----------------------------------------|------------------|
| 113         | INT0 pin input control bit (Note 2)          | 0  | INT0 pin input disa | abled                                   |                  |
| 113         |                                              | 1  | INT0 pin input ena  | bled                                    |                  |
|             |                                              | 0  | Falling waveform/   | 'L" level ("L" level is recognized with | the SNZI0        |
| 112         | Interrupt valid waveform for INT0 pin/       | 0  | instruction)        |                                         |                  |
| 112         | return level selection bit (Note 2)          | 1  | Rising waveform/"   | H" level ("H" level is recognized with  | the SNZI0        |
|             |                                              | 1  | instruction)        |                                         |                  |
| <b>I1</b> 1 | INT0 pin edge detection circuit control bit  | 0  | One-sided edge d    | etected                                 |                  |
| 111         | in to pin edge detection circuit control bit | 1  | Both edges detect   | ed                                      |                  |
| 110         | INT0 pin Timer 1 count start synchronous     | 0  | Timer 1 count star  | t synchronous circuit not selected      |                  |
| 110         | circuit selection bit                        | 1  | Timer 1 count star  | t synchronous circuit selected          |                  |

|     | Interrupt control register I2                | at | reset : 00002                   | at power down : state retained         | R/W<br>TAI2/TI2A |
|-----|----------------------------------------------|----|---------------------------------|----------------------------------------|------------------|
| 100 | INT1 pin input control bit (Note 2)          | 0  | INT1 pin input disa             | abled                                  |                  |
| 123 |                                              | 1  | INT1 pin input ena              | bled                                   |                  |
| 100 | Interrupt valid waveform for INT1 pin/       | 0  | Falling waveform/" instruction) | L" level ("L" level is recognized with | the SNZI1        |
| 122 | return level selection bit (Note 2)          | 1  | Rising waveform/"I instruction) | H" level ("H" level is recognized with | the SNZI1        |
| 121 | INT1 pin edge detection circuit control bit  | 0  | One-sided edge de               | etected                                |                  |
| 121 | INT I pin edge detection circuit control bit | 1  | Both edges detected             | ed                                     |                  |
| 120 | INT1 pin Timer 3 count start synchronous     | 0  | Timer 3 count start             | t synchronous circuit not selected     |                  |
| 120 | circuit selection bit                        | 1  | Timer 3 count start             | t synchronous circuit selected         |                  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of these bits (I12, I13, I22 and I23) are changed, the external interrupt request flag (EXF0, EXF1) may be set.



#### (4) Notes on External 0 interrupts

① Note [1] on bit 3 of register I1

When the input of the INT0 pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18<sup>(1)</sup>) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18<sup>(3)</sup>).

| :    |   |                                        |
|------|---|----------------------------------------|
| LA   | 4 | ; (XXX02)                              |
| TV1A |   | ; The SNZ0 instruction is valid        |
| LA   | 8 | ; (1XXX2)                              |
| TI1A |   | ; Control of INT0 pin input is changed |
| NOP  |   |                                        |
| SNZ0 |   | ; The SNZ0 instruction is executed     |
|      |   | (EXF0 flag cleared)                    |
| NOP  |   |                                        |
| :    |   |                                        |

Fig. 18 External 0 interrupt program example-1

2 Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INT0 pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19<sup>(1)</sup>).

| :       |                                  |
|---------|----------------------------------|
| LA 0    | ; (00 <b>XX</b> 2)               |
| TI1A    | ; Input of INT0 disabled ${f I}$ |
| DI      |                                  |
| EPOF    |                                  |
| POF2    | ; RAM back-up                    |
| :       |                                  |
| X : the | se bits are not used here.       |

Fig. 19 External 0 interrupt program example-2

#### 3 Note on bit 2 of register I1

When the interrupt valid waveform of the D<sub>8</sub>/INT0 pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20<sup>(1)</sup>) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 202).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20<sup>(3)</sup>).

| LA<br>TV1A | 4  | ; (XXX02)                                               |
|------------|----|---------------------------------------------------------|
| TV1A       |    |                                                         |
|            |    | ; The SNZ0 instruction is valid ${\rm \textcircled{0}}$ |
| LA         | 12 | ; (X1XX2)                                               |
| TI1A       |    | ; Interrupt valid waveform is changed                   |
| NOP        |    |                                                         |
| SNZ0       |    | ; The SNZ0 instruction is executed                      |
|            |    | (EXF0 flag cleared)                                     |
| NOP        |    |                                                         |
| :          |    |                                                         |

Fig. 20 External 0 interrupt program example-3



#### (5) Notes on External 1 interrupts

① Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

• Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21<sup>(1)</sup>) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21<sup>(3)</sup>).

| :    |   |                                        |
|------|---|----------------------------------------|
| LA   | 4 | ; (XX0X2)                              |
| TV1A |   | ; The SNZ1 instruction is valid        |
| LA   | 8 | ; (1XXX2)                              |
| TI2A |   | ; Control of INT1 pin input is changed |
| NOP  |   |                                        |
| SNZ1 |   | ; The SNZ1 instruction is executed     |
|      |   | (EXF1 flag cleared)                    |
| NOP  |   | 3                                      |
| :    |   |                                        |

Fig. 21 External 1 interrupt program example-1

② Note [2] on bit 3 of register I2

When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 22<sup>(1)</sup>).

| ; (00 <b>XX</b> 2)         |
|----------------------------|
| ; Input of INT1 disabled①  |
|                            |
|                            |
| ; RAM back-up              |
|                            |
| se bits are not used here. |
|                            |

Fig. 22 External 1 interrupt program example-2

#### 3 Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23<sup>(1)</sup>) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23<sup>(3)</sup>).

| LA   | 4  | ; ( <b>XX</b> 0 <b>X</b> 2)           |
|------|----|---------------------------------------|
| TV1A |    | ; The SNZ1 instruction is valid       |
| LA   | 12 | ; (X1XX2)                             |
| TI2A |    | ; Interrupt valid waveform is changed |
| NOP  |    |                                       |
| SNZ1 |    | ; The SNZ1 instruction is executed    |
|      |    | (EXF1 flag cleared)                   |
| NOP  |    |                                       |
| :    |    |                                       |

Fig. 23 External 1 interrupt program example-3



#### TIMERS

The 4554 Group has the following timers.

• Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

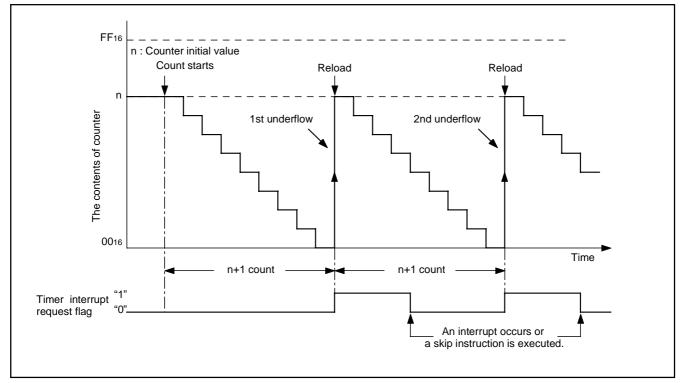
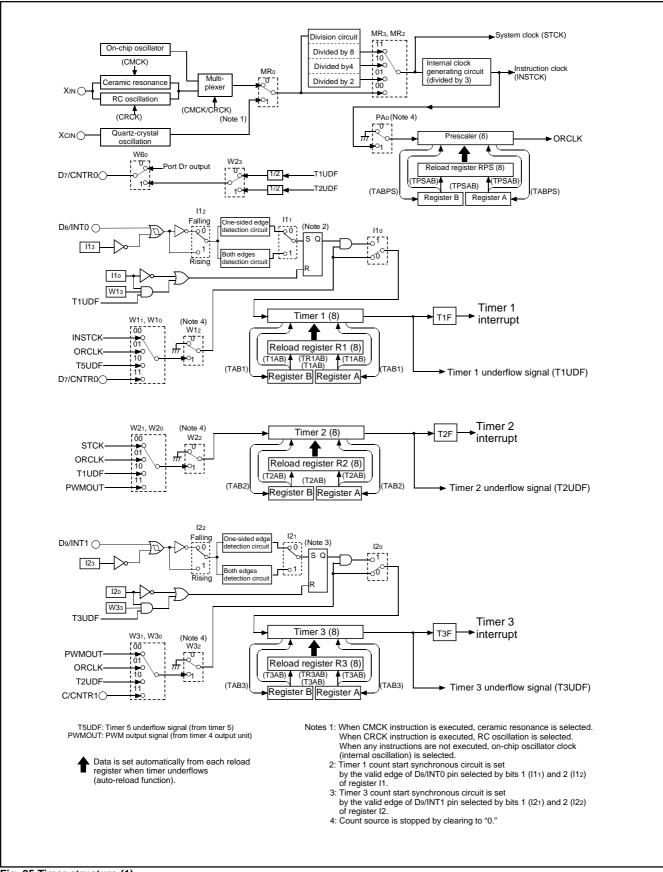


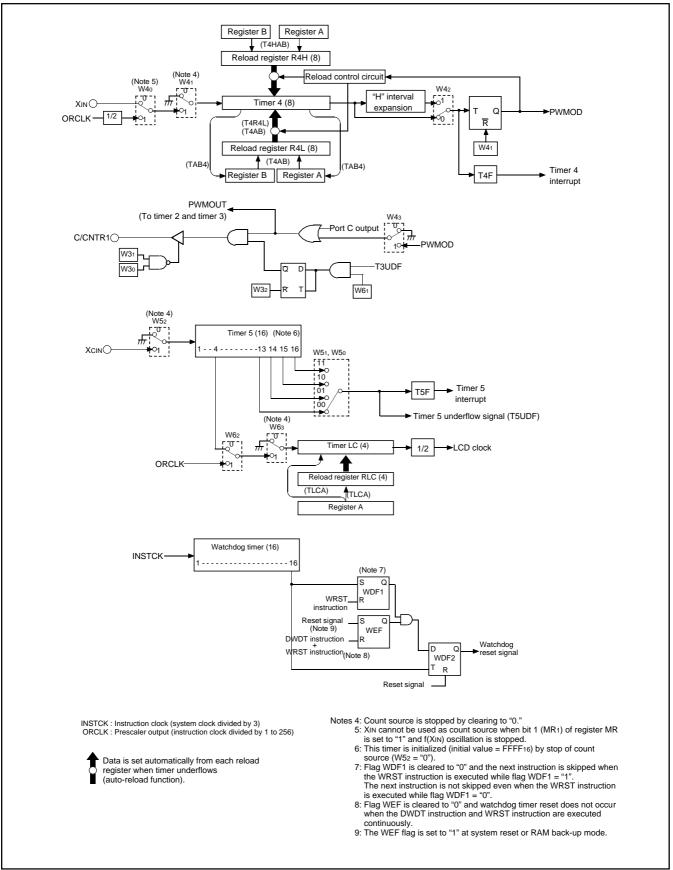

Fig. 24 Auto-reload function

The 4554 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Timer 4 : 8-bit programmable timer
- Timer 5 : 16-bit fixed dividing frequency timer
- Timer LC : 4-bit programmable timer
- Watchdog timer : 16-bit fixed dividing frequency timer
- (Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively)


Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.




#### Table 9 Function related timers

| Structure                                                          | Count source                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency dividing ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Use of output signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-bit programmable<br>binary down counter                          | Instruction clock (INSTCK)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • Timer 1, 2, 3, 4 and LC count sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8-bit programmable                                                 | Instruction clock (INSTCK)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Timer 2 count source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| binary down counter                                                | Prescaler output (ORCLK)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CNTR0 output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (link to INT0 input)                                               | <ul> <li>Timer 5 underflow<br/>(T5UDF)</li> <li>CNTR0 input</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • Timer 1 interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8-bit programmable                                                 | System clock (STCK)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 to 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Timer 3 count source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| binary down counter                                                | Prescaler output (ORCLK)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CNTR0 output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    | • Timer 1 underflow<br>(T1UDF)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Timer 2 interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8-bit programmable<br>binary down counter<br>(link to INT1 input)  | <ul> <li>PWM output (PWMOUT)</li> <li>Prescaler output (ORCLK)</li> <li>Timer 2 underflow<br/>(T2UDF)</li> </ul>                                                                                                                                                                                                                                                                                                                                            | 1 to 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CNTR1 output control     Timer 3 interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                    | CNTR1 input                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8-bit programmable<br>binary down counter<br>(PWM output function) | XIN input     Prescaler output (ORCLK)                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 to 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul><li>Timer 2, 3 count source</li><li>CNTR1 output</li><li>Timer 4 interrupt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16-bit fixed dividing frequency                                    | XCIN input                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8192<br>16384<br>32768<br>65536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul><li>Timer 1, LC count source</li><li>Timer 5 interrupt</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4-bit programmable                                                 | Bit 4 of timer 5                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCD clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| binary down counter                                                | Prescaler output (ORCLK)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16-bit fixed dividing                                              | Instruction clock (INSTCK)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System reset (count twice)     WDE flag decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    | <ul> <li>8-bit programmable<br/>binary down counter</li> <li>8-bit programmable<br/>binary down counter<br/>(link to INTO input)</li> <li>8-bit programmable<br/>binary down counter</li> <li>8-bit programmable<br/>binary down counter<br/>(link to INT1 input)</li> <li>8-bit programmable<br/>binary down counter<br/>(PWM output function)</li> <li>16-bit fixed dividing<br/>frequency</li> <li>4-bit programmable<br/>binary down counter</li> </ul> | 8-bit programmable<br>binary down counter• Instruction clock (INSTCK)8-bit programmable<br>binary down counter<br>(link to INT0 input)• Instruction clock (INSTCK)<br>• Prescaler output (ORCLK)<br>• Timer 5 underflow<br>(T5UDF)<br>• CNTR0 input8-bit programmable<br>binary down counter• System clock (STCK)<br>• Prescaler output (ORCLK)<br>• Timer 1 underflow<br>(T1UDF)<br>• PWM output (PWMOUT)8-bit programmable<br>binary down counter<br>(link to INT1 input)• PWM output (PWMOUT)<br>• Prescaler output (ORCLK)<br>• Timer 2 underflow<br>(T2UDF)<br>• CNTR1 input8-bit programmable<br>binary down counter<br>(link to INT1 input)• NIN input<br>• Prescaler output (ORCLK)<br>• Timer 2 underflow<br>• Timer 2 underflow<br>• Timer 2 underflow<br>• Timer 2 underflow<br>• CNTR1 input8-bit programmable<br>binary down counter<br>(PWM output function)• XCIN input<br>• Prescaler output (ORCLK)<br>• Prescaler output (ORCLK)16-bit fixed dividing<br>frequency• Bit 4 of timer 5<br>• Prescaler output (ORCLK)4-bit programmable<br>binary down counter• Bit 4 of timer 5<br>• Prescaler output (ORCLK)16-bit fixed dividing<br>frequency• Bit 4 of timer 5<br>• Prescaler output (ORCLK) | StructureCount sourcedividing ratio8-bit programmable<br>binary down counter• Instruction clock (INSTCK)1 to 2568-bit programmable<br>binary down counter<br>(link to INT0 input)• Instruction clock (INSTCK)1 to 2568-bit programmable<br>binary down counter• Instruction clock (STCK)1 to 2568-bit programmable<br>binary down counter• System clock (STCK)1 to 2568-bit programmable<br>binary down counter• System clock (STCK)1 to 2569• Prescaler output (ORCLK)• Timer 1 underflow<br>(T1UDF)<br>• PWM output (PWMOUT)1 to 2568-bit programmable<br>binary down counter<br>(link to INT1 input)• PWM output (PWMOUT)1 to 2568-bit programmable<br>binary down counter<br>(Iink to INT1 input)• PWM output (ORCLK)1 to 2569• CNTR1 input<br>• Prescaler output (ORCLK)1 to 2569• CNTR1 input1 to 2569• CNTR1 inp | StructureCount sourcedividing ratioObservence8-bit programmable<br>binary down counter• Instruction clock (INSTCK)1 to 256• Timer 1, 2, 3, 4 and LC count sources8-bit programmable<br>binary down counter• Instruction clock (INSTCK)1 to 256• Timer 2, 3, 4 and LC count source8-bit programmable<br>binary down counter• Instruction clock (INSTCK)1 to 256• Timer 2 count source8-bit programmable<br>binary down counter• Prescaler output (ORCLK)<br>• CNTR0 input1 to 256• Timer 3 count source8-bit programmable<br>binary down counter• System clock (STCK)<br>• Prescaler output (ORCLK)<br>• Timer 1 underflow<br>(T1UDF)<br>• PWM output (PWMOUT)1 to 256• Timer 3 count source8-bit programmable<br>binary down counter• Prescaler output (ORCLK)<br>• PewM output (PWMOUT)1 to 256• CNTR1 output control8-bit programmable<br>binary down counter<br>(link to INT1 input)• PWM output (PWMOUT)<br>• Prescaler output (ORCLK)1 to 256• CNTR1 output control9-bit programmable<br>binary down counter<br>(link to INT1 input)• Prescaler output (ORCLK)<br>• Prescaler output (ORCLK)1 to 256• Timer 2, 3 count source8-bit programmable<br>binary down counter<br>(PWM output function)• XIN input1 to 256• Timer 2, 3 count source16-bit fixed dividing<br>frequency• XIN input1 to 256• Timer 1, LC count source16-bit fixed dividing<br>frequency• Bit 4 of timer 51 to 16• LCD clock4-bit programmable<br>binary down counter• Bit 4 of timer 51 to 16• LCD clock |





#### Fig. 25 Timer structure (1)



#### Fig. 26 Timer structure (2)

#### Table 10 Timer related registers

|     | Timer control register PA | at reset : 02 |                        | at power down : 02 | W<br>TPAA |
|-----|---------------------------|---------------|------------------------|--------------------|-----------|
| DAG | PA0 Prescaler control bit |               | Stop (state initialize | ed)                |           |
| PA0 |                           |               | Operating              |                    |           |

|      | Timer control register W1                 |     | at reset : 00002          |                                          | at power down : state retained | R/W<br>TAW1/TW1A     |    |  |
|------|-------------------------------------------|-----|---------------------------|------------------------------------------|--------------------------------|----------------------|----|--|
| W13  | Timer 1 count auto-stop circuit selection | 0   |                           | Timer 1 count auto                       | -stop circuit not selected     |                      |    |  |
|      | bit (Note 2)                              | 1   |                           | Timer 1 count auto-stop circuit selected |                                |                      |    |  |
| W12  |                                           |     | Time and a contract by it |                                          | D                              | Stop (state retained | d) |  |
| VV12 | Timer 1 control bit                       |     | 1                         | Operating                                |                                |                      |    |  |
|      |                                           | W11 | W10                       |                                          | Count source                   |                      |    |  |
| W11  |                                           | 0   | 0                         | Instruction clock (II                    | NSTCK)                         |                      |    |  |
|      | Timer 1 count source selection bits       |     | 1                         | Prescaler output (C                      | DRCLK)                         |                      |    |  |
| W10  |                                           | 1   | 0                         | Timer 5 underflow                        | signal (T5UDF)                 |                      |    |  |
|      |                                           | 1   | 1                         | CNTR0 input                              |                                |                      |    |  |

|      | Timer control register W2           |     | at reset : 00002    |                     | at power down : state retained | R/W<br>TAW2/TW2A     |    |  |
|------|-------------------------------------|-----|---------------------|---------------------|--------------------------------|----------------------|----|--|
| W23  | CNTR0 output control bit            | (   | )                   | Timer 1 underflow s | signal divided by 2 output     |                      |    |  |
|      |                                     |     | 1                   | Timer 2 underflow s | signal divided by 2 output     |                      |    |  |
| W22  | 2 Timer 2 control bit               |     | Timer 2 control bit |                     | )                              | Stop (state retained | 1) |  |
| **22 |                                     | 1   |                     | Operating           |                                |                      |    |  |
|      |                                     | W21 | W20                 |                     | Count source                   |                      |    |  |
| W21  |                                     | 0   | 0                   | System clock (STC   | K)                             |                      |    |  |
|      | Timer 2 count source selection bits |     | 1                   | Prescaler output (O | RCLK)                          |                      |    |  |
| W20  |                                     | 1   | 0                   | Timer 1 underflow s | signal (T1UDF)                 |                      |    |  |
|      |                                     | 1   | 1                   | PWM signal (PWM     | OUT)                           |                      |    |  |

|      | Timer control register W3                        |     | at reset : 00002    |                     | at power down : state retained | R/W<br>TAW3/TW3A    |    |  |
|------|--------------------------------------------------|-----|---------------------|---------------------|--------------------------------|---------------------|----|--|
| W33  | Timer 3 count auto-stop circuit selection        | (   | )                   | Timer 3 count auto  | -stop circuit not selected     |                     |    |  |
|      | bit (Note 3)                                     |     | 1                   | Timer 3 count auto  | -stop circuit selected         |                     |    |  |
| W32  |                                                  |     | Timer 2 control bit |                     | )                              | Stop (state retaine | d) |  |
| 1002 | Timer 3 control bit                              | 1   | 1                   | Operating           |                                |                     |    |  |
|      |                                                  | W31 | W30                 |                     | Count source                   |                     |    |  |
| W31  | Timer 2 count course coloction bits              | 0   | 0                   | PWM signal (PWM     | OUT)                           |                     |    |  |
|      | Timer 3 count source selection bits (Note 4) W30 | 0   | 1                   | Prescaler output (0 | DRCLK)                         |                     |    |  |
| W30  |                                                  | 1   | 0                   | Timer 2 underflow   | signal (T2UDF)                 |                     |    |  |
|      |                                                  |     | 1                   | CNTR1 input         |                                |                     |    |  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
 This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
 Port C output is invalid when CNTR1 input is selected for the timer 3 count source.



|       | Timer control register W4                   |   | reset : 00002       | at power down : 00002             | R/W<br>TAW4/TW4A |
|-------|---------------------------------------------|---|---------------------|-----------------------------------|------------------|
| \M/42 | W43 CNTR1 output control bit                |   | CNTR1 output inva   | alid                              |                  |
| VV43  |                                             |   | CNTR1 output vali   | d                                 |                  |
| W42   | PWM signal                                  |   | PWM signal "H" int  | terval expansion function invalid |                  |
| VV42  | "H" interval expansion function control bit | 1 | PWM signal "H" int  | terval expansion function valid   |                  |
| W41   | Timer 4 control bit                         | 0 | Stop (state retaine | d)                                |                  |
| VV41  | VV41 Timer 4 control bit                    |   | Operating           |                                   |                  |
| W40   | Timer 4 count source selection bit          | 0 | XIN input           |                                   |                  |
| VV40  |                                             | 1 | Prescaler output (0 | DRCLK) divided by 2               |                  |

|      | Timer control register W5          |     | at                     | reset : 00002          | at power down : state retained    | R/W<br>TAW5/TW5A |
|------|------------------------------------|-----|------------------------|------------------------|-----------------------------------|------------------|
| W53  | Not used                           |     | 0 This bit has no func |                        | ction, but read/write is enabled. |                  |
| W52  | Timer 5 control bit                | 0   |                        | Stop (state initialize | ed)                               |                  |
| VV52 |                                    |     |                        | Operating              |                                   |                  |
|      |                                    | W51 | W50                    |                        | Count value                       |                  |
| W51  |                                    | 0   | 0                      | Underflow occurs e     | every 8192 counts                 |                  |
|      | Timer 5 count value selection bits | 0   | 1                      | Underflow occurs e     | every 16384 counts                |                  |
| W50  |                                    | 1   | 0                      | Underflow occurs e     | every 32768 counts                |                  |
|      |                                    | 1   | 1                      | Underflow occurs e     | every 65536 counts                |                  |

|      | Timer control register W6               |                                                  | reset : 00002        | at power down : state retained | R/W<br>TAW6/TW6A |
|------|-----------------------------------------|--------------------------------------------------|----------------------|--------------------------------|------------------|
| W62  | W63 Timer LC control bit                |                                                  | Stop (state retaine  | d)                             |                  |
| 1003 |                                         |                                                  | Operating            |                                |                  |
| Web  | W62 Timer LC count source selection bit |                                                  | Bit 4 (T54) of timer | 5                              |                  |
| VV02 |                                         |                                                  | Prescaler output (0  | ORCLK)                         |                  |
| W61  | CNTR1 output auto-control circuit       | 0 CNTR1 output auto-control circuit not selected |                      |                                |                  |
| 0001 | selection bit                           | 1 CNTR1 output auto-control circuit selected     |                      |                                |                  |
| W60  | D7/CNTR0 pin function selection bit     | 0 D7(I/O)/CNTR0 input                            |                      |                                |                  |
| **00 | (Note 2)                                | 1                                                | CNTR0 input/output   | ut/D7 (input)                  |                  |

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.



### (1) Timer control registers

#### Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W3

Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/ CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

### (2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, 4 and LC count sources.

# (3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".



### (4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

① set data in timer 2,

select the count source with the bits 0 and 1 of register W2, and
 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

### (5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

① set data in timer 3

2 set count source by bits 0 and 1 of register W3, and

3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

### (6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows.

Timer 4 starts counting after the following process;

① set data in timer 4

2 set count source by bit 0 of register W4, and

 $\ensuremath{\textcircled{3}}$  set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.

When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4, avoid a timing when timer 4 underflows.



# (7) Timer 5 (interrupt function)

Timer 5 is a 16-bit binary down counter.

Timer 5 starts counting after the following process;

① set count value by bits 0 and 1 of register W5, and ② set the bit 2 of register W5 to "1."

Count source for timer 5 is the sub-clock input (XCIN).

Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to "1," and count continues.

Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W5 is cleared to "0", timer 5 is initialized to "FFFF16" and count is stopped.

Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state.

# (8) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

① set data in timer LC,

 $\ensuremath{\textcircled{}^\circ}$  select the count source with the bit 2 of register W6, and

3 set the bit 3 of register W6 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-re-load function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

# (9) Timer input/output pin (D7/CNTR0 pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set "0" to the output latch of port C.

The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTR0 input.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state).

### (10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.



# (11) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit 110 or 120 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

### (12) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

### (13) Precautions

Note the following for the use of timers.

• Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

- Timer count source Stop timer 1, 2, 3, 4 and LC counting to change its count source.
- Reading the count value
   Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.
- Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

• Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

• Timer 4

Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

Timer 5

C/CNTR pin.

Stop timer 5 counting to change its count source.

 Timer input/output pin Set the port C output latch to "0" to output the PWM signal from



| ● CNTR1 output: invalid (W4                                                                                                 | 3 = "O")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timer 4 count source<br>Timer 4 count value<br>(Reload register)<br>Timer 4 underflow signal<br>PWM signal (output invalid) | 0316       0218       0119       0019       0316       0218       0119       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019       0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                             | Timer 4 start PWM signal "L" fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ● CNTR1 output: valid (W43<br>PWM signal "H" interval ex                                                                    | = "1")<br>ttension function: invalid (W42 = "0")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Timer 4 count source                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Timer 4 count value<br>(Reload register)                                                                                    | 0316<br>(R2L)<br>(R2L)<br>(R2H)<br>(R2L)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(R2H)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Timer 4 underflow signal                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PWM signal                                                                                                                  | Timer 4 start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>CNTR1 output: valid (W-<br/>PWM signal "H" interval</li> <li>Timer 4 count source</li> </ul>                       | 43 = "1")<br>extension function: valid (W42 = "1") (Note)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Timer 4 count value                                                                                                         | <u></u><br>0316 X0216X0116X0016X 0216 X0119X0016X0316X0216X0116X0016X 0216 X0116X0016X0316X0216X0116X0016X 0216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Reload register)                                                                                                           | $(R2L) \qquad (R2H) \qquad (R2L) \qquad (R2H) \qquad (R2H$ |
| Timer 4 underflow signal                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PWM signal                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note: At PWM signal "H" inte                                                                                                | Timer 4 start PWM period 7.5 clock PWM period 7.5 clock PWM period 7.5 clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

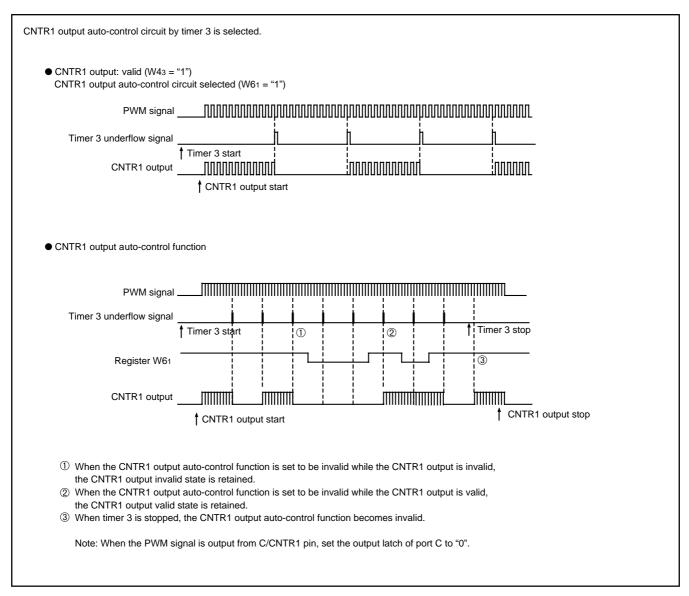



Fig. 28 CNTR1 output auto-control function by timer 3



|                                                                                                                                                                                                         | unt start ti   | iming—— |           |      |                  |                       |                    |                   |                              |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-----------|------|------------------|-----------------------|--------------------|-------------------|------------------------------|-------------|
|                                                                                                                                                                                                         |                | 0       |           |      |                  |                       |                    |                   |                              |             |
| Machine cycle                                                                                                                                                                                           |                | ·       |           |      |                  |                       |                    | v                 |                              |             |
|                                                                                                                                                                                                         | Mi             | τ.ν./4  | 1 instru  |      | 1i+1             | ycle (W4              | 1) " 1             | K                 | Mi+2                         |             |
| System clock <sup>→</sup><br>f(STCK)=f(XIN)/4                                                                                                                                                           | 1              |         | - Instru  |      |                  |                       |                    |                   | 1                            |             |
| XIN input<br>count source selected)                                                                                                                                                                     |                |         |           |      | пп               | hπ                    |                    |                   |                              |             |
| Register W41                                                                                                                                                                                            |                |         |           |      |                  |                       |                    |                   |                              |             |
| Timer 4 count value                                                                                                                                                                                     |                |         |           | 0316 |                  | Y0216                 | <b>Y0116Y00</b> 16 | 0216 <b>01</b> 10 | \$ <mark>√0016</mark> ¥0316¥ | 0216 (0116) |
| (Reload register)                                                                                                                                                                                       |                |         | (F        | R4L) |                  |                       | ^/                 | (R4H)             | (R4L                         |             |
| Timer 4                                                                                                                                                                                                 |                |         |           |      |                  |                       |                    |                   |                              |             |
| underflow signal-                                                                                                                                                                                       |                |         |           |      |                  |                       |                    |                   |                              |             |
| undernow signal-                                                                                                                                                                                        |                |         |           |      |                  |                       |                    | L<br> <br>        |                              |             |
| -                                                                                                                                                                                                       |                |         |           |      |                  | Timer 4               | count st           | art timin         |                              |             |
| -                                                                                                                                                                                                       |                |         |           |      |                  | Timer 4               | count st           | art timin         | g                            |             |
| -                                                                                                                                                                                                       |                |         |           |      |                  | Timer 4               | count st           | art timin         | g                            |             |
| PWM signal –                                                                                                                                                                                            |                |         |           |      |                  | Timer 4               |                    | art timin         | 1 L<br>g                     |             |
| -                                                                                                                                                                                                       |                | g       |           |      |                  |                       |                    | art timin         | [<br>                        |             |
| PWM signal –                                                                                                                                                                                            |                | g       |           | Mit  |                  |                       |                    | art timin         | g<br>Mi+2                    |             |
| PWM signal<br>—Timer 4 count s<br>Machine cycle                                                                                                                                                         | top timing     |         |           | Mił  | +1               |                       |                    | art timin         |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle<br>System clock <sup>–</sup><br>f(STCK)=f(XIN)/4                                                                                                      | top timing     |         |           | Mił  | +1               |                       |                    | art timin         |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle                                                                                                                                                       | top timing     |         |           | Mił  | +1               |                       |                    |                   |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle<br>System clock –<br>f(STCK)=f(XIN)/4<br>XIN input                                                                                                    | top timing     |         |           | Mił  | +1               |                       |                    |                   |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle<br>System clock –<br>f(STCK)=f(XIN)/4<br>XIN input<br>count source selected) –                                                                        | top timing<br> | TW4A    | \ instruc |      | +1<br>ecution cy |                       |                    |                   |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle<br>System clock –<br>f(STCK)=f(XIN)/4<br>XIN input<br>count source selected) –<br>Register W41<br>Timer 4 count value<br>(Reload register)<br>Timer 4 | top timing<br> |         | \ instruc |      | +1<br>ecution cy | ycle (W4 <sup>-</sup> |                    |                   |                              |             |
| PWM signal –<br>—Timer 4 count s<br>Machine cycle<br>System clock –<br>f(STCK)=f(XIN)/4<br>XIN input<br>count source selected) –<br>Register W41<br>Timer 4 count value<br>(Reload register)            | top timing<br> | TW4A    | \ instruc |      | +1<br>ecution cy | ycle (W4 <sup>-</sup> |                    |                   |                              |             |

Fig. 29 Timer 4 count start/stop timing

RENESAS

### WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

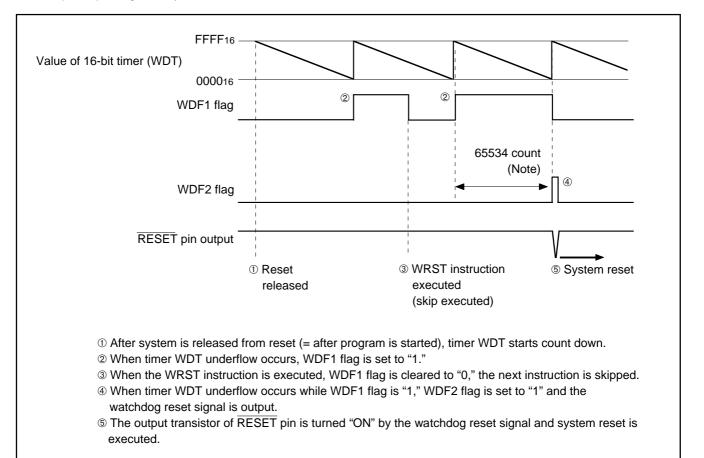
The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the  $\overrightarrow{\text{RESET}}$  pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.


When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode.

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.



Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 30 Watchdog timer function



When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 32).

The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function.

| WRST               | ; WDF1 flag cleared                                                        |
|--------------------|----------------------------------------------------------------------------|
| DI<br>DWDT<br>WRST | ; Watchdog timer function enabled/disabled<br>; WEF and WDF1 flags cleared |

| Fig. 31 | Program | example | to | start/stop | watchdog | timer |
|---------|---------|---------|----|------------|----------|-------|
|         |         | onampio |    | 01010000   | matomaog |       |

| :            |                           |
|--------------|---------------------------|
| WRST         | ; WDF1 flag cleared       |
| NOP          |                           |
| DI           | ; Interrupt disabled      |
| EPOF         | ; POF instruction enabled |
| POF          |                           |
| $\downarrow$ |                           |
| Oscillation  | stop                      |
| :            |                           |
| -            |                           |

Fig. 32 Program example to enter the mode when using the watchdog timer



# LCD FUNCTION

The 4554 Group has an LCD (Liquid Crystal Display) controller/ driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power.

# (1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

### Table 11 Duty and maximum number of displayed pixels

| Duty | Maximum number of displayed pixels | Used COM pins     |
|------|------------------------------------|-------------------|
| 1/2  | 64 segments                        | COM0, COM1 (Note) |
| 1/3  | 96 segments                        | COM0-COM2 (Note)  |
| 1/4  | 128 segments                       | COM0–COM3         |

Note: Leave unused COM pins open.

### (2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 33, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W62="1")

$$F = ORCLK \times \frac{1}{||C|+1||} \times \frac{1}{||2||}$$

• When using the bit 4 of timer 5 as timer LC count source (W62="0")

$$\mathsf{F} = \underbrace{\mathsf{T54}}_{\mathbb{T}} \begin{array}{c} \mathsf{X} \\ \mathsf{LC} + 1 \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{X} \\ \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} \end{array}$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency = 
$$\frac{F}{n}$$
 (Hz)  
Frame period =  $\frac{n}{F}$  (s)

F: LCD clock frequency

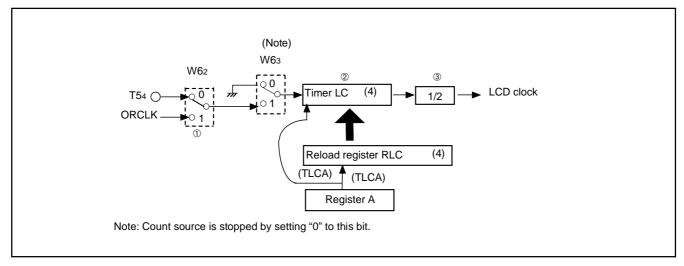



Fig. 33 LCD clock control circuit structure

RENESAS

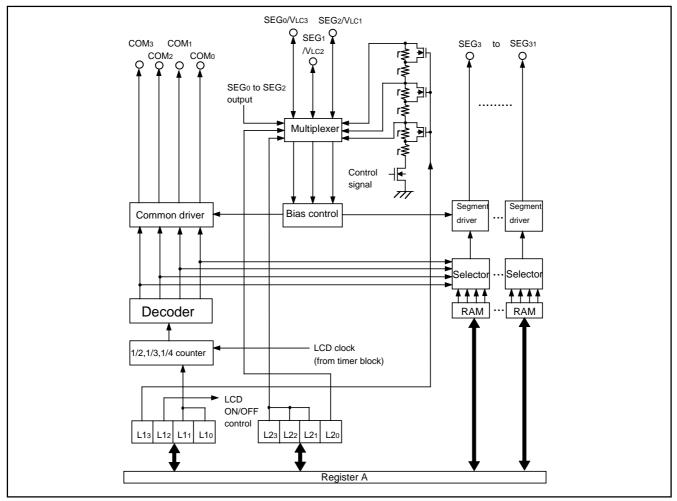



Fig. 34 LCD controller/driver

### (3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

### (4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

| Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      | 12   |      |       | 13    |       |       | 14    |                  |       | 14    |       |                  |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|-------|-------|-------|-------|------------------|-------|-------|-------|------------------|-------|-------|
| Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3    | 2    | 1    | 0    | 3     | 2     | 1     | 0     | 3     | 2                | 1     | 0     | 3     | 2                | 1     | 0     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEG0 | SEG0 | SEG0 | SEG0 | SEG8  | SEG8  | SEG8  | SEG8  | SEG16 | SEG16            | SEG16 | SEG16 | SEG24 | SEG24            | SEG24 | SEG24 |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEG1 | SEG1 | SEG1 | SEG1 | SEG9  | SEG9  | SEG9  | SEG9  | SEG17 | SEG17            | SEG17 | SEG17 | SEG25 | SEG25            | SEG25 | SEG25 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG2 | SEG2 | SEG2 | SEG2 | SEG10 | SEG10 | SEG10 | SEG10 | SEG18 | SEG18            | SEG18 | SEG18 | SEG26 | SEG26            | SEG26 | SEG26 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG3 | SEG3 | SEG3 | SEG3 | SEG11 | SEG11 | SEG11 | SEG11 | SEG19 | SEG19            | SEG19 | SEG19 | SEG27 | SEG27            | SEG27 | SEG27 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG4 | SEG4 | SEG4 | SEG4 | SEG12 | SEG12 | SEG12 | SEG12 | SEG20 | SEG20            | SEG20 | SEG20 | SEG28 | SEG28            | SEG28 | SEG28 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG5 | SEG5 | SEG5 | SEG5 | SEG13 | SEG13 | SEG13 | SEG13 | SEG21 | SEG21            | SEG21 | SEG21 | SEG29 | SEG29            | SEG29 | SEG29 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG6 | SEG6 | SEG6 | SEG6 | SEG14 | SEG14 | SEG14 | SEG14 | SEG22 | SEG22            | SEG22 | SEG22 | SEG30 | SEG30            | SEG30 | SEG30 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEG7 | SEG7 | SEG7 | SEG7 | SEG15 | SEG15 | SEG15 | SEG15 | SEG23 | SEG23            | SEG23 | SEG23 | SEG31 | SEG31            | SEG31 | SEG31 |
| COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COM3 | COM2 | COM1 | COM0 | COM3  | COM2  | COM1  | COM0  | COM3  | COM <sub>2</sub> | COM1  | COM0  | СОМз  | COM <sub>2</sub> | COM1  | COM0  |
| COM       COM2       COM1       COM2       COM1       COM2       COM3       COM2       COM1       COM0       COM2       COM1       COM0       COM2       COM1       COM0       COM2       COM1       COM0       COM2       COM1       COM0       COM2       COM1       COM2       COM1       COM2       COM1       COM0       COM2       COM1       COM0       COM2       COM1       COM0       COM0       COM2       COM1       COM0       COM0       COM1       COM1       COM0 |      |      |      |      |       |       |       |       |       |                  |       |       |       |                  |       |       |

rig. 35 LCD RAM map



### Table 12 LCD control registers

|     | LCD control register L1                  |     |     | reset : 00002  | at power dow | vn : state retained | R/W<br>TAL1/TL1A |
|-----|------------------------------------------|-----|-----|----------------|--------------|---------------------|------------------|
| L13 | Internal dividing resistor for LCD power | 0   | )   | 2r X 3, 2r X 2 |              |                     |                  |
| L13 | supply selection bit (Note 2)            |     | 1   | r X 3, r X 2   |              |                     |                  |
| L12 |                                          | 0   | )   | Off            |              |                     |                  |
|     | LCD control bit                          | 1   | 1   | On             |              |                     |                  |
|     |                                          | L11 | L10 | Duty           |              | Bias                |                  |
| L11 |                                          | 0   | 0   |                | Not av       | ailable             |                  |
|     | LCD duty and bias selection bits         | 0   | 1   | 1/2            |              | 1/2                 |                  |
| L10 |                                          | 1   | 0   | 1/3            |              | 1/3                 |                  |
|     |                                          |     | 1   | 1/4            |              | 1/3                 |                  |

|      | LCD control register L2                        | at | t reset : 00002                    | at power down : state retained | W<br>TL2A |  |  |  |
|------|------------------------------------------------|----|------------------------------------|--------------------------------|-----------|--|--|--|
| L23  | VLC3/SEG0 pin function switch bit (Note 3)     | 0  | SEG0                               |                                |           |  |  |  |
| LZS  | VECS/SEG0 pin function switch bit (Note 3)     | 1  | VLC3                               | VLC3                           |           |  |  |  |
| 1.00 | L22 VLC2/SEG1 pin function switch bit (Note 4) |    | SEG1                               |                                |           |  |  |  |
|      |                                                |    | VLC2                               |                                |           |  |  |  |
| 1.24 | V/Loc/CECo pip function quitab bit (Note 4)    | 0  | SEG2                               |                                |           |  |  |  |
| LZ1  | L21 VLC1/SEG2 pin function switch bit (Note 4) |    | VLC1                               |                                |           |  |  |  |
| 1.00 | Internal dividing resistor for LCD power       |    | Internal dividing resistor valid   |                                |           |  |  |  |
| L20  | supply control bit                             | 1  | Internal dividing resistor invalid |                                |           |  |  |  |

|     | LCD control register L3           |   | reset : 00002 | at power down : state retained | W<br>TL3A |
|-----|-----------------------------------|---|---------------|--------------------------------|-----------|
| L33 | SEG24/P33-SEG27/P30 pin function  | 0 | SEG24–SEG27   |                                |           |
| L33 | switch bit                        | 1 | P33-P30       |                                |           |
| L32 | SEG28/P23, SEG29/P22 pin function |   | SEG28, SEG29  |                                |           |
| L32 | switch bit                        | 1 | P23, P22      |                                |           |
| L31 | SEG30/P21 pin function            | 0 | SEG30         |                                |           |
| LOT | switch bit                        | 1 | P21           |                                |           |
| L30 | SEG31/P20 pin function            | 0 | SEG31         |                                |           |
| L30 | switch bit                        | 1 | P20           |                                |           |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
3: VLC3 is connected to VDD internally when SEG0 pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.



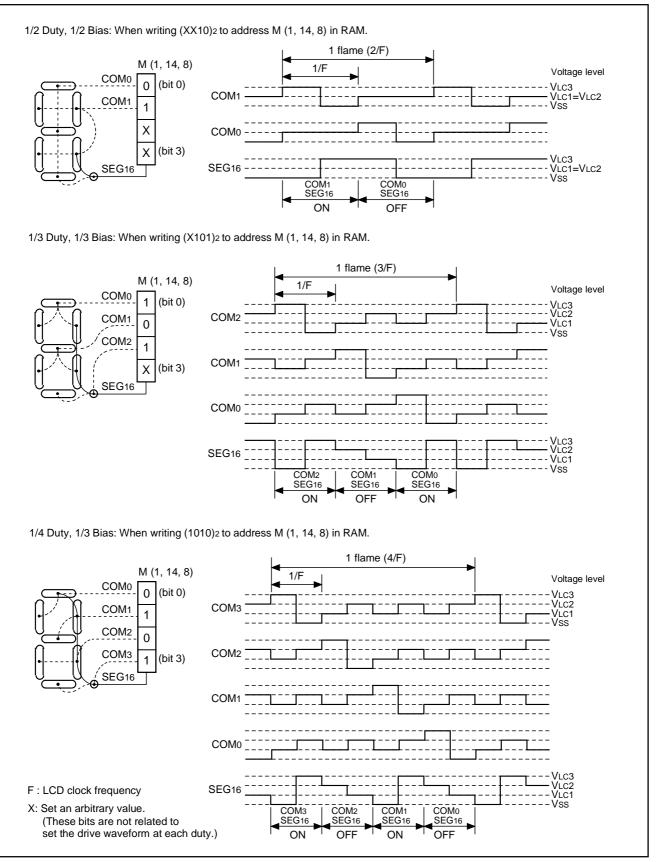



Fig. 36 LCD controller/driver structure

RENESAS

### (5) LCD power supply circuit

### Internal dividing resistor

The 4554 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "0", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- L13 = "0", 1/3 bias used: 2r X 3 = 6r
- L13 = "0", 1/2 bias used: 2r X 2 = 4r
- L13 = "1", 1/3 bias used: r X 3 = 3r
- L13 = "1", 1/2 bias used: r X 2 = 2r
- VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEG0 pin function is selected, VLC3 is connected to VDD internally.

### • VLC2/SEG1, VLC1/SEG2 pin

The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.

The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0 < VLC1 < VLC2 < VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at 1/2 bias.

When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.



### **RESET FUNCTION**

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

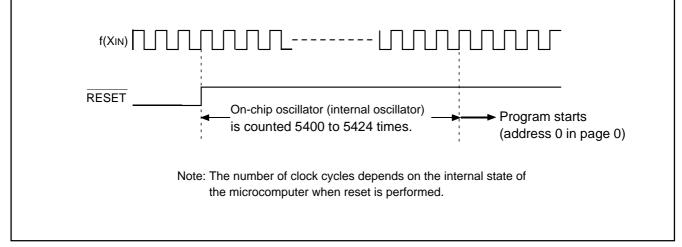
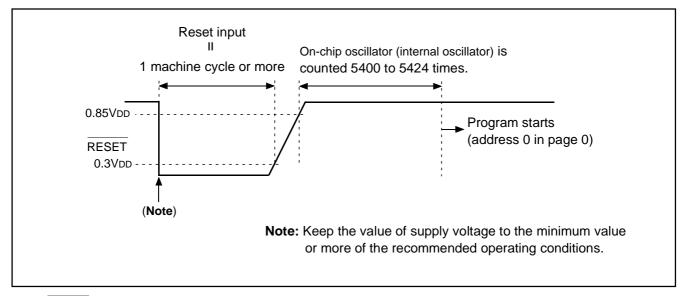




Fig. 37 Reset release timing







### (1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100  $\mu$ s or less. If the rising time ex-

ceeds 100  $\mu$ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

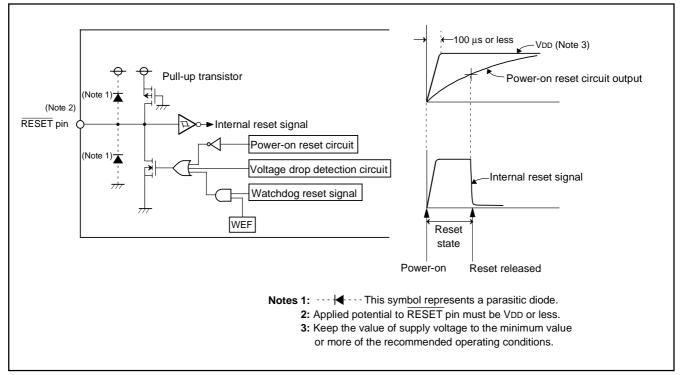



Fig. 39 Structure of reset pin and its peripherals,, and power-on reset operation

#### Table 13 Port state at reset

| Name                | Function    | State                          |
|---------------------|-------------|--------------------------------|
| D0-D6               | D0-D6       | High-impedance (Notes 1, 2)    |
| D7/CNTR0            | D7          | High-impedance (Notes 1, 2)    |
| D8/INT0, D9/INT1    | D8, D9      | High-impedance (Note 1)        |
| P00-P03             | P00-P03     | High-impedance (Notes 1, 2, 3) |
| P10-P13             | P10–P13     | High-impedance (Notes 1, 2, 3) |
| SEG31/P20-SEG28/P23 | SEG31–SEG28 | VLC3 (VDD) level               |
| SEG27/P30-SEG24/P33 | SEG27–SEG24 | VLC3 (VDD) level               |
| SEG0/VLC3-SEG2/VLC1 | SEG0-SEG2   | VLC3 (VDD) level               |
| SEG3-SEG23          | SEG3–SEG23  | VLC3 (VDD) level               |
| COM0–COM3           | COM0–COM3   | VLC3 (VDD) level               |
| C/CNTR1             | С           | "L" (Vss) level                |

Notes 1: Output latch is set to "1."

2: Output structure is N-channel open-drain.

3: Pull-up transistor is turned OFF.



### (2) Internal state at reset

Figure 40 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 40 are undefined, so set the initial value to them.

| Program counter (PC)                           |                           |
|------------------------------------------------|---------------------------|
| Address 0 in page 0 is set to program counter. |                           |
| Interrupt enable flag (INTE)                   | 0 (Interrupt disabled)    |
| Power down flag (P)                            |                           |
| External 0 interrupt request flag (EXF0)       | 0                         |
| External 1 interrupt request flag (EXF1)       | 0                         |
| Interrupt control register V1                  | 0000 (Interrupt disabled) |
| Interrupt control register V2                  | 0000 (Interrupt disabled) |
| Interrupt control register I1                  |                           |
| Interrupt control register I2                  |                           |
| Timer 1 interrupt request flag (T1F)           | 0                         |
| Timer 2 interrupt request flag (T2F)           | 0                         |
| Timer 3 interrupt request flag (T3F)           | 0                         |
| Timer 4 interrupt request flag (T4F)           | 0                         |
| Timer 5 interrupt request flag (T5F)           |                           |
| Watchdog timer flags (WDF1, WDF2)              |                           |
| Watchdog timer enable flag (WEF)               |                           |
| Timer control register PA                      |                           |
| Timer control register W1                      |                           |
| Timer control register W2                      |                           |
| Timer control register W3                      |                           |
| Timer control register W4                      |                           |
| Timer control register W5                      |                           |
| Timer control register W6                      |                           |
| Clock control register MR                      |                           |
| LCD control register L1                        |                           |
| LCD control register L2                        |                           |
| LCD control register L3                        |                           |
| Key-on wakeup control register K0              |                           |
| Key-on wakeup control register K1              |                           |
| Key-on wakeup control register K2              |                           |
| Pull-up control register PU0                   |                           |
| Pull-up control register PU1                   |                           |
| Port output structure control register FR0     |                           |
| Port output structure control register FR1     |                           |
| Port output structure control register FR2     |                           |
| • Carry flag (CY)                              |                           |
| • Register A                                   |                           |
| • Register B                                   |                           |
| Register D                                     |                           |
| • Register E                                   |                           |
| • Register X                                   |                           |
| • Register Y                                   |                           |
| • Register Z                                   |                           |
| Stack pointer (SP)                             |                           |
| Operation source clock                         |                           |
| Ceramic resonator circuit                      |                           |
| RC oscillation circuit                         |                           |
| Quartz-crystal oscillator                      |                           |
|                                                | "X" represents undefined. |
| in 10 Internal state at reset                  |                           |

### Fig. 40 Internal state at reset



# **VOLTAGE DROP DETECTION CIRCUIT**

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

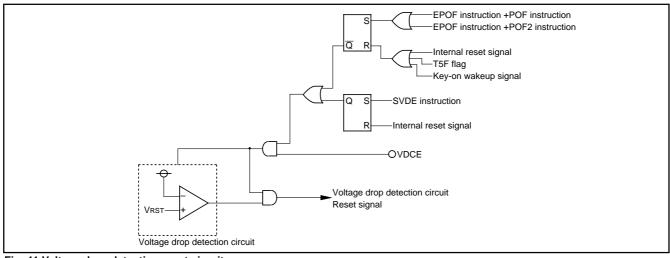



Fig. 41 Voltage drop detection reset circuit

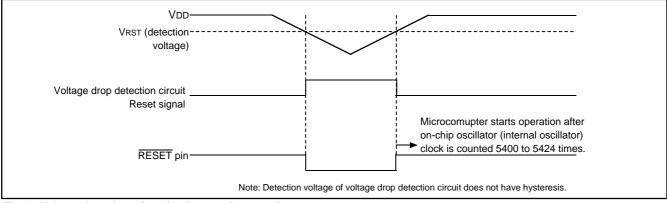
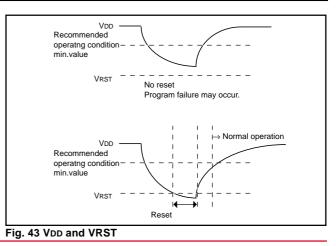



Fig. 42 Voltage drop detection circuit operation waveform

#### Table 14 Voltage drop detection circuit operation state

| VDCE pin | At CPU operating | At power down<br>(SVDE instruction is not executed) | At power down<br>(SVDE instruction is executed) |
|----------|------------------|-----------------------------------------------------|-------------------------------------------------|
| "L"      | Invalid          | Invalid                                             | Invalid                                         |
| "H"      | Valid            | Invalid                                             | Valid                                           |

#### (2) Note on voltage drop detection circuit


The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 43);

supply voltage does not fall below to VRST, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.



RENESAS

### **POWER DOWN FUNCTION**

The 4554 Group has 2-type power down functions. System enters into each power down state by executing the following instructions.

- Clock operating mode ..... EPOF and POF instructions
- RAM back-up mode ..... EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

### (1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- LCD display
- Timer 5

### (2) RAM back-up mode

- The following functions and states are retained.
- RAM
- Reset circuit

### (3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 5 underflow occurs
- in the power down mode.
- In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

### (4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

 $\bullet$  reset pulse is input to  $\overline{\text{RESET}}$  pin,

- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed.

In this case, the P flag is "0."

### (5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag.

#### Table 15 Functions and states retained at power down

|                                              | Power do   | wn mode    |
|----------------------------------------------|------------|------------|
| Function                                     | Clock      | RAM        |
| Dreaman counter (DC) registers A. D.         | operating  | back-up    |
| Program counter (PC), registers A, B,        | X          | х          |
| carry flag (CY), stack pointer (SP) (Note 2) |            |            |
| Contents of RAM                              | 0          | 0          |
| Interrupt control registers V1, V2           | X          | X          |
| Interrupt control registers I1, I2           | 0          | 0          |
| Selected oscillation circuit                 | 0          | 0          |
| Clock control register MR                    | 0          | 0          |
| Timer 1 to timer 4 functions                 | (Note 3)   | (Note 3)   |
| Timer 5 function                             | 0          | 0          |
| Timer LC function                            | 0          | (Note 3)   |
| Watchdog timer function                      | X (Note 4) | X (Note 4) |
| Timer control registers PA, W4               | X          | X          |
| Timer control registers W1 to W3, W5, W6     | 0          | 0          |
| LCD display function                         | 0          | (Note 5)   |
| LCD control registers L1 to L3               | 0          | 0          |
| Voltage drop detection circuit               | (Note 6)   | (Note 6)   |
| Port level                                   | (Note 7)   | (Note 7)   |
| Pull-up control registers PU0, PU1           | 0          | 0          |
| Key-on wakeup control registers K0 to K2     | 0          | 0          |
| Port output format control registers         | 0          | 0          |
| FR0 to FR2                                   |            |            |
| External interrupt request flags             | ×          | x          |
| (EXF0, EXF1)                                 |            |            |
| Timer interrupt request flags (T1F to T4F)   | (Note 3)   | (Note 3)   |
| Timer interrupt request flag (T5F)           | 0          | 0          |
| Interrupt enable flag (INTE)                 | ×          | X          |
| Watchdog timer flags (WDF1, WDF2)            | X (Note 4) | X (Note 4) |
| Watchdog timer enable flag (WEF)             | X (Note 4) | X (Note 4) |

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM

back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed while the VDCE pin is in the "H" state, this function is valid at power down.
- 7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/ CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.



# (6) Return signal

An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 16 shows the return condition for each return source.

# (7) Control registers

Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

• Key-on wakeup control register K1

Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.

• Key-on wakeup control register K2

Register K2 controls the INT0 and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A. • Pull-up control register PU0

Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

• Pull-up control register PU1

Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.

• External interrupt control register I1

Register 11 controls the valid waveform of the external 0 interrupt, the input control of INT0 pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

• External interrupt control register I2 Register I2 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

| F           | Return source                      | Return condition                                                                                 | Remarks                                                                                                                                                                                                        |  |
|-------------|------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| signal      | Ports P00–P03<br>Ports P10–P13     | Return by an external "L" level in-<br>put.                                                      | The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the power down state.                                                |  |
| rnal wakeup | INT0 pin<br>INT1 pin               | "L" level input, or rising edge ("L" $\rightarrow$ "H") or falling edge ("H" $\rightarrow$ "L"). | Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state. |  |
| External    |                                    | When the return level is input, the interrupt request flag (EXF0, EXF1) is not set.              |                                                                                                                                                                                                                |  |
|             | ner 5 interrupt<br>uest flag (T5F) | Return by timer 5 underflow or by setting T5F to "1".                                            | Clear T5F with the SNZT5 instruction before system enters into the power down state.                                                                                                                           |  |
|             |                                    | It can be used in the clock operat-<br>ing mode.                                                 | When system enters into the power down state while T5F is "1", system re-<br>turns from the state immediately because it is recognized as return condition.                                                    |  |

### Table 16 Return source and return condition



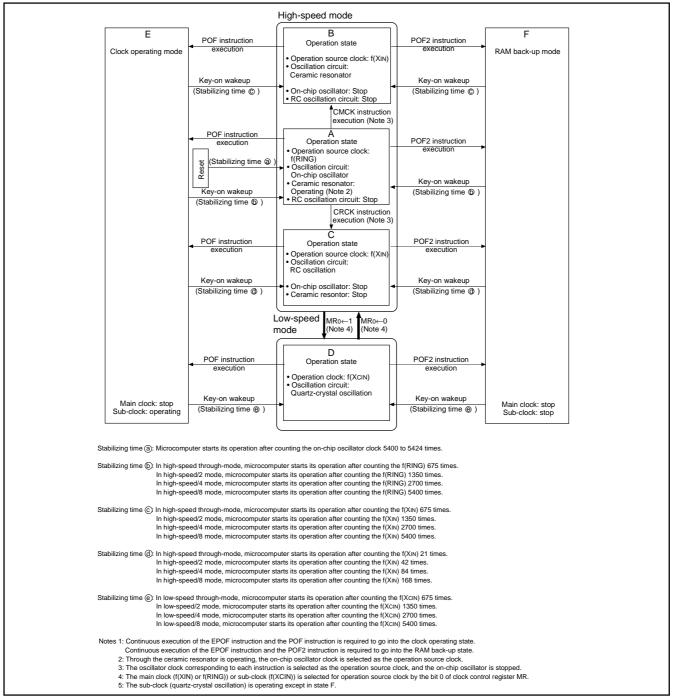
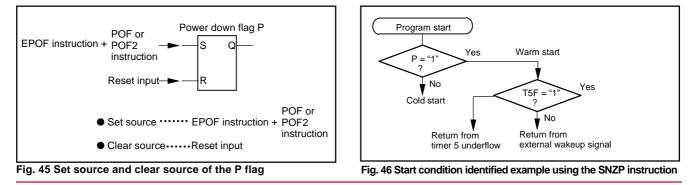




Fig. 44 State transition





|             | Key-on wakeup control register K0 |   | reset : 00002      | at power down : state retained | R/W<br>TAK0/<br>TK0A |
|-------------|-----------------------------------|---|--------------------|--------------------------------|----------------------|
| K03         | Port P03 key-on wakeup            | 0 | Key-on wakeup not  | used                           |                      |
| KU3         | control bit                       | 1 | Key-on wakeup used |                                |                      |
| K02         | Port P02 key-on wakeup            | 0 | Key-on wakeup not  | used                           |                      |
| K02         | control bit                       |   | Key-on wakeup use  | ed                             |                      |
| K01         | Port P01 key-on wakeup            | 0 | Key-on wakeup not  | used                           |                      |
| <b>K</b> 01 | control bit                       | 1 | Key-on wakeup use  | ed                             |                      |
| K00         | Port P00 key-on wakeup            | 0 | Key-on wakeup not  | used                           |                      |
| K00         | control bit                       |   | Key-on wakeup use  | ed                             |                      |

### Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

|             | Key-on wakeup control register K1 |   | reset : 00002          | at power down : state retained | R/W<br>TAK1/<br>TK1A |
|-------------|-----------------------------------|---|------------------------|--------------------------------|----------------------|
| K13         | Port P13 key-on wakeup            | 0 | Key-on wakeup used     |                                |                      |
| <b>K</b> 13 | control bit                       |   | Key-on wakeup not used |                                |                      |
| K10         | Port P12 key-on wakeup            | 0 | Key-on wakeup not      | used                           |                      |
| K12         | control bit                       | 1 | Key-on wakeup use      | ed                             |                      |
| 1/4 /       | Port P11 key-on wakeup            | 0 | Key-on wakeup not      | used                           |                      |
| K11         | control bit                       | 1 | Key-on wakeup used     |                                |                      |
| 1/1 0       | Port P10 key-on wakeup            | 0 | Key-on wakeup not      | used                           |                      |
| K10         | control bit                       | 1 | Key-on wakeup use      | d                              |                      |

|            | Key-on wakeup control register K2 |   | reset : 00002          | at power down : state retained | R/W<br>TAK2/<br>TK2A |
|------------|-----------------------------------|---|------------------------|--------------------------------|----------------------|
| K23        | INT1 pin                          | 0 | Return by level        |                                |                      |
| NZ3        | return condition selection bit    | 1 | Return by edge         |                                |                      |
| K22        | INT1 pin                          | 0 | Key-on wakeup not used |                                |                      |
| N22        | key-on wakeup control bit         | 1 | Key-on wakeup used     |                                |                      |
| K21        | INT0 pin                          | 0 | Return by level        |                                |                      |
| <b>NZ1</b> | return condition selection bit    | 1 | Return by edge         |                                |                      |
| K20        | INT0 pin                          | 0 | Key-on wakeup not      | used                           |                      |
| K20        | key-on wakeup control bit         | 1 | Key-on wakeup use      | ed                             |                      |

Note: "R" represents read enabled, and "W" represents write enabled.



| Pull-up control register PU0 |                             | at reset : 00002 |                        | at power down : state retained | R/W<br>TAPU0/<br>TPU0A |  |
|------------------------------|-----------------------------|------------------|------------------------|--------------------------------|------------------------|--|
| DUIDe                        | Port P03 pull-up transistor | 0                | Pull-up transistor O   | FF                             | •                      |  |
| PU03                         | control bit                 | 1                | Pull-up transistor O   | N                              |                        |  |
| DU IO-                       | Port P02 pull-up transistor | 0                | Pull-up transistor O   | FF                             |                        |  |
| PU02                         | control bit                 | 1                | Pull-up transistor ON  |                                |                        |  |
| DU IO.                       | Port P01 pull-up transistor |                  | Pull-up transistor OFF |                                |                        |  |
| PU01                         | control bit                 | 1                | Pull-up transistor ON  |                                |                        |  |
| DU IO-                       | Port P00 pull-up transistor | 0                | Pull-up transistor OFF |                                |                        |  |
| PU00                         | control bit                 | 1                | Pull-up transistor ON  |                                |                        |  |
|                              |                             | 1                | •                      |                                | DAM                    |  |
| Pull-up control register PU1 |                             | at               | reset : 00002          | at power down : state retained | R/W<br>TAPU1/<br>TPU1A |  |
|                              |                             | 1                |                        |                                |                        |  |

|                                             |                             |                        | TPU1A                  |
|---------------------------------------------|-----------------------------|------------------------|------------------------|
| DUIA                                        | Port P13 pull-up transistor | 0                      | Pull-up transistor OFF |
| PU13                                        | control bit                 | 1                      | Pull-up transistor ON  |
| Port P12 pull-up transistor 0 Pull-up trans |                             | Pull-up transistor OFF |                        |
| PU12                                        | control bit                 | 1                      | Pull-up transistor ON  |
|                                             | Port P11 pull-up transistor | 0                      | Pull-up transistor OFF |
| PU11                                        | control bit                 | 1                      | Pull-up transistor ON  |
| PU10                                        | Port P10 pull-up transistor | 0                      | Pull-up transistor OFF |
| P010                                        | control bit                 | 1                      | Pull-up transistor ON  |

|     | Interrupt control register I1                                                 |   | reset : 00002                                                                     | at power down : state retained | R/W<br>TAI1/TI1A |  |
|-----|-------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------|--------------------------------|------------------|--|
| 113 | INT0 pin input control bit (Note 2)                                           | 0 | INT0 pin input disa                                                               | INT0 pin input disabled        |                  |  |
| 113 |                                                                               | 1 | INT0 pin input ena                                                                | bled                           |                  |  |
| 112 | Interrupt valid waveform for INT0 pin/<br>return level selection bit (Note 2) | 0 | 0 Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction) |                                |                  |  |
| 112 |                                                                               | 1 | Rising waveform/"H" level ("H" level is recognized with the SNZI0 instruction)    |                                | the SNZI0        |  |
| I11 | INTO his addre dataction airquit control hit                                  | 0 | One-sided edge detected                                                           |                                |                  |  |
|     | INT0 pin edge detection circuit control bit                                   | 1 | Both edges detected                                                               |                                |                  |  |
| 110 | INT0 pin Timer 1 count start synchronous                                      | 0 | Timer 1 count start synchronous circuit not selected                              |                                |                  |  |
| 110 | circuit selection bit                                                         | 1 | Timer 1 count start synchronous circuit selected                                  |                                |                  |  |

|     | Interrupt control register I2                |                                                        | reset : 00002                                                     | at power down : state retained         | R/W<br>TAI2/TI2A |  |
|-----|----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|------------------|--|
| 123 | INT1 pin input control bit (Note 2)          | 0                                                      | INT1 pin input disa                                               | INT1 pin input disabled                |                  |  |
| 123 |                                              | (Note 2) 1                                             |                                                                   | INT1 pin input enabled                 |                  |  |
|     |                                              | 0                                                      | Falling waveform/"                                                | L" level ("L" level is recognized with | the SNZI1        |  |
| 122 | Interrupt valid waveform for INT1 pin/       | 0                                                      | instruction)                                                      |                                        |                  |  |
| 122 | return level selection bit (Note 2)          | 1                                                      | Rising waveform/"H" level ("H" level is recognized with the SNZI1 |                                        |                  |  |
|     |                                              |                                                        | instruction)                                                      |                                        |                  |  |
| 121 | INT1 pin edge detection circuit control bit  | 0                                                      | One-sided edge de                                                 | etected                                |                  |  |
| 121 | IN FI pin eage detection circuit control bit | 1                                                      | Both edges detected                                               |                                        |                  |  |
| 120 | INT1 pin Timer 3 count start synchronous     | 0 Timer 3 count start synchronous circuit not selected |                                                                   |                                        |                  |  |
| 120 | circuit selection bit                        | 1 Timer 3 count start synchronous circuit selected     |                                                                   |                                        |                  |  |

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.



# **CLOCK CONTROL**

- The clock control circuit consists of the following circuits.
- On-chip oscillator (internal oscillator)
- Ceramic resonator
- RC oscillation circuit
- Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 47 shows the structure of the clock control circuit.

The 4554 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4554 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

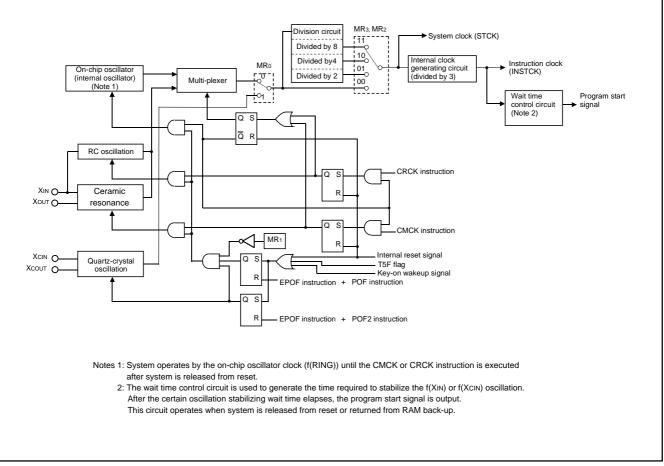



Fig. 47 Clock control circuit structure



# (1) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

# (2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 49).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

### (3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 50).

# (4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 51).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

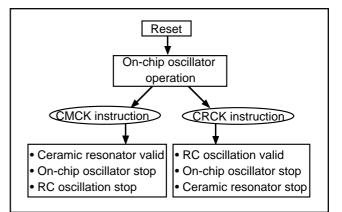



Fig. 48 Switch to ceramic resonance/RC oscillation

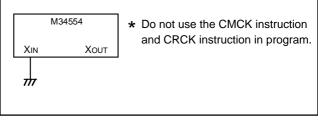
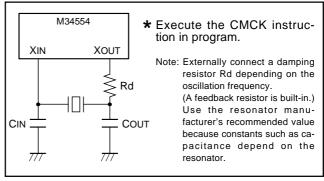




Fig. 49 Handling of XIN and XOUT when operating on-chip oscillator





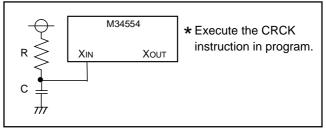
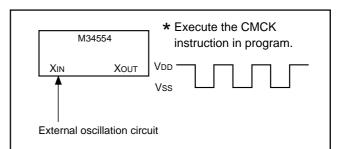



Fig. 51 External RC oscillation circuit



# (5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 52).


Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

### (6) Sub-clock generating circuit f(XCIN)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 53).

# (7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.





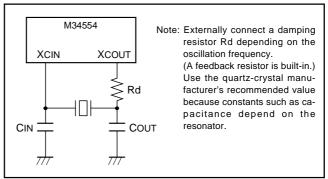



Fig. 53 External quartz-crystal circuit

|     | Clock control register MR                     |     | at reset : 11002  |                                | at power down : state retained | R/W<br>TAMR/<br>TMRA |
|-----|-----------------------------------------------|-----|-------------------|--------------------------------|--------------------------------|----------------------|
|     |                                               | MR3 | MR2               |                                | Operation mode                 |                      |
| MR3 |                                               | 0   | 0                 | Through mode (free             | uency not divided)             |                      |
|     | Operation mode selection bits                 | 0   | 1                 | Frequency divided by 2 mode    |                                |                      |
| MR2 |                                               | 1   | 0                 | Frequency divided by 4 mode    |                                |                      |
|     |                                               | 1   | 1                 | Frequency divided I            | by 8 mode                      |                      |
| MR1 | Main clock appillation circuit control bit    | (   | 5 C               | Main clock oscillation         | on enabled                     |                      |
|     | R1 Main clock oscillation circuit control bit |     | 1                 | Main clock oscillation         | on stop                        |                      |
| MRo |                                               | 0   |                   | Main clock (f(XIN) or f(RING)) |                                |                      |
|     | 0 System clock selection bit                  |     | 1 Sub-clock (f(Xc |                                |                                |                      |

### Table 18 Clock control register MR

Note : "R" represents read enabled, and "W" represents write enabled.

### **ROM ORDERING METHOD**

1.Mask ROM Order Confirmation Form•

2.Mark Specification Form•

3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

•For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).



### LIST OF PRECAUTIONS

#### ① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1  $\mu F)$  between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and

• use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k $\Omega$  (connect this resistor to CNVss/VPP pin as close as possible).

#### ② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

#### ③Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

#### ④ Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

#### 5 Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

#### 6 Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

#### Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

#### Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

#### 9 Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

#### 10 Timer 4

Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

#### 1 Timer 5

Stop timer 5 counting to change its count source.

#### <sup>12</sup>Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

#### <sup>(3)</sup>Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1.

#### () Multifunction

- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected.

#### <sup>®</sup>Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.



#### 16 D8/INT0 pin

• Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register 11 in software, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 54<sup>(1)</sup>) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 54<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 54<sup>(3)</sup>).

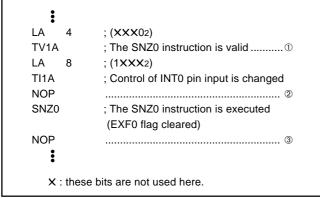



Fig. 54 External 0 interrupt program example-1

• Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INTO pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 55<sup>(1)</sup>).

| :        |                           |
|----------|---------------------------|
| LA 0     | ; (00 <b>XX</b> 2)        |
| TI1A     | ; Input of INT0 disabled  |
| DI       |                           |
| EPOF     |                           |
| POF2     | ; RAM back-up             |
| :        |                           |
| X : thes | e bits are not used here. |

Fig. 55 External 0 interrupt program example-2

#### Note on bit 2 of register I1

When the interrupt valid waveform of the D<sub>8</sub>/INT0 pin is changed with the bit 2 of register 11 in software, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 56<sup>(1)</sup>) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 56<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 56<sup>(3)</sup>).

| ; (XXX02)<br>; The SNZ0 instruction is valid<br>; (X1XX2)<br>; Interrupt valid waveform is changed |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ; (X1XX2)<br>; Interrupt valid waveform is changed                                                 |  |  |  |  |  |  |
| ; Interrupt valid waveform is changed                                                              |  |  |  |  |  |  |
|                                                                                                    |  |  |  |  |  |  |
| _                                                                                                  |  |  |  |  |  |  |
|                                                                                                    |  |  |  |  |  |  |
| ; The SNZ0 instruction is executed                                                                 |  |  |  |  |  |  |
| (EXF0 flag cleared)                                                                                |  |  |  |  |  |  |
|                                                                                                    |  |  |  |  |  |  |
|                                                                                                    |  |  |  |  |  |  |
| •<br>X : these bits are not used here.                                                             |  |  |  |  |  |  |
|                                                                                                    |  |  |  |  |  |  |

Fig. 56 External 0 interrupt program example-3



#### D9/INT1 pin

• Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 57<sup>(1)</sup>) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 57<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 57<sup>(3)</sup>).

| :          |                                   |                                                        |  |  |  |  |  |  |
|------------|-----------------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| LA         | 4                                 | ; (XX0X2)                                              |  |  |  |  |  |  |
| TV1A       |                                   | ; The SNZ1 instruction is valid                        |  |  |  |  |  |  |
| LA         | 8                                 | ; (1XXX2)                                              |  |  |  |  |  |  |
| TI2A       |                                   | ; Control of INT1 pin input is changed                 |  |  |  |  |  |  |
| NOP        |                                   |                                                        |  |  |  |  |  |  |
| SNZ1       |                                   | ; The SNZ1 instruction is executed (EXF1 flag cleared) |  |  |  |  |  |  |
| NOP        |                                   |                                                        |  |  |  |  |  |  |
| :          |                                   |                                                        |  |  |  |  |  |  |
| <b>x</b> : | X : these bits are not used here. |                                                        |  |  |  |  |  |  |

Fig. 57 External 1 interrupt program example-1

• Note [2] on bit 3 of register I2

When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

• When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 58<sup>(1)</sup>).

| :       |                            |
|---------|----------------------------|
| LA 0    | ; (00 <b>XX</b> 2)         |
| TI2A    | ; Input of INT1 disabled   |
| DI      |                            |
| EPOF    |                            |
| POF2    | ; RAM back-up              |
| :       |                            |
| X : the | se bits are not used here. |

Fig. 58 External 1 interrupt program example-2

#### • Note on bit 2 of register I2

When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 59<sup>(1)</sup>) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 59<sup>(2)</sup>).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 59<sup>3</sup>).

| :          |                                   |                                       |  |  |  |  |  |
|------------|-----------------------------------|---------------------------------------|--|--|--|--|--|
| LA         | 4                                 | ; (XX0X2)                             |  |  |  |  |  |
| TV1A       |                                   | ; The SNZ1 instruction is valid       |  |  |  |  |  |
| LA         | 12                                | ; (X1XX2)                             |  |  |  |  |  |
| TI2A       |                                   | ; Interrupt valid waveform is changed |  |  |  |  |  |
| NOP        |                                   | 2                                     |  |  |  |  |  |
| SNZ1       |                                   | ; The SNZ1 instruction is executed    |  |  |  |  |  |
|            |                                   | (EXF1 flag cleared)                   |  |  |  |  |  |
| NOP        |                                   | 3                                     |  |  |  |  |  |
| :          |                                   |                                       |  |  |  |  |  |
| <b>x</b> : | X : these bits are not used here. |                                       |  |  |  |  |  |

Fig. 59 External 1 interrupt program example-3



#### <sup>®</sup>POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

#### Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100  $\mu$ s or less. If the rising time exceeds 100  $\mu$ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

#### Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 60);

supply voltage does not fall below to VRST, and

its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

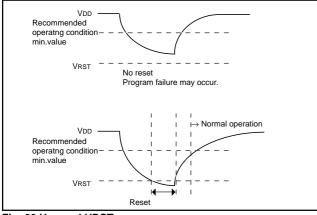



Fig. 60 VDD and VRST

#### Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

#### On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

#### 3 External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

#### I Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

### Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.



# **CONTROL REGISTERS**

| Interrupt control register V1 |                                     | at reset : 00002 |                      | at power down : 00002         | R/W<br>TAV1/TV1A |
|-------------------------------|-------------------------------------|------------------|----------------------|-------------------------------|------------------|
| V13                           | V13 Timer 2 interrupt enable bit    |                  | Interrupt disabled ( | SNZT2 instruction is valid)   |                  |
| V13                           |                                     | 1                | Interrupt enabled (  | SNZT2 instruction is invalid) |                  |
| V12                           | V12 Timer 1 interrupt enable bit    | 0                | Interrupt disabled ( | SNZT1 instruction is valid)   |                  |
| V 12                          |                                     | 1                | Interrupt enabled (  | SNZT1 instruction is invalid) |                  |
| V11                           | 4. Estemal 4 interment enable hit   | 0                | Interrupt disabled ( | SNZ1 instruction is valid)    |                  |
| VII                           | V11 External 1 interrupt enable bit |                  | Interrupt enabled (  | SNZ1 instruction is invalid)  |                  |
| V10                           | External 0 interrupt enable bit     | 0                | Interrupt disabled ( | SNZ0 instruction is valid)    |                  |
| VIU                           | External o Interrupt enable bit     | 1                | Interrupt enabled (  | SNZ0 instruction is invalid)  |                  |

|      | Interrupt control register V2    |   | reset : 00002                                        | at power down : 00002         | R/W<br>TAV2/TV2A |
|------|----------------------------------|---|------------------------------------------------------|-------------------------------|------------------|
| 1/00 | V23 Timer 4 interrupt enable bit |   | Interrupt disabled (SNZT4 instruction is valid)      |                               |                  |
| V23  |                                  |   | Interrupt enabled (                                  | SNZT4 instruction is invalid) |                  |
| 1/00 | V22 Not used                     | 0 | This bit has no function, but read/write is enabled. |                               |                  |
| V 22 |                                  | 1 |                                                      |                               |                  |
| 1/0. | Timor E interrupt enable bit     | 0 | Interrupt disabled                                   | (SNZT5 instruction is valid)  |                  |
| V21  | V21 Timer 5 interrupt enable bit |   | Interrupt enabled (                                  | SNZT5 instruction is invalid) |                  |
| V/0a | Timor 3 interrupt enable bit     | 0 | Interrupt disabled                                   | (SNZT3 instruction is valid)  |                  |
| V20  | Timer 3 interrupt enable bit     | 1 | Interrupt enabled (                                  | SNZT3 instruction is invalid) |                  |

|     | Interrupt control register I1                                                     |   | reset : 00002                      | at power down : state retained          | R/W<br>TAI1/TI1A |  |
|-----|-----------------------------------------------------------------------------------|---|------------------------------------|-----------------------------------------|------------------|--|
| 110 | I13 INT0 pin input control bit (Note 2)                                           |   | INT0 pin input disa                | INT0 pin input disabled                 |                  |  |
| 113 |                                                                                   |   | INT0 pin input ena                 | bled                                    |                  |  |
| 110 | I12 Interrupt valid waveform for INT0 pin/<br>return level selection bit (Note 2) | 0 | Falling waveform/"<br>instruction) | 'L" level ("L" level is recognized with | the SNZI0        |  |
| 112 |                                                                                   | 1 | Rising waveform/"I instruction)    | H" level ("H" level is recognized with  | the SNZI0        |  |
| 111 | INT0 pin edge detection circuit control bit                                       | 0 | One-sided edge de                  | etected                                 |                  |  |
|     |                                                                                   | 1 | Both edges detect                  | ed                                      |                  |  |
| 110 | INT0 pin Timer 1 count start synchronous                                          | 0 | Timer 1 count star                 | t synchronous circuit not selected      |                  |  |
|     | circuit selection bit                                                             | 1 | Timer 1 count star                 | t synchronous circuit selected          |                  |  |

| Interrupt control register I2 |                                                                                   | at reset : 00002                                   |                                                                   | at power down : state retained         | R/W<br>TAI2/TI2A |
|-------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|------------------|
| 100                           | I23 INT1 pin input control bit (Note 2)                                           |                                                    | INT1 pin input disa                                               | bled                                   |                  |
| 123                           |                                                                                   |                                                    | INT1 pin input ena                                                | INT1 pin input enabled                 |                  |
|                               | I22 Interrupt valid waveform for INT1 pin/<br>return level selection bit (Note 2) | 0                                                  | Falling waveform/"                                                | L" level ("L" level is recognized with | the SNZI1        |
| 120                           |                                                                                   | 0                                                  | instruction)                                                      |                                        |                  |
| 122                           |                                                                                   | 1                                                  | Rising waveform/"H" level ("H" level is recognized with the SNZI1 |                                        |                  |
|                               |                                                                                   |                                                    | instruction)                                                      |                                        |                  |
| <b>I</b> 21                   | INT1 pin edge detection circuit control bit                                       | 0                                                  | One-sided edge de                                                 | etected                                |                  |
| 121                           |                                                                                   | 1                                                  | Both edges detected                                               | ed                                     |                  |
| 120                           | INT1 pin Timer 3 count start synchronous                                          | 0                                                  | Timer 3 count start                                               | synchronous circuit not selected       |                  |
| 120                           | circuit selection bit                                                             | 1 Timer 3 count start synchronous circuit selected |                                                                   |                                        |                  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.



| Clock control register MR |                                            | at r |     | reset : 11002                  | at power down : state retained | R/W<br>TAMR/<br>TMRA |
|---------------------------|--------------------------------------------|------|-----|--------------------------------|--------------------------------|----------------------|
|                           |                                            |      | MR2 |                                | Operation mode                 |                      |
| MR3                       |                                            | 0    | 0   | Through mode                   |                                |                      |
|                           | Operation mode selection bits              | 0    | 1   | Frequency divided by 2 mode    |                                |                      |
| MR2                       |                                            | 1    | 0   | Frequency divided by 4 mode    |                                |                      |
|                           |                                            | 1    | 1   | Frequency divided I            | by 8 mode                      |                      |
| MR1                       | Main clock oscillation circuit control bit | C    | )   | Main clock oscillation         | on enabled                     |                      |
| IVITS                     | Main Clock oscillation circuit control bit | 1    |     | Main clock oscillation stop    |                                |                      |
| MRo                       | System clock selection bit                 | 0    |     | Main clock (f(XIN) or f(RING)) |                                |                      |
|                           |                                            | 1    |     | Sub-clock (f(Xcin))            |                                |                      |

| Timer control register PA |                       | at reset : 02 |                        | at power down : 02 | W<br>TPAA |
|---------------------------|-----------------------|---------------|------------------------|--------------------|-----------|
| PAo                       | Prescaler control bit | 0             | Stop (state initialize | ed)                |           |
| FA0                       |                       | 1             | Operating              |                    |           |

|      | Timer control register W1                                  |     | at reset : 00002                               |                          | at power down : state retained | R/W<br>TAW1/TW1A |
|------|------------------------------------------------------------|-----|------------------------------------------------|--------------------------|--------------------------------|------------------|
| W/13 | W13 Timer 1 count auto-stop circuit selection bit (Note 2) |     | 0 Timer 1 count auto-stop circuit not selected |                          | -stop circuit not selected     |                  |
| 111  |                                                            |     | 1                                              | Timer 1 count auto       | -stop circuit selected         |                  |
| W12  |                                                            |     | )                                              | Stop (state retained)    |                                |                  |
| VVIZ | Timer 1 control bit                                        | 1   |                                                | Operating                |                                |                  |
|      |                                                            | W11 | W10                                            |                          | Count source                   |                  |
| W11  |                                                            | 0   | 0                                              | Instruction clock (I     | NSTCK)                         |                  |
|      | Timer 1 count source selection bits                        | 0   | 1                                              | Prescaler output (ORCLK) |                                |                  |
| W10  |                                                            | 1   | 0                                              | Timer 5 underflow        | signal (T5UDF)                 |                  |
|      |                                                            | 1   | 1                                              | CNTR0 input              |                                |                  |

|      | Timer control register W2           |     | at                     | reset : 00002                                | at power down : state retained | R/W<br>TAW2/TW2A |
|------|-------------------------------------|-----|------------------------|----------------------------------------------|--------------------------------|------------------|
| W23  | W23 CNTR0 output control bit        |     | )                      | Timer 1 underflow signal divided by 2 output |                                |                  |
| 1125 |                                     |     | 1                      | Timer 2 underflow                            | signal divided by 2 output     |                  |
| W22  | W22 Timer 2 control bit             |     | 0 Stop (state retained |                                              | d)                             |                  |
| VVZZ |                                     | 1   |                        | Operating                                    |                                |                  |
|      |                                     | W21 | W20                    |                                              | Count source                   |                  |
| W21  | Timer 2 count source selection bits | 0   | 0                      | System clock (STC                            | CK)                            |                  |
|      |                                     | 0   | 1                      | Prescaler output (ORCLK)                     |                                |                  |
| W20  |                                     | 1   | 0                      | Timer 1 underflow signal (T1UDF)             |                                |                  |
|      |                                     | 1   | 1                      | PWM signal (PWM                              | IOUT)                          |                  |

|      | Timer control register W3                 |     | at  | reset : 00002       | at power down : state retained | R/W<br>TAW3/TW3A |
|------|-------------------------------------------|-----|-----|---------------------|--------------------------------|------------------|
| W33  | Timer 3 count auto-stop circuit selection | 0   |     | Timer 3 count auto  | -stop circuit not selected     |                  |
| VV03 | bit (Note 3)                              | 1   |     | Timer 3 count auto  | -stop circuit selected         |                  |
| W32  | Timer 2 control bit                       | 0   |     | Stop (state retaine | d)                             |                  |
| VV32 | Timer 3 control bit                       |     | 1   | Operating           |                                |                  |
|      |                                           | W31 | W30 |                     | Count source                   |                  |
| W31  | Time of the second second section bits    | 0   | 0   | PWM signal (PWMOUT) |                                |                  |
|      | Timer 3 count source selection bits       | 0   | 1   | Prescaler output (0 | DRCLK)                         |                  |
| W30  | (Note 4)                                  | 1   | 0   | Timer 2 underflow   | signal (T2UDF)                 |                  |
|      |                                           |     | 1   | CNTR1 input         |                                |                  |

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: This function is valid only when the timer 1 count start synchronous circuit is selected (110="1").3: This function is valid only when the timer 3 count start synchronous circuit is selected (120="1").

4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.



|                   | Timer control register W4                   |   | reset : 00002                                      | at power down : 00002 | R/W<br>TAW4/TW4A |  |
|-------------------|---------------------------------------------|---|----------------------------------------------------|-----------------------|------------------|--|
| W43               | CNTR1 output control bit                    | 0 | CNTR1 output invalid                               |                       |                  |  |
| VV <del>4</del> 3 |                                             | 1 | CNTR1 output valid                                 |                       |                  |  |
| W42               | W/40 PWM signal                             | 0 | PWM signal "H" interval expansion function invalid |                       |                  |  |
| VV42              | "H" interval expansion function control bit | 1 | PWM signal "H" interval expansion function valid   |                       |                  |  |
| W41               | Timer 4 control bit                         | 0 | Stop (state retaine                                | d)                    |                  |  |
| VV41              |                                             | 1 | Operating                                          |                       |                  |  |
| W/40              | W40 Timer 4 count source selection bit      | 0 | XIN input                                          |                       |                  |  |
| vv40              |                                             | 1 | Prescaler output (0                                | DRCLK) divided by 2   |                  |  |

|     | Timer control register W5          |     | at reset : 00002 |                                                      | at power down : state retained | R/W<br>TAW5/TW5A |
|-----|------------------------------------|-----|------------------|------------------------------------------------------|--------------------------------|------------------|
| W53 | Not used                           | 0   |                  | This bit has no function, but read/write is enabled. |                                |                  |
|     |                                    |     |                  | <u> </u>                                             | 0                              |                  |
| W52 | Timer 5 control bit                | (   | )                | Stop (state initialized)                             |                                |                  |
|     |                                    | -   | 1                | Operating                                            |                                |                  |
|     |                                    | W51 | W50              |                                                      | Count value                    |                  |
| W51 |                                    | 0   | 0                | Underflow occurs e                                   | every 8192 counts              |                  |
|     | Timer 5 count value selection bits | 0   | 1                | Underflow occurs e                                   | every 16384 counts             |                  |
| W50 |                                    | 1   | 0                | Underflow occurs e                                   | every 32768 counts             |                  |
|     |                                    | 1   | 1                | Underflow occurs e                                   | every 65536 counts             |                  |

|      | Timer control register W6               |                     | reset : 00002            | at power down : state retained          | R/W<br>TAW6/TW6A |  |  |
|------|-----------------------------------------|---------------------|--------------------------|-----------------------------------------|------------------|--|--|
| W63  | W63 Timer LC control bit                |                     | Stop (state retaine      | d)                                      |                  |  |  |
| VV03 |                                         | 1                   | Operating                |                                         |                  |  |  |
| W62  | W62 Timer LC count source selection bit | 0                   | Bit 4 (T54) of timer 5   |                                         |                  |  |  |
| VV02 | Timer EC count source selection bit     | 1                   | Prescaler output (ORCLK) |                                         |                  |  |  |
| W61  | CNTR1 output auto-control circuit       | 0                   | CNTR1 output auto        | utput auto-control circuit not selected |                  |  |  |
| 001  | selection bit                           | 1 CNTR1 output aut  |                          | o-control circuit selected              |                  |  |  |
| W60  | D7/CNTR0 pin function selection bit     | 0 D7(I/O)/CNTR0 inp |                          | put                                     |                  |  |  |
| VV00 | (Note 2)                                | 1                   | CNTR input/output        | /D7 (input)                             |                  |  |  |

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.



|     | LCD control register L1                  |     | at  | reset : 00002  | at power dow | n : state retained | R/W<br>TAL1/TL1A |
|-----|------------------------------------------|-----|-----|----------------|--------------|--------------------|------------------|
| L13 | Internal dividing resistor for LCD power | 0   | )   | 2r 🗙 3, 2r 🗙 2 |              |                    |                  |
| L13 | supply selection bit (Note 2)            | 1   | I   | r X 3, r X 2   |              |                    |                  |
| L12 |                                          | 0   | )   | Off            |              |                    |                  |
|     | LCD control bit                          | 1   |     | On             |              |                    |                  |
|     |                                          | L11 | L10 | Duty           |              | Bias               |                  |
| L11 |                                          | 0   | 0   |                | Not ava      | ailable            |                  |
|     |                                          | 0   | 1   | 1/2            |              | 1/2                |                  |
| L10 | LCD duty and bias selection bits         | 1   | 0   | 1/3            |              | 1/3                |                  |
|     |                                          | 1   | 1   | 1/4            |              | 1/3                |                  |

|      | LCD control register L2                        |                         | reset : 00002         | at power down : state retained | W<br>TL2A |
|------|------------------------------------------------|-------------------------|-----------------------|--------------------------------|-----------|
| 1.22 | L23 VLC3/SEG0 pin function switch bit (Note 3) | 0                       | SEG0                  |                                |           |
| LZS  | L23 VLC3/SEG0 pin function switch bit (Note 3) |                         | VLC3                  |                                |           |
| L22  | L22 VLC2/SEG1 pin function switch bit (Note 4) | 0                       | SEG1                  |                                |           |
|      | VEC2/SEG1 pill function switch bit (Note 4)    | 1                       | VLC2                  |                                |           |
| L21  | VLC1/SEG2 pin function switch bit (Note 4)     | 0                       | SEG2                  |                                |           |
| LZ1  | VEC1/SEG2 pin function switch bit (Note 4)     | 1                       | VLC1                  |                                |           |
| L20  | Internal dividing resistor for LCD power       | 0 Internal dividing res |                       | sistor valid                   |           |
| L20  | supply control bit                             | 1                       | Internal dividing res | sistor invalid                 |           |

|     | LCD control register L3           |               | reset : 00002 | at power down : state retained | W<br>TL3A |
|-----|-----------------------------------|---------------|---------------|--------------------------------|-----------|
| L33 | SEG24/P33-SEG27/P30 pin function  | 0 SEG24–SEG27 |               | · · · · · ·                    |           |
| L33 | switch bit                        | 1             | P33-P30       |                                |           |
| L32 | SEG28/P23, SEG29/P22 pin function | 0             | SEG28, SEG29  |                                |           |
| L32 | switch bit                        | 1             | P23, P22      |                                |           |
| L31 | SEG30/P21 pin function            | 0             | SEG30         |                                |           |
| L31 | switch bit                        | 1             | P21           |                                |           |
| L30 | SEG31/P20 pin function            | 0             | SEG31         |                                |           |
| L30 | switch bit                        | 1             | P20           |                                |           |

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

3: VLc3 is connected to VDD internally when SEG0 pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.



|       | Pull-up control register PU0 |                         | reset : 00002        | at power down : state retained | R/W<br>TAPU0/<br>TPU0A |
|-------|------------------------------|-------------------------|----------------------|--------------------------------|------------------------|
| PU03  | Port P03 pull-up transistor  | 0                       | Pull-up transistor O | FF                             |                        |
| P003  | control bit                  | 1                       | Pull-up transistor O | N                              |                        |
| DUIDA | Port P02 pull-up transistor  | 0 Pull-up transistor OF |                      | FF                             |                        |
| PU02  | control bit                  | 1                       | Pull-up transistor O | N                              |                        |
| DU O. | Port P01 pull-up transistor  | 0                       | Pull-up transistor O | FF                             |                        |
| PU01  | control bit                  | 1 Pull-up transistor C  |                      | N                              |                        |
| PU00  | Port P00 pull-up transistor  | 0 Pull-up transistor O  |                      | FF                             |                        |
| P000  | control bit                  | 1                       | Pull-up transistor O | Ν                              |                        |

|       | Pull-up control register PU1 |                         | reset : 00002        | at power down : state retained | R/W<br>TAPU1/<br>TPU1A |
|-------|------------------------------|-------------------------|----------------------|--------------------------------|------------------------|
| PU13  | Port P13 pull-up transistor  | 0                       | Pull-up transistor O | FF                             |                        |
| P013  | control bit                  | 1                       | Pull-up transistor O | Ν                              |                        |
| DUIA  | Port P12 pull-up transistor  | 0 Pull-up transistor OF |                      | FF                             |                        |
| PU12  | control bit                  | 1                       | Pull-up transistor O | N                              |                        |
| DUI4. | Port P11 pull-up transistor  | 0                       | Pull-up transistor O | FF                             |                        |
| PU11  | control bit                  | 1                       | Pull-up transistor O | N                              |                        |
| DUIA  | Port P10 pull-up transistor  | 0 Pull-up transistor OI |                      | FF                             |                        |
| PU10  | control bit                  | 1                       | Pull-up transistor O | N                              |                        |

| Por          | Port output structure control register FR0 |               | reset : 00002      | at power down : state retained | W<br>TFR0A |  |
|--------------|--------------------------------------------|---------------|--------------------|--------------------------------|------------|--|
| ED 0a        | Ports P12, P13 output structure selection  | 0             | N-channel open-dra | ain output                     |            |  |
| FR03         | bit                                        | 1 CMOS output |                    |                                |            |  |
| <b>FD</b> 0a | Ports P10, P11 output structure selection  | 0             | N-channel open-dra | ain output                     |            |  |
| FR02         | bit                                        | 1             | CMOS output        |                                |            |  |
|              | Ports P02, P03 output structure selection  | 0             | N-channel open-dra | ain output                     |            |  |
| FR01         | bit                                        | 1             | CMOS output        |                                |            |  |
| FR00         | Ports P00, P01 output structure selection  | 0             | N-channel open-dra | ain output                     |            |  |
| FR00         | bit                                        | 1             | CMOS output        |                                |            |  |

| Por  | Port output structure control register FR1   |   | reset : 00002               | at power down : state retained | W<br>TFR1A |
|------|----------------------------------------------|---|-----------------------------|--------------------------------|------------|
|      | FR13 Port D3 output structure selection bit  |   | N-channel open-dra          | ain output                     |            |
| FR13 |                                              |   | CMOS output                 |                                |            |
|      | ED4a Deat De eutrus etrusture extention, hit | 0 | N-channel open-drain output |                                |            |
| FR12 | Port D2 output structure selection bit       | 1 | CMOS output                 |                                |            |
|      | Deat Deas tract structure as lesting bit     | 0 | N-channel open-dra          | ain output                     |            |
| FR11 | Port D1 output structure selection bit       | 1 | CMOS output                 |                                |            |
|      |                                              | 0 | N-channel open-drain output |                                |            |
| FR10 | FR10 Port D0 output structure selection bit  |   | CMOS output                 |                                |            |

| Por    | Port output structure control register FR2          |   | reset : 00002               | at power down : state retained | W<br>TFR2A |  |
|--------|-----------------------------------------------------|---|-----------------------------|--------------------------------|------------|--|
| ED 20  | FR23 Port D7/CNTR0 output structure selection bit - |   | N-channel open-dra          | ain output                     |            |  |
| FR23   |                                                     |   | CMOS output                 |                                |            |  |
| ED 0a  | FR22 Port D6 output structure selection bit         | 0 | N-channel open-drain output |                                |            |  |
| FR22   |                                                     | 1 | CMOS output                 |                                |            |  |
| ED0.   | Bard Barada da terratura a da diara bit             | 0 | N-channel open-dra          | N-channel open-drain output    |            |  |
| FR21   | Port D5 output structure selection bit              | 1 | CMOS output                 | CMOS output                    |            |  |
| ED 0 a | Part Drawtest stresters a lasting bit               | 0 | N-channel open-drain output |                                |            |  |
| FR20   | Port D4 output structure selection bit              | 1 | CMOS output                 |                                |            |  |

Note: "R" represents read enabled, and "W" represents write enabled.



| Key-on wakeup control register K0 |                        | at reset : 00002 |                        | at power down : state retained | R/W<br>TAK0/<br>TK0A |
|-----------------------------------|------------------------|------------------|------------------------|--------------------------------|----------------------|
| K03                               | Port P03 key-on wakeup | 0                | Key-on wakeup not used |                                |                      |
|                                   | control bit            | 1                | Key-on wakeup used     |                                |                      |
| K02                               | Port P02 key-on wakeup | 0                | Key-on wakeup not used |                                |                      |
|                                   | control bit            | 1                | Key-on wakeup used     |                                |                      |
| K01                               | Port P01 key-on wakeup | 0                | Key-on wakeup not used |                                |                      |
|                                   | control bit            | 1                | Key-on wakeup used     |                                |                      |
| K00                               | Port P00 key-on wakeup | 0                | Key-on wakeup not used |                                |                      |
|                                   | control bit            | 1                | Key-on wakeup used     |                                |                      |

|     | Key-on wakeup control register K1  |   | t reset : 00002        | at power down : state retained | R/W<br>TAK1/<br>TK1A |
|-----|------------------------------------|---|------------------------|--------------------------------|----------------------|
| K13 | Port P13 key-on wakeup control bit | 0 | Key-on wakeup not used |                                |                      |
| K13 |                                    | 1 | Key-on wakeup used     |                                |                      |
| K12 | Port P12 key-on wakeup control bit | 0 | Key-on wakeup not used |                                |                      |
| K12 |                                    | 1 | Key-on wakeup used     |                                |                      |
| K44 | Port P11 key-on wakeup control bit | 0 | Key-on wakeup not used |                                |                      |
| K11 |                                    | 1 | Key-on wakeup used     |                                |                      |
| K10 | Port P10 key-on wakeup control bit | 0 | Key-on wakeup not used |                                |                      |
| K10 |                                    | 1 | Key-on wakeup used     |                                |                      |

| Key-on wakeup control register K2 |                                         | at reset : 00002 |                       | at power down : state retained | R/W<br>TAK2/<br>TK2A |
|-----------------------------------|-----------------------------------------|------------------|-----------------------|--------------------------------|----------------------|
| K23                               | INT1 pin return condition selection bit | 0                | Returned by level     |                                |                      |
| N23                               |                                         | 1                | Returned by edge      |                                |                      |
| K22                               | INT1 pin key-on wakeup control bit      | 0                | Key-on wakeup invalid |                                |                      |
| N22                               |                                         | 1                | Key-on wakeup valid   |                                |                      |
| K21                               | INT0 pin return condition selection bit | 0                | Returned by level     |                                |                      |
| <b>K</b> 21                       |                                         | 1                | Returned by edge      |                                |                      |
| K20                               | INT0 pin key-on wakeup control bit      | 0                | Key-on wakeup invalid |                                |                      |
|                                   |                                         | 1                | Key-on wakeup valid   |                                |                      |

Note: "R" represents read enabled, and "W" represents write enabled.



#### INSTRUCTIONS

The 4554 Group has the 136 instructions. Each instruction is described as follows;

(1) Index list of instruction function

(2) Machine instructions (index by alphabet)

(3) Machine instructions (index by function)

(4) Instruction code table

#### SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

| Symbol | Contents                                         | Symbol             | Contents                                             |
|--------|--------------------------------------------------|--------------------|------------------------------------------------------|
| A      | Register A (4 bits)                              | PS                 | Prescaler                                            |
| В      | Register B (4 bits)                              | T1                 | Timer 1                                              |
| DR     | Register DR (3 bits)                             | T2                 | Timer 2                                              |
| Ξ      | Register E (8 bits)                              | Т3                 | Timer 3                                              |
| √1     | Interrupt control register V1 (4 bits)           | T4                 | Timer 4                                              |
| V2     | Interrupt control register V2 (4 bits)           | T5                 | Timer 5                                              |
| 1      | Interrupt control register I1 (4 bits)           | TLC                | Timer LC                                             |
| 2      | Interrupt control register I2 (4 bits)           | T1F                | Timer 1 interrupt request flag                       |
| MR     | Clock control register MR (4 bits)               | T2F                | Timer 2 interrupt request flag                       |
| PA     | Timer control register PA (1 bit)                | T3F                | Timer 3 interrupt request flag                       |
| W1     | Timer control register W1 (4 bits)               | T4F                | Timer 4 interrupt request flag                       |
| W2     | Timer control register W2 (4 bits)               | T5F                | Timer 5 interrupt request flag                       |
| W3     | Timer control register W3 (4 bits)               | WDF1               | Watchdog timer flag                                  |
| N4     | Timer control register W4 (4 bits)               | WEF                | Watchdog timer enable flag                           |
| N5     | Timer control register W5 (4 bits)               | INTE               | Interrupt enable flag                                |
| N6     | Timer control register W6 (4 bits)               | EXF0               | External 0 interrupt request flag                    |
| _1     | LCD control register L1 (4 bits)                 | EXF1               |                                                      |
|        | LCD control register L2 (4 bits)                 | P                  | External 1 interrupt request flag<br>Power down flag |
| _2     | 5 ( )                                            | F                  | Power down hag                                       |
| _3     | LCD control register L3 (4 bits)                 |                    | Port D (10 hito)                                     |
|        | Pull-up control register PU0 (4 bits)            | D                  | Port D (10 bits)                                     |
| PU1    | Pull-up control register PU1 (4 bits)            | P0                 | Port P0 (4 bits)                                     |
| FR0    | Port output format control register FR0 (4 bits) | P1                 | Port P1 (4 bits)                                     |
| -R1    | Port output format control register FR1 (4 bits) | P2                 | Port P2 (4 bits)                                     |
| -R2    | Port output format control register FR2 (4 bits) | P3                 | Port P3 (4 bits)                                     |
| FR3    | Port output format control register FR3 (4 bits) | С                  | Port C (1 bit)                                       |
| <0     | Key-on wakeup control register K0 (4 bits)       |                    |                                                      |
| K1     | Key-on wakeup control register K1 (4 bits)       | x                  | Hexadecimal variable                                 |
| <2     | Key-on wakeup control register K2 (4 bits)       | У                  | Hexadecimal variable                                 |
| x      | Register X (4 bits)                              | z                  | Hexadecimal variable                                 |
| Y      | Register Y (4 bits)                              | р                  | Hexadecimal variable                                 |
| Ζ      | Register Z (2 bits)                              | n                  | Hexadecimal constant                                 |
| DP     | Data pointer (10 bits)                           | i                  | Hexadecimal constant                                 |
|        | (It consists of registers X, Y, and Z)           | j                  | Hexadecimal constant                                 |
| PC     | Program counter (14 bits)                        | A3A2A1A0           | Binary notation of hexadecimal variable A            |
| РСн    | High-order 7 bits of program counter             |                    | (same for others)                                    |
| PCL    | Low-order 7 bits of program counter              |                    |                                                      |
| SK     | Stack register (14 bits X 8)                     | $\leftarrow$       | Direction of data movement                           |
| SP     | Stack pointer (3 bits)                           | $\leftrightarrow$  | Data exchange between a register and memory          |
| CY     | Carry flag                                       | ?                  | Decision of state shown before "?"                   |
| RPS    | Prescaler reload register (8 bits)               | ()                 | Contents of registers and memories                   |
| R1     | Timer 1 reload register (8 bits)                 |                    | Negate, Flag unchanged after executing instruction   |
| ٦2     | Timer 2 reload register (8 bits)                 | M(DP)              | RAM address pointed by the data pointer              |
| R3     | Timer 3 reload register (8 bits)                 | a                  | Label indicating address a6 a5 a4 a3 a2 a1 a0        |
| R4L    | Timer 4 reload register (8 bits)                 | p, a               | Label indicating address a6 a5 a4 a3 a2 a1 a0        |
| R4H    | Timer 4 reload register (8 bits)                 | [ <sup>-</sup> , - | in page p5 p4 p3 p2 p1 p0                            |
| RLC    | Timer LC reload register (4 bits)                | C<br>+<br>×        | Hex. C + Hex. number x                               |
|        |                                                  |                    |                                                      |

Note : Some instructions of the 4554 Group has the skip function to unexecute the next described instruction. The 4554 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

RENESAS

| Group-<br>ing                 | Mnemonic            | Function                                                                           | Page     |   | Group-<br>ing            | Mnemonic | Function                                                                                    | Page     |
|-------------------------------|---------------------|------------------------------------------------------------------------------------|----------|---|--------------------------|----------|---------------------------------------------------------------------------------------------|----------|
|                               | ТАВ                 | $(A) \gets (B)$                                                                    | 95, 112  |   |                          | XAMI j   | $(A) \leftarrow \to (M(DP))$                                                                | 111, 112 |
|                               | тва                 | (B) ← (A)                                                                          | 103, 112 |   | transfei                 |          | $(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15<br>$(Y) \leftarrow (Y) + 1$                    |          |
|                               | TAY                 | $(A) \leftarrow (Y)$                                                               | 102, 112 |   | egister                  | TNAA :   |                                                                                             | 106 112  |
|                               | ΤΥΑ                 | $(Y) \gets (A)$                                                                    | 110, 112 |   | RAM to register transfer | ТМА ј    | $(M(DP)) \leftarrow (A)$<br>$(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15                    | 106, 112 |
|                               | ТЕАВ                | (E7−E4) ← (B)                                                                      | 103, 112 |   | R                        |          |                                                                                             |          |
| ansfer                        |                     | (E3−E0) ← (A)                                                                      |          |   |                          | LA n     | (A) ← n<br>n = 0 to 15                                                                      | 84, 114  |
| er tr                         | TABE                | $(B) \leftarrow (E_7 - E_4)$                                                       | 96, 112  |   |                          |          |                                                                                             |          |
| egist                         |                     | (A) ← (E3–E0)                                                                      |          |   |                          | TABP p   | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$                                    | 96, 114  |
| to                            | TDA                 | (DR2–DR0) ← (A2–A0)                                                                | 103, 112 |   |                          |          | (РСн) ← р                                                                                   |          |
| Register to register transfer | TAD                 | (A2–A0) ← (DR2–DR0)                                                                | 97, 112  |   |                          |          | $(PCL) \leftarrow (DR2-DR0, A3-A0)$<br>$(B) \leftarrow (ROM(PC))7-4$                        |          |
|                               |                     | (A3) ← 0                                                                           |          |   |                          |          | $(A) \leftarrow (ROM(PC))_{3-0}$                                                            |          |
|                               | TAZ                 | (A1, A0) ← (Z1, Z0)                                                                | 102, 112 |   |                          |          | $(PC) \leftarrow (SK(SP))$<br>$(SP) \leftarrow (SP) - 1$                                    |          |
|                               |                     | $(A_3, A_2) \leftarrow 0$                                                          |          |   |                          |          |                                                                                             |          |
|                               | ТАХ                 | $(A) \gets (X)$                                                                    | 102, 112 |   |                          | AM       | $(A) \leftarrow (A) + (M(DP))$                                                              | 78, 114  |
|                               | TASP                | $(A_2-A_0) \leftarrow (SP_2-SP_0)$<br>$(A_3) \leftarrow 0$                         | 100, 112 |   | ſ                        | AMC      | $\begin{array}{l} (A) \leftarrow (A) + (M(DP)) + (CY) \\ (CY) \leftarrow Carry \end{array}$ | 78, 114  |
|                               | LXY x, y            | $(X) \leftarrow x x = 0 \text{ to } 15$<br>$(Y) \leftarrow y y = 0 \text{ to } 15$ | 84, 112  |   | Arithmetic operation     | An       | (A) ← (A) + n<br>n = 0 to 15                                                                | 78, 114  |
| RAM addresses                 | LZ z                | $(Z) \leftarrow z z = 0 \text{ to } 3$                                             | 84, 112  |   | imetic o                 | AND      | $(A) \gets (A) AND (M(DP))$                                                                 | 78, 114  |
| addr                          |                     |                                                                                    | 00.440   |   | Arith                    | OR       | $(A) \gets (A) \; OR \; (M(DP))$                                                            | 85, 114  |
| <b>AM</b>                     | INY                 | $(Y) \leftarrow (Y) + 1$                                                           | 83, 112  |   |                          |          |                                                                                             |          |
|                               | DEY                 | (Y) ← (Y) − 1                                                                      | 81, 112  |   |                          | SC       | (CY) ← 1                                                                                    | 89, 114  |
|                               | TAM j               | (A) ← (M(DP))                                                                      | 99, 112  | - |                          | RC       | $(CY) \leftarrow 0$                                                                         | 87, 114  |
|                               |                     | $(X) \leftarrow (X)EXOR(j)$<br>i = 0  to  15                                       |          |   |                          | SZC      | (CY) = 0 ?                                                                                  | 93, 114  |
| nsfer                         |                     | , , , , , , , , , , , , , , , , , , , ,                                            |          |   |                          | СМА      | $(A) \leftarrow (\overline{A})$                                                             | 80, 114  |
| r trar                        | XAM j               | $(A) \leftarrow \rightarrow (M(DP))$                                               | 111, 112 |   |                          |          |                                                                                             |          |
| egiste                        |                     | $(X) \leftarrow (X) EXOR(j)$<br>j = 0 to 15                                        |          |   |                          | RAR      | $\rightarrow \boxed{CY} \rightarrow \boxed{A3A2A1A0}$                                       | 86, 114  |
| RAM to register transfer      | XAMD j              | $(A) \leftarrow \rightarrow (M(DP))$<br>$(X) \leftarrow (X)EXOR(j)$                | 111, 112 |   |                          |          |                                                                                             |          |
|                               |                     | $ \begin{array}{l} j=0 \text{ to } 15 \\ (Y) \leftarrow (Y)-1 \end{array} $        |          |   |                          |          |                                                                                             |          |
|                               | <br>s 0 to 63 for M |                                                                                    |          |   |                          |          |                                                                                             |          |

# 

Note: p is 0 to 63 for M34554M8,

p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.



#### INDEX LIST OF INSTRUCTION FUNCTION (continued)

| Group-<br>ing           | Mnemonic       | Function                                                    | Page               | Group-<br>ing       | Mnemonic     | Function                                                                              | Page               |
|-------------------------|----------------|-------------------------------------------------------------|--------------------|---------------------|--------------|---------------------------------------------------------------------------------------|--------------------|
|                         | SB j           | (Mj(DP)) ← 1<br>j = 0 to 3                                  | 88, 114            |                     | DI           | (INTE) ← 0                                                                            | 81, 118            |
| Bit operation           | RB j           | (Mj(DP)) ← 0<br>j = 0 to 3                                  | 86, 114            |                     | EI<br>SNZ0   | (INTE) ← 1<br>V10 = 0: (EXF0) = 1 ?<br>After skipping, (EXF0) ← 0                     | 82, 118<br>90, 118 |
| B                       | SZB j          | (Mj(DP)) = 0 ?<br>j = 0 to 3                                | 93, 114            |                     | 0.1177       | V10 = 1: SNZ0 = NOP                                                                   |                    |
| Comparison<br>operation | SEAM           | (A) = (M(DP)) ?                                             | 90, 114            |                     | SNZ1         | V11 = 0: (EXF1) = 1 ?<br>After skipping, (EXF1) $\leftarrow$ 0<br>V11 = 1: SNZ1 = NOP | 90, 118            |
| Compa                   | SEA n          | (A) = n ?<br>n = 0 to 15                                    | 89, 114            |                     | SNZI0        | I12 = 1 : (INT0) = "H" ?<br>I12 = 0 : (INT0) = "L" ?                                  | 90, 118            |
| ration                  | B a<br>BL p, a | (PCL) ← a6–a0<br>(PCH) ← p                                  | 79, 116<br>79, 116 | Interrupt operation | SNZI1        | I22 = 1 : (INT1) = "H" ?<br>I22 = 0 : (INT1) = "L" ?                                  | 91, 118            |
| Branch operation        |                | (PCL) ← a6–a0                                               |                    | nterrupt            | TAV1         | (A) ← (V1)                                                                            | 100, 11            |
| Bra                     | BLA p          | $(PCH) \leftarrow p$<br>$(PCL) \leftarrow (DR2-DR0, A3-A0)$ | 79, 116            |                     | TV1A         | (V1) ← (A)                                                                            | 108, 11            |
| BM a                    | BM a           | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$    | 79, 116            |                     | TAV2         | $(A) \leftarrow (V2)$                                                                 | 100, 11            |
|                         |                | (PCH) ← 2<br>(PCL) ← a6−a0                                  |                    |                     | TV2A<br>TAI1 | $(V2) \leftarrow (A)$<br>$(A) \leftarrow (I1)$                                        | 109, 11            |
| Subroutine operation    | BML p, a       | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$    | 80, 116            |                     | TI1A         | (I1) ← (A)                                                                            | 104, 11            |
| broutine                |                | (PCH) ← p<br>(PCL) ← a6–a0                                  |                    |                     | TAI2         | (A) ← (I2)                                                                            | 97, 11             |
| Sul                     | BMLA p         | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$    | 80, 116            |                     | TI2A         | (I2) ← (A)                                                                            | 104, 11            |
|                         |                | $(PCH) \leftarrow p$<br>$(PCL) \leftarrow (DR2-DR0, A3-A0)$ |                    |                     | TPAA<br>TAW1 | $(PA0) \leftarrow (A0)$<br>$(A) \leftarrow (W1)$                                      | 107, 11            |
|                         | RTI            | $(PC) \leftarrow (SK(SP))$<br>$(SP) \leftarrow (SP) - 1$    | 88, 116            |                     | TW1A         | $(W1) \leftarrow (A)$                                                                 | 109, 11            |
|                         | RT             | (PC) ← (SK(SP))<br>(SP) ← (SP) – 1                          | 87, 116            | eration             | TAW2         | (A) ← (W2)                                                                            | 101, 11            |
| eration                 | RTS            |                                                             |                    |                     |              | (W2) ← (A)                                                                            | 109, 11            |
| Return operation        |                | $(SP) \gets (SP) - 1$                                       |                    |                     | TAW3         | $(A) \leftarrow (W3)$                                                                 | 101, 11            |
| Ā                       |                |                                                             |                    |                     | TW3A         | (W3) ← (A)                                                                            | 109, 11            |

p is 0 to 95 for M34554MC and

p is 0 to 127 for M34554ED.



| Group-          |          |                                                              |          | <br>                   |          |                                                           |          |
|-----------------|----------|--------------------------------------------------------------|----------|------------------------|----------|-----------------------------------------------------------|----------|
| ing             | Mnemonic | Function                                                     | Page     | ing                    | Mnemonic | Function                                                  | Page     |
|                 | TAW4     | (A) ← (W4)                                                   | 101, 118 |                        | T4HAB    | $(R4H7-R4H4) \leftarrow (B)$ $(R4H3-R4H0) \leftarrow (A)$ | 94, 120  |
|                 | TW4A     | $(W4) \leftarrow (A)$                                        | 110, 118 |                        | TDAAD    |                                                           | 400,400  |
|                 | TAW5     | (A) ← (W5)                                                   | 101, 120 |                        | TR1AB    | $(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$     | 108, 120 |
|                 |          |                                                              | 101, 120 |                        |          |                                                           |          |
|                 | TW5A     | (W5) ← (A)                                                   | 110, 120 |                        | TR3AB    | (R37–R34) ← (B)<br>(R33–R30) ← (A)                        | 108, 120 |
|                 | TAW6     | $(A) \leftarrow (W6)$                                        | 102, 120 |                        |          |                                                           |          |
|                 | TW6A     | (W6) ← (A)                                                   | 110, 120 |                        | T4R4L    | (T47–T44) ← (R4L7–R4L4)<br>(T43–T40) ← (R4L3–R4L0)        | 95, 120  |
|                 | TABPS    | $(B) \leftarrow (TPS7-TPS4)$                                 | 97, 120  | u                      | TLCA     | $(LC) \leftarrow (A)$                                     | 106, 120 |
|                 |          | $(A) \leftarrow (TPS_3 - TPS_0)$                             |          | erati                  |          |                                                           |          |
|                 |          |                                                              |          | Timer operation        | SNZT1    | V12 = 0: (T1F) = 1 ?                                      | 91, 122  |
|                 | TPSAB    | $(RPS7-RPS4) \leftarrow (B)$                                 | 107, 120 | ime                    |          | After skipping, (T1F) $\leftarrow$ 0                      |          |
|                 |          | $(TPS7-TPS4) \leftarrow (B)$<br>$(RPS3-RPS0) \leftarrow (A)$ |          | Η                      | SNZT2    | V13 = 0: (T2F) = 1 ?                                      | 91, 122  |
|                 |          | $(TPS_3-TPS_0) \leftarrow (A)$                               |          |                        | SINZIZ   | After skipping, (T2F) $\leftarrow$ 0                      | 51, 122  |
|                 |          |                                                              |          |                        |          |                                                           |          |
|                 | TAB1     | (B) ← (T17–T14)                                              | 95, 120  |                        | SNZT3    | V20 = 0: (T3F) = 1 ?                                      | 92, 122  |
|                 |          | (A) ← (T13–T10)                                              |          |                        |          | After skipping, (T3F) $\leftarrow$ 0                      |          |
| ç               | T1AB     | (R17–R14) ← (B)                                              | 93, 120  |                        | SNZT4    | V23 = 0: (T4F) = 1 ?                                      | 92, 122  |
| ratic           |          | (T17−T14) ← (B)                                              |          |                        |          | After skipping, (T4F) $\leftarrow 0$                      | ,        |
| Timer operation |          | (R13–R10) ← (A)                                              |          |                        |          |                                                           |          |
| mer             |          | (T13–T10) ← (A)                                              |          |                        | SNZT5    | V21 = 0: (T5F) = 1 ?                                      | 92, 122  |
| i i i           | TAB2     | (B) ← (T27–T24)                                              | 95, 120  |                        |          | After skipping, (T5F) $\leftarrow 0$                      |          |
|                 | TABZ     | $(A) \leftarrow (T23 - T20)$                                 | 95, 120  |                        | IAP0     | (A) ← (P0)                                                | 82, 122  |
|                 |          |                                                              |          |                        |          |                                                           | - ,      |
|                 | T2AB     | (R27−R24) ← (B)                                              | 94, 120  |                        | OP0A     | $(P0) \leftarrow (A)$                                     | 85, 122  |
|                 |          | $(T27-T24) \leftarrow (B)$                                   |          |                        |          |                                                           | 00,400   |
|                 |          | (R23–R20) ← (A)<br>(T23–T20) ← (A)                           |          |                        | IAP1     | $(A) \leftarrow (P1)$                                     | 83, 122  |
|                 |          | (123-120) (- (A)                                             |          |                        | OP1A     | (P1) ← (A)                                                | 85, 122  |
|                 | ТАВЗ     | (B) ← (T37–T34)                                              | 96, 120  | ~                      |          |                                                           |          |
|                 |          | (A) ← (T33–T30)                                              |          | atior                  | IAP2     | $(A) \leftarrow (P2)$                                     | 83, 122  |
|                 | T3AB     | $(P_{27}, P_{24}) \neq (P)$                                  | 94, 120  | Input/Output operation | IAP3     | (A) (D2)                                                  | 92 100   |
|                 | IJAD     | (R37–R34) ← (B)<br>(T37–T34) ← (B)                           | 94, 120  | onto                   | IAP3     | (A) ← (P3)                                                | 83, 122  |
|                 |          | $(R33-R30) \leftarrow (A)$                                   |          | out                    |          |                                                           |          |
|                 |          | (T33–T30) ← (A)                                              |          | put/                   |          |                                                           |          |
|                 |          |                                                              |          | <u>_</u>               |          |                                                           |          |
|                 | TAB4     | $(B) \leftarrow (T47-T44)$                                   | 96, 120  |                        |          |                                                           |          |
|                 |          | (A) ← (T43–T40)                                              |          |                        |          |                                                           |          |
|                 | T4AB     | (R4L7−R4L4) ← (B)                                            | 94, 120  |                        |          |                                                           |          |
|                 |          | (T47–T44) ← (B)                                              |          |                        |          |                                                           |          |
|                 |          | $(R4L3-R4L0) \leftarrow (A)$                                 |          |                        |          |                                                           |          |
|                 |          | (T43−T40) ← (A)                                              |          |                        |          |                                                           |          |
|                 |          | (T43–T40) ← (A)                                              |          |                        |          |                                                           |          |

# INDEX LIST OF INSTRUCTION FUNCTION (continued)



| Group-                 | Mnomonic |                                         | •        |   | Group-          | Mnemonic        | Eunotion                                                       | Page                 |
|------------------------|----------|-----------------------------------------|----------|---|-----------------|-----------------|----------------------------------------------------------------|----------------------|
| ing                    | Mnemonic | Function                                | Page     |   | ing             |                 | Function                                                       | Page                 |
|                        | CLD      | (D) ← 1                                 | 80, 122  |   |                 | TAL1            | $(A) \leftarrow (L1)$                                          | 116, 124             |
|                        | RD       | $(D(Y)) \leftarrow 0$<br>(Y) = 0  to  9 | 87, 122  |   | LCD operation   | TL1A            | (L1) ← (A)                                                     | 124, 124             |
|                        | SD       | (D(Y)) ← 1                              | 89, 122  |   | LCD op          | TL2A            | $(L2) \leftarrow (A)$                                          | 124, 124             |
|                        |          | (Y) = 0 to 9                            |          |   |                 | TL3A            | (L3) ← (A)                                                     | 113, 124             |
|                        | SZD      | (D(Y)) = 0 ?<br>(Y) = 0 to 7            | 93, 122  |   |                 | NOP             | $(PC) \leftarrow (PC) + 1$                                     | 128, 124             |
|                        | RCP      | (C) ← 0                                 | 87, 122  |   |                 | POF             | Transition to clock operating mode                             | 108, 124             |
|                        | SCP      | (C) ← 1                                 | 89, 122  |   |                 | POF2<br>EPOF    | Transition to RAM back-up mode<br>POF, POF2 instructions valid | 107, 124<br>115, 124 |
|                        | TAPU0    | $(A) \leftarrow (PU0)$                  | 99, 122  |   |                 |                 |                                                                | 113, 124             |
| ion                    | TPU0A    | (PU0) ← (A)                             | 107, 122 |   | ation           | SNZP            | (P) = 1 ?                                                      | 123, 124             |
| t operat               | TAPU1    | (A) ← (PU1)                             | 99, 122  |   | Other operation | DWDT            | Stop of watchdog timer function enabled                        | 112, 146             |
| Input/Output operation | TPU1A    | $(PU1) \leftarrow (A)$                  | 108, 122 |   | Oth             | WRST            | (WDF1) = 1 ?<br>After skipping, $(WDF1) \leftarrow 0$          | 116, 146             |
| ndul                   | ТАКО     | (A) ← (K0)                              | 98, 124  |   |                 | RBK*            | When TABP p instruction is executed, $P_6 \leftarrow 0$        | 114, 146             |
|                        | ткоа     | (K0) ← (A)                              | 105, 124 |   |                 |                 |                                                                | 02 146               |
|                        | TAK1     | (A) ← (K1)                              | 98, 124  |   |                 | SBK*            | When TABP p instruction is executed, $P_6 \leftarrow 1$        | 92, 146              |
|                        | ТК1А     | (K1) ← (A)                              | 105, 124 |   |                 | SVDE            | At power down mode, voltage drop detection circuit valid       | 106, 146             |
|                        | TAK2     | (A) ← (K2)                              | 98, 124  |   | Note: *(        | <br>RBK, SBK) ( | cannot be used in the M34554M8.                                |                      |
|                        | TK2A     | (K2) ← (A)                              | 105, 124 |   |                 |                 |                                                                |                      |
|                        | TFR0A    | (FR0) ← (A)                             | 103, 124 |   |                 |                 |                                                                |                      |
|                        | TFR1A    | (FR1) ← (A)                             | 104, 124 |   |                 |                 |                                                                |                      |
|                        | TFR2A    | $(FR2) \leftarrow (A)$                  | 104, 124 |   |                 |                 |                                                                |                      |
|                        | СМСК     | Ceramic resonator selected              | 81, 124  |   |                 |                 |                                                                |                      |
| и                      | CRCK     | RC oscillator selected                  | 81, 124  |   |                 |                 |                                                                |                      |
| Clock operation        | TAMR     | $(A) \gets (MR)$                        | 99, 124  |   |                 |                 |                                                                |                      |
| Clock                  | TMRA     | $(MR) \leftarrow (A)$                   | 107, 124 |   |                 |                 |                                                                |                      |
|                        |          |                                         |          |   |                 |                 |                                                                |                      |
|                        |          |                                         |          | l |                 |                 |                                                                |                      |

#### INDEX LIST OF INSTRUCTION FUNCTION (continued)



## MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

| An (Add n   | and accumulator)                                                                                                               |                      |                 |              |                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------|--------------------------|
| Instruction | D9 D0                                                                                                                          | Number of            | Number of       | Flag CY      | Skip condition           |
| code        | 0 0 0 1 1 0 n n n <sub>2</sub> 0 6 n <sub>16</sub>                                                                             | words<br>1           | cycles<br>1     | _            | Overflow = 0             |
| Operation:  | $(\Lambda) \leftarrow (\Lambda) + n$                                                                                           | <b>O</b> merum im me | A nith an ati a |              |                          |
| Operation:  | $(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$                                                                                | Grouping:            | Arithmetic      |              | the immediate field to   |
|             |                                                                                                                                | Description          |                 |              | a result in register A.  |
|             |                                                                                                                                |                      | -               |              | g CY remains unchanged.  |
|             |                                                                                                                                |                      |                 | -            | ction when there is no   |
|             |                                                                                                                                |                      |                 |              | t of operation.          |
|             |                                                                                                                                |                      | Executes t      | he next in   | struction when there is  |
|             |                                                                                                                                |                      | overflow a      | s the resul  | t of operation.          |
| AM (Add a   | ccumulator and Memory)                                                                                                         |                      |                 |              |                          |
| Instruction | D9 D0                                                                                                                          | Number of            | Number of       | Flag CY      | Skip condition           |
| code        | 0 0 0 0 0 0 1 0 1 0 <sub>2</sub> 0 0 A <sub>16</sub>                                                                           | words                | cycles          |              |                          |
|             |                                                                                                                                | 1                    | 1               | -            | -                        |
| Operation:  | $(A) \leftarrow (A) + (M(DP))$                                                                                                 | Grouping:            | Arithmetic      | operation    |                          |
| •           |                                                                                                                                |                      |                 |              | f M(DP) to register A.   |
|             |                                                                                                                                | -                    | Stores the      | result in re | egister A. The contents  |
|             |                                                                                                                                |                      | of carry fla    | g CY rema    | ins unchanged.           |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
| AMC (Add    | accumulator, Memory and Carry)                                                                                                 |                      |                 |              |                          |
| Instruction |                                                                                                                                | Number of            | Number of       | Flag CY      | Skip condition           |
| code        | $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ \end{bmatrix}_{2} \begin{bmatrix} 0 & 0 & B \\ 0 & B \end{bmatrix}_{16}$ | words                | cycles          | 0/4          |                          |
|             |                                                                                                                                | 1                    | 1               | 0/1          | _                        |
| Operation:  | $(A) \leftarrow (A) + (M(DP)) + (CY)$                                                                                          | Grouping:            | Arithmetic      | operation    |                          |
|             | $(CY) \leftarrow Carry$                                                                                                        | Description          | : Adds the o    | contents of  | f M(DP) and carry flag   |
|             |                                                                                                                                |                      | -               |              | res the result in regis- |
|             |                                                                                                                                |                      | ter A and c     | arry flag C  | Y.                       |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             | al AND between accumulator and memory)                                                                                         |                      |                 |              |                          |
| Instruction | al AND between accumulator and memory)                                                                                         | Number of            | Number of       | Flag CY      | Skip condition           |
| code        |                                                                                                                                | words                | cycles          | i lag o i    |                          |
|             | <u> </u>                                                                                                                       | 1                    | 1               | -            | -                        |
| Operation:  | $(A) \leftarrow (A) AND (M(DP))$                                                                                               | Grouping:            | Arithmetic      | operation    |                          |
| operation.  |                                                                                                                                | Description          |                 |              | ation between the con-   |
|             |                                                                                                                                |                      |                 |              | and the contents of      |
|             |                                                                                                                                |                      | M(DP), an       | d stores th  | e result in register A.  |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |
|             |                                                                                                                                |                      |                 |              |                          |



| B a (Branch  | h to ado | dress   | a)         |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
|--------------|----------|---------|------------|------------|-------------|-------|--------|---------|---------|-----------------|--------------------------|--------------|-----------|-------------------------|--|--|
| Instruction  | D9       |         |            |            |             |       | D0     |         |         |                 | Number of                | Number of    | Flag CY   | Skip condition          |  |  |
| code         | 0 1      | 1       | a6 a5      | a4         | a3 a2       | aı    | ao     | 1       | 8       | a               | words                    | cycles       | Ū         |                         |  |  |
|              |          | '       | ao ao      | <b>a</b> 4 | as az       | a     | a0 2   | Ľ       | +a      | a16             | 1                        | 1            | -         | _                       |  |  |
| Operation:   | (PCL) ↔  | - a6 to | a0         |            |             |       |        |         |         |                 | Grouping:                | Branch ope   | ration    |                         |  |  |
| oporation    | (1 02) ( | 40 10   | uo         |            |             |       |        |         |         |                 |                          |              |           | : Branches to address   |  |  |
|              |          |         |            |            |             |       |        |         |         |                 | a in the identical page. |              |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 | Note:                    |              |           | ddress within the page  |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | including th |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | 5            |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
| BL p, a (Bra | anch Lo  | ong to  | o addr     | ess        | a in pa     | age   | p)     |         |         |                 |                          |              |           |                         |  |  |
| Instruction  | D9       |         |            |            |             |       | D0     |         |         |                 | Number of                | Number of    | Flag CY   | Skip condition          |  |  |
| code         | 0 0      | 1       | 1 1        | p4         | рз р2       | p1    | p0 2   | 0       | E<br>+p | p 16            | words                    | cycles       |           |                         |  |  |
|              |          |         |            |            |             |       | 2<br>2 |         |         | P16             | 2                        | 2            | -         | -                       |  |  |
|              | 1 p6     | 5 p5    | a6 a5      | a4         | as az       | a1    | a0 2   | 2<br>+p | р<br>+а | a <sub>16</sub> | Grouping:                | Branch ope   | aration   |                         |  |  |
| Operation:   | (РСн) «  | , n     |            |            |             |       |        |         |         |                 | Description              |              |           | : Branches to address   |  |  |
| Operation.   | (PCL) +  |         | a0         |            |             |       |        |         |         |                 |                          | a in page p  |           |                         |  |  |
|              |          | - 40 10 | <i>a</i> 0 |            |             |       |        |         |         |                 | Note:                    | 1 0 1        |           | 54M8, and p is 0 to 95  |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           | d p is 0 to 127 for     |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | M34554ED     | ).        |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
| BLA p (Bra   | anch Lo  | na to   | addre      | ess (      | (D) + (     | A) in |        | (a e    |         |                 |                          |              |           |                         |  |  |
| Instruction  | D9       |         |            |            | ((          | .,    | D0     |         |         |                 | Number of                | Number of    | Flag CY   | Skip condition          |  |  |
| code         | 0 0      | 0       | 0 0        | 1          | 0 0         | 0     | 0      | 0       | 1       | 0               | words                    | cycles       | l'iag e i | enp conductor           |  |  |
|              | 0 0      | 0       | 0 0        |            | 0 0         | 0     | 2      | 0       |         | 16              | 2                        | 2            | _         | _                       |  |  |
|              | 1 p6     | 5 p5    | p4 0       | 0          | рз р2       | p1    | p0 2   | 2<br>+p | р       | p 16            |                          |              |           |                         |  |  |
|              |          | 1 1     |            | -          | F - F -     | 1.    | 2      | тр      |         | P16             | Grouping:                | Branch ope   |           |                         |  |  |
| Operation:   | (РСн) ∢  | •       |            |            |             |       |        |         |         |                 | Description              |              |           | : Branches to address   |  |  |
|              | (PCL) ↔  | – (DR:  | 2–DR0,     | Аз-А       | <b>\</b> 0) |       |        |         |         |                 |                          |              |           | 2 A1 A0)2 specified by  |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | registers D  |           |                         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 | Note:                    |              |           | 54M8, and p is 0 to 95  |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           | d p is 0 to 127 for     |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | M34554ED     | <i>.</i>  |                         |  |  |
| BM a (Brar   | nch and  | Mar     | k to a     | dro        | ee a in     | na    | (2 or  |         |         |                 |                          |              |           |                         |  |  |
| Instruction  | D9       | inal    |            |            | 55 4 11     | , paí | D0     |         |         |                 | Number of                | Number of    | Flag CY   | Skip condition          |  |  |
| code         |          |         |            |            |             |       |        | 4       |         | _               | words                    | cycles       | I lay C I | Skip condition          |  |  |
| coue         | 0 1      | 0       | a6 a5      | a4         | as as       | 2 a1  | a0 2   | 1       | а       | a16             | 1                        | 1            | _         | _                       |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           |                         |  |  |
| Operation:   | (SP) ←   | - (SP)  | + 1        |            |             |       |        |         |         |                 | Grouping:                | Subroutine   |           |                         |  |  |
|              | (SK(SF   |         | PC)        |            |             |       |        |         |         |                 | Description              |              |           | in page 2 : Calls the   |  |  |
|              | (РСн)    |         |            |            |             |       |        |         |         |                 |                          |              |           | s a in page 2.          |  |  |
|              | (PCL) ∢  | — a6–a  | <b>a</b> 0 |            |             |       |        |         |         |                 | Note:                    |              |           | ng from page 2 to an-   |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           | be called with the BM   |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           | arts on page 2.         |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          |              |           | r the stack because the |  |  |
|              |          |         |            |            |             |       |        |         |         |                 |                          | maximum      |           | routine nesting is 8.   |  |  |



| MACHINE              | INSTRUCTIONS (INDEX BY ALPHABET                                   | (continu                                                                                          | uea)                                                                                      |              |                           |  |
|----------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|---------------------------|--|
| BML p, a (           | Branch and Mark Long to address a in page p)                      |                                                                                                   |                                                                                           |              |                           |  |
| Instruction          | D9 D0                                                             | Number of                                                                                         | Number of                                                                                 | Flag CY      | Skip condition            |  |
| code                 | 0 0 1 1 0 p4 p3 p2 p1 p0 2 0 +p p 16                              | words                                                                                             | cycles                                                                                    |              |                           |  |
|                      |                                                                   | 2                                                                                                 | 2                                                                                         | -            | -                         |  |
|                      | 1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 <sup>2</sup> p +a a 16             | 0                                                                                                 | 0.1                                                                                       |              |                           |  |
|                      |                                                                   | Grouping: Subroutine call operation<br>Description: Call the subroutine : Calls the subroutine at |                                                                                           |              |                           |  |
| Operation:           | $(SP) \leftarrow (SP) + 1$                                        | Description                                                                                       |                                                                                           |              | Calls the subroutine at   |  |
|                      | $(SK(SP)) \leftarrow (PC)$<br>$(PCH) \leftarrow p$                | Note:                                                                                             | address a in page p.<br>Note: p is 0 to 63 for M34554M8, and p                            |              |                           |  |
|                      | $(PCL) \leftarrow a6-a0$                                          |                                                                                                   | •                                                                                         |              | nd p is 0 to $127$ for    |  |
|                      |                                                                   |                                                                                                   | M34554ED                                                                                  |              |                           |  |
|                      |                                                                   |                                                                                                   | Be careful                                                                                | not to over  | the stack because the     |  |
|                      |                                                                   |                                                                                                   | maximum I                                                                                 | evel of sub  | routine nesting is 8.     |  |
| BMLA p (B            | ranch and Mark Long to address (D) + (A) in page                  | o)                                                                                                |                                                                                           |              |                           |  |
| Instruction          | D9 D0                                                             | Number of                                                                                         | Number of                                                                                 | Flag CY      | Skip condition            |  |
| code                 |                                                                   | words                                                                                             | cycles                                                                                    |              |                           |  |
|                      |                                                                   | 2                                                                                                 | 2                                                                                         | -            | -                         |  |
|                      | 1 p6 p5 p4 0 0 p3 p2 p1 p0 2 <sup>2</sup><br>+p p p <sub>16</sub> | 0                                                                                                 | 0.1                                                                                       |              |                           |  |
| Operation:           | $(SP) \leftarrow (SP) + 1$                                        | Grouping:                                                                                         | Subroutine                                                                                |              | Calls the subroutine at   |  |
| Operation.           | $(SF) \leftarrow (SF) + 1$<br>$(SK(SP)) \leftarrow (PC)$          | Description                                                                                       |                                                                                           |              | R0 A3 A2 A1 A0)2 speci-   |  |
|                      | $(PCH) \leftarrow p$                                              |                                                                                                   | fied by registers D and A in page p.                                                      |              |                           |  |
|                      | $(PCL) \leftarrow (DR2-DR0, A3-A0)$                               | Note:                                                                                             | p is 0 to 63                                                                              | for M3455    | 4M8, and p is 0 to 95 for |  |
|                      |                                                                   |                                                                                                   | M34554MC, and p is 0 to 127 for M34554ED.<br>Be careful not to over the stack because the |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   | maximum I                                                                                 | evel of sub  | routine nesting is 8.     |  |
| CLD (CLea            | r port D)                                                         |                                                                                                   |                                                                                           | -            |                           |  |
| Instruction          | D9 D0                                                             | Number of                                                                                         | Number of                                                                                 | Flag CY      | Skip condition            |  |
| code                 | $0 0 0 0 0 1 0 0 1 0 0 1 _2 0 1 _1_{16}$                          | words                                                                                             | cycles                                                                                    |              |                           |  |
|                      |                                                                   | 1                                                                                                 | 1                                                                                         | -            | _                         |  |
| Operation:           | (D) ← 1                                                           | Grouping:                                                                                         | Input/Outp                                                                                | ut operatio  | on                        |  |
|                      |                                                                   |                                                                                                   | : Sets (1) to                                                                             |              |                           |  |
|                      |                                                                   | -                                                                                                 |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
| <b>011 1</b> (0 - 14 |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
| `                    | plement of Accumulator)                                           | Number                                                                                            | Number                                                                                    |              |                           |  |
| Instruction code     |                                                                   | Number of<br>words                                                                                | Number of cycles                                                                          | Flag CY      | Skip condition            |  |
| coue                 | 0 0 0 0 0 1 1 1 1 0 0 <sub>2</sub> 0 1 C <sub>16</sub>            | 1                                                                                                 | 1                                                                                         | _            | _                         |  |
|                      |                                                                   | '                                                                                                 |                                                                                           |              |                           |  |
| Operation:           | $(A) \leftarrow \overline{(A)}$                                   | Grouping:                                                                                         | Arithmetic                                                                                |              |                           |  |
|                      |                                                                   | <b>Description:</b> Stores the one's complement for register                                      |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   | A's content                                                                               | ts in regist | er A.                     |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |
|                      |                                                                   |                                                                                                   |                                                                                           |              |                           |  |



| ck select: ceraMic oscillation ClocK)   |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| D9 D0 1 0 0 1 0 2 9 A                   | Number of<br>words                                     | Number of<br>cycles                                    | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Skip condition                                         |
|                                         | 1                                                      | 1                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                      |
| Ceramic oscillation circuit selected    | Grouping:                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|                                         | Description                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| ck select: Rc oscillation ClocK)        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| D9 D0<br>1 0 1 0 0 1 1 0 1 1 2 9 B      | Number of<br>words                                     | Number of cycles                                       | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Skip condition                                         |
|                                         | 1                                                      | 1                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                      |
| RC oscillation circuit selected         | Grouping:                                              | Other operation                                        | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                                         | Description                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation circuit and stops                                |
| ement register Y)                       |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| D9 D0<br>0 0 0 0 0 1 0 1 1 1 2 0 1 7 16 | Number of<br>words                                     | Number of cycles                                       | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Skip condition                                         |
|                                         | 1                                                      | 1                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Y) = 15                                               |
| $(Y) \leftarrow (Y) - 1$                | Grouping:                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|                                         | Description                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|                                         |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|                                         |                                                        | is skipped.                                            | When the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | contents of register Y                                 |
| Interrupt)                              |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| D9 D0 0 0 0 0 1 0 0 0 4                 | Number of<br>words                                     | Number of<br>cycles                                    | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Skip condition                                         |
| 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                                                      | 1                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                      |
| (INTE) ← 0                              | Grouping:<br>Description<br>Note:                      | : Clears (0)<br>disables th<br>Interrupt is            | to interrupt<br>e interrupt<br>disabled l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | enable flag INTE, and<br>by executing the DI in-       |
|                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | De       Do       Number of words       Number of cycles         1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |



| DWDT (Dis        | sable WatchDog Timer)                                                     |                          |                  |            |                                                 |
|------------------|---------------------------------------------------------------------------|--------------------------|------------------|------------|-------------------------------------------------|
| Instruction      | D9 D0                                                                     | Number of                | Number of        | Flag CY    | Skip condition                                  |
| code             | 1     0     1     0     1     1     1     0     0     2     2     9     C | words<br>1               | cycles<br>1      | _          | _                                               |
|                  |                                                                           |                          |                  |            |                                                 |
| Operation:       | Stop of watchdog timer function enabled                                   | Grouping:<br>Description | Other oper       |            | timer function by the                           |
|                  |                                                                           | Description              |                  | struction  | after executing the                             |
| EI (Enable       | Interrupt)                                                                |                          |                  |            |                                                 |
| Instruction code | D9 D0<br>0 0 0 0 0 0 0 1 0 1 2 0 0 5 16                                   | Number of<br>words       | Number of cycles | Flag CY    | Skip condition                                  |
|                  |                                                                           | 1                        | 1                | -          | _                                               |
| Operation:       | $(INTE) \leftarrow 1$                                                     | Grouping:                | Interrupt c      |            |                                                 |
|                  |                                                                           | Description              |                  |            | enable flag INTE, and                           |
|                  |                                                                           | Note:                    |                  | enabled    | by executing the EI in-<br>ing 1 machine cycle. |
|                  |                                                                           |                          |                  |            |                                                 |
|                  | able POF instruction)                                                     | Number                   | Number           |            |                                                 |
| Instruction code | D9 D0<br>0 0 0 1 0 1 1 0 1 1 2 0 5 B 16                                   | Number of<br>words       | Number of cycles | Flag CY    | Skip condition                                  |
|                  |                                                                           |                          |                  |            |                                                 |
| Operation:       | POF instruction, POF2 instruction valid                                   | Grouping:<br>Description | Other oper       |            | te after POF or POF2                            |
|                  |                                                                           | Description              |                  |            | xecuting the EPOF in-                           |
|                  | t Accumulator from port P0)                                               |                          | 1                | 1          |                                                 |
| Instruction code | D9 D0<br>1 0 0 1 1 0 0 0 0 0 2 6 0 16                                     | Number of<br>words       | Number of cycles | Flag CY    | Skip condition                                  |
|                  |                                                                           | 1                        | 1                | -          | -                                               |
| Operation:       | $(A) \leftarrow (P0)$                                                     | Grouping:                | Input/Outp       |            |                                                 |
|                  |                                                                           | Description              | i: Transfers t   | he input o | f port P0 to register A.                        |
|                  |                                                                           |                          |                  |            |                                                 |



| IAP1 (Input                                      | Accumulator from port P1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                  |                                                          |                                                                                                                             |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Instruction                                      | D9 D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | Number of                                        | Flag CY                                                  | Skip condition                                                                                                              |
| code                                             | 1     0     0     1     1     0     0     0     0     1     2     2     6     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | words<br>1                                      | cycles<br>1                                      | _                                                        | _                                                                                                                           |
| Operation:<br>IAP2 (Input<br>Instruction<br>code | $(A) \leftarrow (P1)$ $(A)$ | Grouping:<br>Description:<br>Number of<br>words | Input/Outp<br>Transfers t<br>Number of<br>cycles | ut operatio<br>he input of<br>Flag CY                    | –<br>n<br>port P1 to register A.                                                                                            |
| Operation:                                       | (A) ← (P2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>Grouping:<br>Description:                  | 1<br>Input/Outp<br>Transfers t                   |                                                          | n<br>port P2 to register A.                                                                                                 |
| IAP3 (Input                                      | Accumulator from port P3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                  |                                                          |                                                                                                                             |
| Instruction<br>code                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of<br>words                              | Number of<br>cycles<br>1                         | Flag CY<br>–                                             | Skip condition                                                                                                              |
| Operation:                                       | (A) ← (P3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Grouping:<br>Description:                       | Input/Outp<br>Transfers t                        | -                                                        | n<br>port P3 to register A.                                                                                                 |
|                                                  | nent register Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                  |                                                          |                                                                                                                             |
| Instruction<br>code                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of<br>words                              | Number of cycles                                 | Flag CY                                                  | Skip condition                                                                                                              |
| code                                             | 0 0 0 0 0 1 0 0 1 1 2 0 1 3 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                               | 1                                                | -                                                        | (Y) = 0                                                                                                                     |
| Operation:                                       | $(Y) \leftarrow (Y) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grouping:<br>Description:                       | sult of ad<br>register Y<br>skipped. W           | he contents<br>Idition, wh<br>' is 0, the<br>/hen the co | s of register Y. As a re-<br>nen the contents of<br>e next instruction is<br>ontents of register Y is<br>ation is executed. |



| LA n (Load       | l n ir | n Ac           | cum        | ulator  | )  |        |       |    |     |   |           |   |                          |                  |            |                                                |
|------------------|--------|----------------|------------|---------|----|--------|-------|----|-----|---|-----------|---|--------------------------|------------------|------------|------------------------------------------------|
| Instruction      | D9     |                |            |         |    |        |       | D0 |     |   |           |   | Number of                | Number of        | Flag CY    | Skip condition                                 |
| code             | 0      | 0              | 0          | 1 1     | 1  | n      | n n   | n  | 2 0 | 7 | n 1       | 6 | words<br>1               | cycles<br>1      | _          | Continuous                                     |
|                  |        |                |            |         |    |        |       |    |     |   |           | + |                          |                  |            | description                                    |
| Operation:       |        | ← n            | 45         |         |    |        |       |    |     |   |           |   | Grouping:                | Arithmetic       |            | the immediate field to                         |
|                  | n =    | 0 to           | 15         |         |    |        |       |    |     |   |           |   | Description              |                  |            | the immediate field to                         |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | register A.      |            | tions are continuously                         |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            | d, only the first LA in-                       |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            | uted and other LA                              |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            | d continuously are                             |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | skipped.         |            |                                                |
| LXY x, y (L      | .oad   | reg            | ister      | · X an  | dΥ | with > | ( and | y) |     |   |           |   |                          |                  |            |                                                |
| Instruction      | D9     |                |            |         |    |        |       | D0 |     |   |           |   | Number of                | Number of        | Flag CY    | Skip condition                                 |
| code             | 1      | 1              | <b>X</b> 3 | x2 x1   | x0 | y3     | y2 y1 | y0 | 3   | x | у<br>1    |   | words                    | cycles           |            |                                                |
|                  |        |                |            |         |    |        |       |    | 2 📖 |   |           | 6 | 1                        | 1                | -          | Continuous<br>description                      |
| Operation:       | • • •  |                |            | to 15   |    |        |       |    |     |   |           |   | Grouping:                | RAM addr         |            |                                                |
|                  | (Y)    | ← y            | y = 0      | to 15   |    |        |       |    |     |   |           |   | Description              |                  |            | the immediate field to                         |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            | alue y in the immediate                        |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  | -          | /hen the LXY instruc-<br>y coded and executed, |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            | istruction is executed,                        |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | -                |            | ictions coded continu-                         |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | ously are s      | skipped.   |                                                |
| LZ z (Load       | rea    | ister          | Zw         | (ith z) |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
| Instruction      |        |                |            | ,       |    |        |       | D0 |     |   |           |   | Number of                | Number of        | Flag CY    | Skip condition                                 |
| code             | 0      | 0              | 0          | 1 0     | 0  | 1      | 0 z1  | Z0 | 0   | 4 | 8<br>+z 1 |   | words                    | cycles           | -          | ·                                              |
|                  |        |                |            |         | 1- |        | -     |    | 2   |   | <u> </u>  | 6 | 1                        | 1                | -          | -                                              |
| Operation:       | (Z)    | $\leftarrow$ z | z = 0      | to 3    |    |        |       |    |     |   |           | - | Grouping:                | RAM addr         |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   | Description              |                  | value z in | the immediate field to                         |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | register Z.      |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
| NOP (No C        |        |                | n)         |         |    |        |       |    |     |   |           |   |                          | 1                | 1          |                                                |
| Instruction code | D9     | 1              |            |         |    |        |       | D0 |     |   |           |   | Number of words          | Number of cycles | Flag CY    | Skip condition                                 |
| code             | 0      | 0              | 0          | 0 0     | 0  | 0      | 0 0   | 0  | 2 0 | 0 | 0         | 6 | 1                        | 1                | -          | _                                              |
|                  | (DC    |                |            |         |    |        |       |    |     |   |           | _ | <b>0</b>                 | 011              |            |                                                |
| Operation:       | (PC    | -) ←           | (PC)       | + 1     |    |        |       |    |     |   |           |   | Grouping:<br>Description | Other operate    |            | 1 to program counter                           |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | •                |            | nain unchanged.                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          | -,               |            | 0                                              |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |
|                  |        |                |            |         |    |        |       |    |     |   |           |   |                          |                  |            |                                                |



| OP0A (Out        | put port P0 from Accumulator)                                                            |                          |                  |             |                                                   |
|------------------|------------------------------------------------------------------------------------------|--------------------------|------------------|-------------|---------------------------------------------------|
| Instruction      | D9 D0                                                                                    | Number of                | Number of        | Flag CY     | Skip condition                                    |
| code             | 1     0     0     1     0     0     0     0     0     0       2     2     2     0     16 | words<br>1               | cycles<br>1      | -           | _                                                 |
| Operation:       | (P0) ← (A)                                                                               | Grouping:                | Input/Outp       |             |                                                   |
| operation        |                                                                                          |                          |                  |             | s of register A to port                           |
|                  |                                                                                          |                          | Р0.              |             |                                                   |
|                  | put port P1 from Accumulator)                                                            |                          |                  |             |                                                   |
| Instruction      |                                                                                          | Number of                | Number of        | Flag CY     | Skip condition                                    |
| code             |                                                                                          | words                    | cycles           | r lag o r   |                                                   |
|                  | 16                                                                                       | 1                        | 1                | -           | _                                                 |
| Operation:       | $(P1) \leftarrow (A)$                                                                    | Grouping:                | Input/Outp       | ut operatio | n                                                 |
|                  |                                                                                          |                          |                  |             | s of register A to port                           |
|                  | OR between accumulator and memory)                                                       | Number of                | Number of        | Elog CV     | Chin condition                                    |
| Instruction code |                                                                                          | Number of<br>words       | Number of cycles | Flag CY     | Skip condition                                    |
| Coue             | 0 0 0 0 0 1 1 0 0 1 2 0 1 9 16                                                           | 1                        | 1                | -           | -                                                 |
| Operation:       | $(A) \leftarrow (A) \text{ OR } (M(DP))$                                                 | Grouping:                | Arithmetic       | operation   |                                                   |
|                  |                                                                                          | Description              |                  |             | tion between the con-                             |
|                  |                                                                                          |                          |                  |             | and the contents of<br>e result in register A.    |
| POF (Powe        | or OFf1)                                                                                 |                          |                  |             |                                                   |
| Instruction code | D9 D0                                                                                    | Number of words          | Number of cycles | Flag CY     | Skip condition                                    |
| couc             | 0 0 0 0 0 0 0 0 0 1 0 2 0 0 2 16                                                         | 1                        | 1                | -           | -                                                 |
| Operation:       | Transition to clock operating mode                                                       | Grouping:<br>Description |                  | ystem in c  | ock operating state by<br>struction after execut- |
|                  |                                                                                          | Note:                    | ing the EP       | OF instruc  |                                                   |
|                  |                                                                                          |                          | -                |             | ction, this instruction is<br>instruction.        |



| POF2 (Pow                                      | ver OFf2)                                                                                                                                          |                     |                                                         |                                                        |                                                                    |                                                                                                                                            |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction code                               |                                                                                                                                                    |                     | Number of<br>words                                      | Number of cycles                                       | Flag CY                                                            | Skip condition                                                                                                                             |
| coue                                           | 0 0 0 0 0 0 0 1 0 0 0 2                                                                                                                            | 0 0 8 16            | 1                                                       | 1                                                      | _                                                                  | _                                                                                                                                          |
| Operation:<br>RAR (Rota<br>Instruction<br>code | Transition to RAM back-up mode         te Accumulator Right)         D9       D0         0       0       0       1       1       0       1       2 | 0 1 D <sub>16</sub> | Grouping:<br>Description<br>Note:<br>Number of<br>words | executing<br>ecuting the<br>If the EPOF<br>executing t | ystem in F<br>the POF2<br>EPOF ins<br>instruction<br>this instruct | RAM back-up state by<br>2 instruction after ex-<br>struction.<br>In is not executed before<br>ction, this instruction is<br>9 instruction. |
| Operation:                                     | →CY<br>→A3A2A1A0                                                                                                                                   |                     | Grouping:<br>Description                                |                                                        | oit of the co                                                      | ontents of register A in-<br>of carry flag CY to the                                                                                       |
| RB j (Rese                                     | t Bit)                                                                                                                                             |                     |                                                         |                                                        |                                                                    |                                                                                                                                            |
| Instruction<br>code                            | D9 D0<br>0 0 0 1 0 0 1 1 j j 2                                                                                                                     | 0 4 C<br>+j 16      | Number of<br>words                                      | Number of cycles                                       | Flag CY                                                            | Skip condition                                                                                                                             |
| Operation:                                     | $(Mj(DP)) \leftarrow 0$<br>j = 0  to  3                                                                                                            |                     | Grouping:<br>Description                                |                                                        | the conter                                                         | nts of bit j (bit specified<br>e immediate field) of                                                                                       |
| RBK (Rese                                      | et Bank flag)                                                                                                                                      |                     |                                                         |                                                        |                                                                    |                                                                                                                                            |
| Instruction code                               | D9 D0<br>0 0 0 1 0 0 0 0 0 0                                                                                                                       | 0 4 0 16            | Number of<br>words                                      | Number of cycles                                       | Flag CY                                                            | Skip condition                                                                                                                             |
|                                                |                                                                                                                                                    | 16                  | 1                                                       | 1                                                      | -                                                                  | -                                                                                                                                          |
| Operation:                                     | When TABP p instruction is executed, P6 $\leftarrow$ 0                                                                                             |                     | _                                                       | when the T                                             | ring data<br>FABP p ins                                            | area to pages 0 to 63<br>struction is executed.<br>ed in M34554M8.                                                                         |



| RC (Reset   | Carry flag)                                          |                    |                  |               |                         |
|-------------|------------------------------------------------------|--------------------|------------------|---------------|-------------------------|
| Instruction | D9 D0                                                | Number of          | Number of        | Flag CY       | Skip condition          |
| code        | 0 0 0 0 0 0 0 1 1 0 2 0 0 6 16                       | words              | cycles           |               |                         |
|             |                                                      | 1                  | 1                | 0             | _                       |
| Operation:  | $(CY) \leftarrow 0$                                  | Grouping:          | Arithmetic       | operation     |                         |
|             |                                                      | Description        | : Clears (0)     | to carry flag | g CY.                   |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
| RCP (Rese   |                                                      | 1                  |                  |               |                         |
| Instruction |                                                      | Number of<br>words | Number of cycles | Flag CY       | Skip condition          |
| code        | 1 0 1 0 0 0 1 1 0 0 <sub>2</sub> 2 8 C <sub>16</sub> | 1                  | 1                | _             | _                       |
| Operation:  | (C) ← 0                                              | Grouping:          | Input/Outp       | ut operatio   | n                       |
|             |                                                      | Description        | : Clears (0)     | to port C.    |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
| RD (Reset   | port D specified by register Y)                      |                    |                  |               |                         |
| Instruction | D9 D0                                                | Number of          | Number of        | Flag CY       | Skip condition          |
| code        | 0 0 0 0 0 1 0 1 0 0 2 0 1 4                          | words              | cycles           |               |                         |
|             |                                                      | 1                  | 1                | -             | -                       |
| Operation:  | $(D(Y)) \leftarrow 0$                                | Grouping:          | Input/Outp       | ut operatio   | n                       |
|             | However,                                             | Description        |                  | to a bit of p | ort D specified by reg- |
|             | (Y) = 0  to  9                                       |                    | ister Y.         |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             | n from subroutine)                                   |                    |                  |               |                         |
| Instruction |                                                      | Number of<br>words | Number of cycles | Flag CY       | Skip condition          |
| code        | 0 0 0 1 0 0 1 0 0 1 0 0 2 0 4 4 16                   | 1                  | 2                | _             | _                       |
|             |                                                      |                    | 2                |               | _                       |
| Operation:  | $(PC) \leftarrow (SK(SP))$                           | Grouping:          | Return ope       |               |                         |
|             | $(SP) \leftarrow (SP) - 1$                           | Description        |                  |               | outine to the routine   |
|             |                                                      |                    | called the       | subroutine.   |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |
|             |                                                      |                    |                  |               |                         |



| RTI (ReTur  | n fro | om I         | nter  | rupt)    |       |          |        |      |     |   |              |                    |                  |             |                                         |
|-------------|-------|--------------|-------|----------|-------|----------|--------|------|-----|---|--------------|--------------------|------------------|-------------|-----------------------------------------|
| Instruction | D9    |              |       |          |       |          |        | D0   |     |   |              | Number of          | Number of        | Flag CY     | Skip condition                          |
| code        | 0     | 0            | 0     | 1 0      | 0     | 0        | 1 1    | 0    | 0   | 4 | 6            | words              | cycles           |             |                                         |
|             |       |              |       |          |       |          |        |      | 2   |   | 16           | 1                  | 1                | -           | -                                       |
| Operation:  | (PC   | ) ←          | (SK(  | SP))     |       |          |        |      |     |   |              | Grouping:          | Return ope       | eration     |                                         |
| -           |       | P) ←         |       |          |       |          |        |      |     |   |              | Description        |                  |             | upt service routine to                  |
|             |       | ,            | . ,   |          |       |          |        |      |     |   |              |                    | main routii      |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    | Returns ea       | ach value c | of data pointer (X, Y, Z),              |
|             |       |              |       |          |       |          |        |      |     |   |              |                    | carry flag,      | skip status | s, NOP mode status by                   |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             | iption of the LA/LXY in-                |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  | -           | and register B to the                   |
|             |       |              |       |          |       |          |        |      |     |   |              |                    | states just      | before inte | errupt.                                 |
| RTS (ReTu   | rn fi | om           | sub   | routine  | e an  | d Ski    | p)     |      |     |   |              | _                  | -                |             |                                         |
| Instruction | D9    |              |       |          |       |          |        | D0   |     |   |              | Number of<br>words | Number of cycles | Flag CY     | Skip condition                          |
| code        | 0     | 0            | 0     | 1 0      | 0     | 0        | 1 0    | 1    | 2 0 | 4 | 5 16         |                    | 2                | -           | Skip at uncondition                     |
| Operation:  | (PC   | ) ←          | (SK(  | SP))     |       |          |        |      |     |   |              | Grouping:          | Return ope       | eration     |                                         |
|             | (SF   | <b>?</b> ) ← | (SP)  | - 1      |       |          |        |      |     |   |              | Description        |                  |             | outine to the routine                   |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             | , and skips the next in-                |
|             |       |              |       |          |       |          |        |      |     |   |              |                    | struction a      | t unconditi | on.                                     |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
| SB j (Set B | it)   |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
| Instruction | D9    |              |       |          |       |          |        | D0   |     |   |              | Number of          | Number of        | Flag CY     | Skip condition                          |
| code        | 0     | 0            | 0     | 1 0      | 1     | 1        | 1 i    | j    | 0   | 5 | C<br>+j 16   |                    | cycles           |             | entp contaition                         |
|             |       | 0            | 0     |          | '     | <b>'</b> | .   ,  | J    | 2   | 0 | <u>+j</u> 16 | 1                  | 1                | -           | _                                       |
| Operation:  | (Mj   | (DP)         | ) ← 1 | 1        |       |          |        |      |     |   |              | Grouping:          | Bit operati      | on          |                                         |
|             | j =   | 0 to 3       | 3     |          |       |          |        |      |     |   |              | Description        | : Sets (1) th    | e contents  | of bit j (bit specified by              |
|             |       |              |       |          |       |          |        |      |     |   |              |                    | the value j      | in the imm  | nediate field) of M(DP).                |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
| SBK (Set B  | ank   | flad         | (r    |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
| Instruction | D9    |              | 3/    |          |       |          |        | D0   |     |   |              | Number of          | Number of        | Flag CY     | Skip condition                          |
| code        | 0     | 0            | 0     | 1 0      | 0     | 0        | 0 0    | 1    | 0   | 4 | 1            | words              | cycles           |             |                                         |
|             | 0     | 0            | 0     |          | 0     | 0        |        |      | 2   | 4 | 16           | 1                  | 1                | -           | _                                       |
| Operation:  | Wh    | en T         | ABP   | p instru | ction | is exe   | cuted, | P6 ← | - 1 |   |              | Grouping:          | Other oper       | ration      |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             | rea to pages 64 to 127                  |
|             |       |              |       |          |       |          |        |      |     |   |              | Note: This in      |                  |             | truction is executed.<br>d in M34554M8. |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             | area is pages 64 to 95.                 |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  | -           | -                                       |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |
|             |       |              |       |          |       |          |        |      |     |   |              |                    |                  |             |                                         |



| SC (Set Ca  | rry flag)                                            |                                                                                       |
|-------------|------------------------------------------------------|---------------------------------------------------------------------------------------|
| Instruction | D9 D0                                                | Number of Number of Flag CY Skip condition                                            |
| code        |                                                      | words cycles                                                                          |
|             |                                                      |                                                                                       |
| Operation:  | (CY) ← 1                                             | Grouping: Arithmetic operation                                                        |
| oporationi  |                                                      | Description: Sets (1) to carry flag CY.                                               |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
| SCP (Set P  | ort C)                                               |                                                                                       |
| Instruction |                                                      | Number of<br>words         Number of<br>cycles         Flag CY         Skip condition |
| code        | 1 0 1 0 0 0 1 1 0 1 2 2 8 D 16                       |                                                                                       |
|             |                                                      |                                                                                       |
| Operation:  | (C) ← 1                                              | Grouping: Input/Output operation                                                      |
|             |                                                      | Description: Sets (1) to port C.                                                      |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
| SD (Set po  | t D specified by register Y)                         |                                                                                       |
| Instruction | D9 D0                                                | Number of Number of Flag CY Skip condition                                            |
| code        |                                                      | words cycles                                                                          |
|             |                                                      |                                                                                       |
| Operation:  | $(D(Y)) \leftarrow 1$                                | Grouping: Input/Output operation                                                      |
| Operation.  | $(U(1)) \leftarrow 1$<br>(Y) = 0 to 9                | <b>Description:</b> Sets (1) to a bit of port D specified by regis-                   |
|             |                                                      | ter Y.                                                                                |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             |                                                      |                                                                                       |
|             | p Equal, Accumulator with immediate data n)          |                                                                                       |
| Instruction |                                                      | Number of<br>words         Number of<br>cycles         Flag CY         Skip condition |
| code        | 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 2 5 16               | 2 2 - (A) = n                                                                         |
|             | 0 0 0 1 1 1 n n n n <sub>2</sub> 0 7 n <sub>16</sub> |                                                                                       |
|             | 0 0 0 1 1 1 n n n n 2 0 7 n 16                       | Grouping: Comparison operation                                                        |
| Operation:  | (A) = n ?                                            | <b>Description:</b> Skips the next instruction when the con-                          |
|             | n = 0 to 15                                          | tents of register A is equal to the value n in                                        |
|             |                                                      | the immediate field.<br>Executes the next instruction when the con-                   |
|             |                                                      | tents of register A is not equal to the value n                                       |
|             |                                                      | in the immediate field.                                                               |
|             |                                                      |                                                                                       |



| SEAM (Ski   | p Equal, Accumulator with Memory)                      |             |                            |               |                                                  |
|-------------|--------------------------------------------------------|-------------|----------------------------|---------------|--------------------------------------------------|
| Instruction | D9 D0                                                  | Number of   | Number of                  | Flag CY       | Skip condition                                   |
| code        | 0 0 0 1 0 0 1 1 0 2 0 2 6                              | words       | cycles<br>1                | _             | (A) = (M(DP))                                    |
|             |                                                        | '           |                            |               | (A) = (M(D1 ))                                   |
| Operation:  | (A) = (M(DP)) ?                                        | Grouping:   | Compariso                  |               |                                                  |
|             |                                                        | Description |                            |               | uction when the con-                             |
|             |                                                        |             | -                          | lister A is e | equal to the contents of                         |
|             |                                                        |             | M(DP).<br>Executes th      | ne nevt ing   | truction when the con-                           |
|             |                                                        |             |                            |               | is not equal to the                              |
|             |                                                        |             | contents of                | -             |                                                  |
|             |                                                        |             |                            |               |                                                  |
| SNZ0 (Skip  | o if Non Zero condition of external 0 interrupt reques | t flag)     |                            |               |                                                  |
| Instruction | D9 D0                                                  | Number of   | Number of                  | Flag CY       | Skip condition                                   |
| code        |                                                        | words       | cycles                     |               |                                                  |
|             | 0 0 0 0 1 1 1 0 0 0 2 0 3 0 16                         | 1           | 1                          | -             | V10 = 0: (EXF0) = 1                              |
| Operation:  | V10 = 0: (EXF0) = 1 ?                                  | Grouping:   | Interrupt of               | peration      |                                                  |
|             | After skipping, (EXF0) $\leftarrow$ 0                  | Description | : When V10                 | = 0 : Skip    | os the next instruction                          |
|             | V10 = 1: SNZ0 = NOP                                    |             |                            |               | rupt request flag EXF0                           |
|             | (V10 : bit 0 of the interrupt control register V1)     |             |                            |               | clears (0) to the EXF0                           |
|             |                                                        |             | the next in:               |               | 0 flag is "0," executes                          |
|             |                                                        |             |                            |               | instruction is equiva-                           |
|             |                                                        |             | lent to the                |               |                                                  |
| CNI71 (Skin | if Non Zero condition of external 1 interrupt reques   | t flog)     |                            |               |                                                  |
| Instruction |                                                        | Number of   | Number of                  | Flag CY       | Skip condition                                   |
| code        |                                                        | words       | cycles                     | Flag CT       | Skip contaition                                  |
| 0000        | 0 0 0 0 1 1 1 0 0 1 2 0 3 9 16                         | 1           | 1                          | -             | V11 = 0: (EXF1) = 1                              |
| Operation:  | V11 = 0: (EXF1) = 1 ?                                  | Grouping:   | Interrupt or               | peration      |                                                  |
|             | After skipping, (EXF1) $\leftarrow 0$                  |             |                            |               | s the next instruction                           |
|             | V11 = 1: SNZ1 = NOP                                    |             | when exter                 | nal 1 inter   | rupt request flag EXF1                           |
|             | (V11 : bit 1 of the interrupt control register V1)     |             |                            |               | clears (0) to the EXF1                           |
|             |                                                        |             |                            |               | 1 flag is "0," executes                          |
|             |                                                        |             | the next ins               |               | instruction is source                            |
|             |                                                        |             | lent to the l              |               | instruction is equiva-                           |
| SN710 (Ski  | p if Non Zero condition of external 0 Interrupt input  | l<br>nin)   |                            |               |                                                  |
| Instruction |                                                        | Number of   | Number of                  | Flag CY       | Skip condition                                   |
| code        |                                                        | words       | cycles                     |               |                                                  |
|             | 0 0 0 0 1 1 1 0 1 0 2 0 3 A 16                         | 1           | 1                          | -             | I12 = 0 : (INT0) = "L"<br>I12 = 1 : (INT0) = "H" |
| Operation:  | I12 = 0 : (INT0) = "L" ?                               | Grouping:   | Interrupt op               | peration      | ·                                                |
|             | I12 = 1 : (INTO) = "H" ?                               | Description |                            |               | s the next instruction                           |
|             | (I12 : bit 2 of the interrupt control register I1)     |             |                            |               | TO pin is "L." Executes                          |
|             |                                                        |             | the next in<br>pin is "H." | struction     | when the level of INT0                           |
|             |                                                        |             | •                          | = 1 : Skir    | s the next instruction                           |
|             |                                                        |             |                            |               | T0 pin is "H." Executes                          |
|             |                                                        |             | the next in                |               | when the level of INT0                           |
|             |                                                        |             | pin is "L."                |               |                                                  |



| SNZI1 (Skip | o if Non Zero                           | ) condi               | ition of  | fexte     | nal 1     | Int  | terr | upt ir | nput | pin)               |                            |             |                                                  |
|-------------|-----------------------------------------|-----------------------|-----------|-----------|-----------|------|------|--------|------|--------------------|----------------------------|-------------|--------------------------------------------------|
| Instruction | D9                                      | -                     |           |           | D0        |      |      |        |      | Number of          | Number of                  | Flag CY     | Skip condition                                   |
| code        | 0 0 0                                   | 0 1                   | 1 1       | 0         | 1 1       |      | 0    | 3 6    | 3 16 | words              | cycles                     |             |                                                  |
|             |                                         |                       |           |           |           |      |      | -      | 110  | 1                  | 1                          | -           | I22 = 0 : (INT1) = "L"<br>I22 = 1 : (INT1) = "H" |
| Operation:  | I22 = 0 : (INT                          | l) = "L" ′            | ?         |           |           |      |      |        |      | Grouping:          | Interrupt of               |             |                                                  |
|             | I22 = 1 : (INT                          | I) = "H" <sup>·</sup> | ?         |           |           |      |      |        |      | Description        |                            |             | os the next instruction                          |
|             | (I22 : bit 2 of t                       | he inter              | rupt cor  | ntrol reg | gister l2 | 2)   |      |        |      |                    |                            |             | T1 pin is "L." Executes                          |
|             |                                         |                       |           |           |           |      |      |        |      |                    | the next in<br>pin is "H." | struction \ | when the level of INT1                           |
|             |                                         |                       |           |           |           |      |      |        |      |                    | •                          | – 1 Skir    | s the next instruction                           |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            |             | Γ1 pin is "H." Executes                          |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            |             | when the level of INT1                           |
|             |                                         |                       |           |           |           |      |      |        |      |                    | pin is "L."                |             |                                                  |
|             | if Non Zero                             | condit                | tion of   | Powe      | er dov    | /n f | flag | J)     |      | 1                  | 1                          |             | 1                                                |
| Instruction | D9                                      |                       |           |           | Do        | ır   |      |        |      | Number of<br>words | Number of                  | Flag CY     | Skip condition                                   |
| code        | 0 0 0                                   | 0 0                   | 0 0       | 0         | 1         | 2    | 0    | 03     | 3 16 |                    | cycles                     |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      | 1                  | 1                          | -           | (P) = 1                                          |
| Operation:  | (P) = 1 ?                               |                       |           |           |           |      |      |        |      | Grouping:          | Other oper                 | ation       |                                                  |
| -           | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                       |           |           |           |      |      |        |      | Description        |                            |             | ction when the P flag is                         |
|             |                                         |                       |           |           |           |      |      |        |      |                    | "1".                       |             | 0                                                |
|             |                                         |                       |           |           |           |      |      |        |      |                    | After skip                 | ping, the   | P flag remains un-                               |
|             |                                         |                       |           |           |           |      |      |        |      |                    | changed.                   |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            | the next in | nstruction when the P                            |
|             |                                         |                       |           |           |           |      |      |        |      |                    | flag is "0."               |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            |             |                                                  |
| SNZT1 (Ski  | p if Non Zer                            | ວ cond                | ition o   | f Time    | er 1 in   | ter  | rrup | ot req | uest | flag)              |                            |             |                                                  |
| Instruction | D9                                      |                       |           |           | D0        |      |      |        |      | Number of          | Number of                  | Flag CY     | Skip condition                                   |
| code        | 1 0 1                                   | 0 0                   | 0 0       | 0 0       | 0         | 2    | 2    | 8 0    | )    | words              | cycles                     |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      | 1                  | 1                          | -           | V12 = 0: (T1F) = 1                               |
| Operation:  | V12 = 0: (T1F                           | ) = 1 ?               |           |           |           |      |      |        |      | Grouping:          | Timer opera                | ation       |                                                  |
|             | After skipping                          |                       | - 0       |           |           |      |      |        |      | Description        |                            |             | s the next instruction                           |
|             | V12 = 1: SNZ                            | Γ1 = NO               | Р         |           |           |      |      |        |      |                    |                            |             | pt request flag T1F is                           |
|             | (V12 = bit 2 of                         | interrup              | ot contro | ol regist | er V1)    |      |      |        |      |                    | "1." After s               | skipping,   | clears (0) to the T1F                            |
|             |                                         |                       |           |           |           |      |      |        |      |                    | •                          |             | ag is "0," executes the                          |
|             |                                         |                       |           |           |           |      |      |        |      |                    | next instruc               |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      |                    | When V12<br>lent to the I  |             | instruction is equiva-                           |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            | NOP Instru  |                                                  |
|             | p if Non Zer                            | cond c                | ition o   | f Time    | er 2 in   | ter  | rrup | ot req | uest |                    |                            |             |                                                  |
| Instruction | D9                                      |                       |           |           | Do        |      |      |        |      | Number of words    | Number of                  | Flag CY     | Skip condition                                   |
| code        | 1 0 1                                   | 0 0                   | 0 0       | 0 0       | ) 1       | 2    | 2    | 8 1    | 16   |                    | cycles                     |             |                                                  |
|             |                                         |                       |           |           |           |      |      |        |      | 1                  | 1                          | -           | V13 = 0: (T2F) = 1                               |
| Operation:  | V13 = 0: (T2F)                          | ) = 1 ?               |           |           |           |      |      |        |      | Grouping:          | Timer operation            | ation       |                                                  |
|             | After skipping                          | , (T2F)               | - 0       |           |           |      |      |        |      | Description        | : When V13                 | = 0 : Skip  | s the next instruction                           |
|             | V13 = 1: SNZ                            |                       |           |           |           |      |      |        |      |                    |                            |             | pt request flag T2F is                           |
|             | (V13 = bit 3 of                         | interrup              | ot contro | ol regist | er V1)    |      |      |        |      |                    |                            |             | clears (0) to the T2F                            |
|             |                                         |                       |           |           |           |      |      |        |      |                    | -                          |             | ag is "0," executes the                          |
|             |                                         |                       |           |           |           |      |      |        |      |                    | next instruc               |             | inotruption in a sector                          |
|             |                                         |                       |           |           |           |      |      |        |      |                    | When V13<br>lent to the I  |             | instruction is equiva-                           |
|             |                                         |                       |           |           |           |      |      |        |      |                    |                            | NOP INSTIL  |                                                  |



| SNZT3 (Sk        | ip if Non Zero condition of Timer 3 interrupt request                                                                                                                                          | flag)                    |                                                       |                                                                                   |                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction code | D9 D0<br>1 0 1 0 0 0 0 0 1 0 2 8 2 16                                                                                                                                                          | Number of words          | Number of cycles                                      | Flag CY                                                                           | Skip condition                                                                                                                                 |
|                  |                                                                                                                                                                                                | 1                        | 1                                                     | -                                                                                 | V20 = 0: (T3F) = 1                                                                                                                             |
| Operation:       | V20 = 0: (T3F) = 1 ?<br>After skipping, (T3F) $\leftarrow$ 0<br>V20 = 1: SNZT3 = NOP<br>(V20 = bit 0 of interrupt control register V2)<br>ip if Non Zero condition of Timer 4 inerrupt request | Grouping:<br>Description | when time<br>"1." After<br>flag. When<br>next instrue | = 0 : Skip<br>r 3 interru<br>skipping,<br>the T3F f<br>ction.<br>= 1 : This       | by the next instruction<br>pt request flag T3F is<br>clears (0) to the T3F<br>lag is "0," executes the<br>s instruction is equiva-<br>uction.  |
| Instruction      |                                                                                                                                                                                                | Number of                | Number of                                             | Flag CY                                                                           | Skip condition                                                                                                                                 |
| code             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                         | words                    | cycles 1                                              | -                                                                                 | V23 = 0: (T4F) = 1                                                                                                                             |
| Operation:       | V23 = 0: (T4F) = 1 ?<br>After skipping, (T4F) $\leftarrow$ 0<br>V23 = 1: SNZT4 = NOP<br>(V23 = bit 3 of interrupt control register V2)                                                         | Grouping:<br>Description | when time<br>"1." After<br>flag. Wher<br>next instru  | s = 0 : Ski<br>er 4 interru<br>skipping,<br>n the T4F f<br>ction.<br>s = 1 : This | ps the next instruction<br>upt request flag T4F is<br>clears (0) to the T4F<br>lag is "0," executes the<br>s instruction is equiva-<br>uction. |
| SNZT5 (Sk        | ip if Non Zero condition of Timer 5 inerrupt request                                                                                                                                           | flag)                    |                                                       |                                                                                   |                                                                                                                                                |
| Instruction code | D9 D0<br>1 0 1 0 0 0 0 1 0 0 2 2 8 4 16                                                                                                                                                        | Number of<br>words       | Number of cycles                                      | Flag CY                                                                           | Skip condition                                                                                                                                 |
|                  |                                                                                                                                                                                                | 1                        | 1                                                     | -                                                                                 | V21 = 0: (T5F) = 1                                                                                                                             |
| Operation:       | V21 = 0: (T5F) = 1 ?<br>After skipping, (T5F) $\leftarrow$ 0<br>V21 = 1: SNZT5 = NOP<br>(V21 = bit 1 of interrupt control register V2)                                                         | Grouping:<br>Descriptior | when time<br>"1." After<br>flag. When<br>next instru  | = 0 : Skip<br>r 5 interru<br>skipping,<br>the T5F f<br>ction.<br>= 1 : This       | os the next instruction<br>pt request flag T5F is<br>clears (0) to the T5F<br>lag is "0," executes the<br>s instruction is equiva-<br>uction.  |
| SVDE (Set        | Voltage Detector Enable flag)                                                                                                                                                                  |                          |                                                       |                                                                                   |                                                                                                                                                |
| Instruction code | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                          | Number of<br>words       | Number of cycles                                      | Flag CY                                                                           | Skip condition                                                                                                                                 |
| Operation:       | At power down mode, voltage drop detection circuit valid                                                                                                                                       | Grouping:                | Other oper                                            | ration                                                                            | e drop detection circuit                                                                                                                       |
|                  |                                                                                                                                                                                                | Description              | at power of                                           | down (cloc                                                                        | e drop detection circuit<br>k operating mode and<br>when VDCE pin is "H".                                                                      |



| SZB j (Skip         | o if Zero, Bit)                                             |                    |                           |                                              |                                                                                                              |
|---------------------|-------------------------------------------------------------|--------------------|---------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Instruction         | D9 D0                                                       | Number of          | Number of                 | Flag CY                                      | Skip condition                                                                                               |
| code                | 0 0 0 0 1 0 0 j j <sub>2</sub> 0 2 j <sub>16</sub>          | words<br>1         | cycles<br>1               | _                                            | (Mj(DP)) = 0                                                                                                 |
| Operation:          | (Mj(DP)) = 0 ?                                              | Grouping:          | Bit operation             |                                              | j = 0 to 3                                                                                                   |
|                     | j = 0 to 3                                                  | Description        | tents of bit<br>the immed | t j (bit spe<br>iate field) d<br>he next ins | uction when the con-<br>cified by the value j in<br>of M(DP) is "0."<br>struction when the con-<br>o is "1." |
| SZC (Skip i         | if Zero, Carry flag)                                        |                    |                           |                                              |                                                                                                              |
| Instruction<br>code | D9 D0                                                       | Number of<br>words | Number of cycles          | Flag CY                                      | Skip condition                                                                                               |
|                     | 0 0 0 0 1 0 1 1 1 1 2 0 2 F <sub>16</sub>                   | 1                  | 1                         | -                                            | (CY) = 0                                                                                                     |
| Operation:          | (CY) = 0 ?                                                  | Grouping:          | Arithmetic                | operation                                    |                                                                                                              |
|                     |                                                             | Description        | •                         |                                              | uction when the con-                                                                                         |
|                     |                                                             |                    | tents of ca               |                                              |                                                                                                              |
|                     |                                                             |                    | changed.                  | ping, the                                    | CY flag remains un-                                                                                          |
|                     |                                                             |                    | 0                         | he next ins                                  | struction when the con-                                                                                      |
|                     |                                                             |                    | tents of the              |                                              |                                                                                                              |
| SZD (Skip           | if Zero, port D specified by register Y)                    |                    |                           |                                              |                                                                                                              |
| Instruction         | D9 D0                                                       | Number of          | Number of                 | Flag CY                                      | Skip condition                                                                                               |
| code                | 0 0 0 1 0 1 0 1 0 0 2 0 2 4                                 | words<br>2         | cycles<br>2               | _                                            | (D(Y)) = 0                                                                                                   |
|                     | 0 0 0 0 1 0 1 0 1 1 <sub>2</sub> 0 2 B <sub>16</sub>        |                    | 2                         |                                              | (D(1)) = 0<br>(Y) = 0 to 7                                                                                   |
| Operation:          | (D(Y)) = 0 ?                                                | Grouping:          | Input/Outp                |                                              |                                                                                                              |
|                     | (Y) = 0  to  7                                              | Description        | D specified               | d by registe                                 | ction when a bit of port<br>er Y is "0." Executes the<br>h the bit is "1."                                   |
| T1AB (Tran          | nsfer data to timer 1 and register R1 from Accumula         | tor and red        | ister B)                  |                                              |                                                                                                              |
| Instruction         | D9 D0                                                       | Number of<br>words | Number of<br>cycles       | Flag CY                                      | Skip condition                                                                                               |
| code                | 1 0 0 0 1 1 0 0 0 0 <sub>2</sub> 2 <u>3</u> 0 <sub>16</sub> | 1                  | 1                         | -                                            | -                                                                                                            |
| Operation:          | (T17−T14) ← (B)                                             | Grouping:          | Timer oper                | ration                                       |                                                                                                              |
|                     | (R17−R14) ← (B)                                             | Description        |                           |                                              | nts of register B to the                                                                                     |
|                     | $(T13-T10) \leftarrow (A)$                                  |                    | -                         |                                              | imer 1 and timer 1 re-                                                                                       |
|                     | (R13–R10) ← (A)                                             |                    | •                         |                                              | order 4 bits of timer 1                                                                                      |
|                     |                                                             |                    | and timer                 |                                              |                                                                                                              |
|                     |                                                             |                    |                           |                                              |                                                                                                              |



| MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued | MACHINE | INSTRUCTIONS | (INDEX BY | ALPHABET) | (continued) |
|-----------------------------------------------------|---------|--------------|-----------|-----------|-------------|
|-----------------------------------------------------|---------|--------------|-----------|-----------|-------------|

| T2AB (Trar       | nsfer data to timer 2 and register R2 from Accumula                                                                                         | tor and regi             | ister B)                                   |                                                         |                                                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Instruction      | D9 D0                                                                                                                                       | Number of                | Number of                                  | Flag CY                                                 | Skip condition                                                                                                          |
| code             | 1     0     0     1     1     0     0     1     1     2                                                                                     | words<br>1               | cycles<br>1                                | -                                                       | _                                                                                                                       |
| Operation:       | $(T27-T24) \leftarrow (B)$<br>$(R27-R24) \leftarrow (B)$<br>$(T23-T20) \leftarrow (A)$<br>$(R23-R20) \leftarrow (A)$                        | Grouping:<br>Description | high-order<br>load registe                 | he conten<br>4 bits of t<br>er R2. Tra<br>to the low-   | its of register B to the<br>imer 2 and timer 2 re-<br>nsfers the contents of<br>order 4 bits of timer 2<br>gister R2.   |
| T3AB (Trar       | nsfer data to timer 3 and register R3 from Accumula                                                                                         | tor and regi             | ister B)                                   |                                                         |                                                                                                                         |
| Instruction code | D9 D0<br>1 0 0 1 1 0 0 1 0 2 2 2                                                                                                            | Number of<br>words       | Number of cycles                           | Flag CY                                                 | Skip condition                                                                                                          |
|                  |                                                                                                                                             | 1                        | 1                                          | -                                                       | _                                                                                                                       |
| Operation:       | $\begin{array}{l} (T37-T34) \leftarrow (B) \\ (R37-R34) \leftarrow (B) \\ (T33-T30) \leftarrow (A) \\ (R33-R30) \leftarrow (A) \end{array}$ | Grouping:<br>Description | high-order<br>load regist                  | the conter<br>4 bits of t<br>er R3. Tra<br>to the low-  | nts of register B to the<br>imer 3 and timer 3 re-<br>insfers the contents of<br>order 4 bits of timer 3<br>gister R3.  |
| T4AB (Trar       | nsfer data to timer 4 and register R4L from Accumula                                                                                        | ator and re              | aister B)                                  |                                                         |                                                                                                                         |
| Instruction code | D9 D0<br>1 0 0 0 1 1 0 0 1 1 2 2 3 3 16                                                                                                     | Number of<br>words       | Number of<br>cycles                        | Flag CY                                                 | Skip condition                                                                                                          |
| 0                |                                                                                                                                             | Grouping:                | Timer oper                                 | ation                                                   | _                                                                                                                       |
| Operation:       | $(T47-T44) \leftarrow (B)$<br>$(R4L7-R4L4) \leftarrow (B)$<br>$(T43-T40) \leftarrow (A)$<br>$(R4L3-R4L0) \leftarrow (A)$                    | Description              | : Transfers thigh-order load register      | the conter<br>4 bits of t<br>er R4L. Tra<br>to the low- | nts of register B to the<br>imer 4 and timer 4 re-<br>ansfers the contents of<br>order 4 bits of timer 4<br>gister R4L. |
| T4HAB (Tra       | ansfer data to register R4H from Accumulator and re                                                                                         | eqister B)               |                                            |                                                         |                                                                                                                         |
| Instruction code |                                                                                                                                             | Number of<br>words       | Number of cycles                           | Flag CY                                                 | Skip condition                                                                                                          |
|                  |                                                                                                                                             | 1                        | 1                                          | -                                                       | -                                                                                                                       |
| Operation:       | $(R4H7-R4H4) \leftarrow (B)$                                                                                                                | Grouping:                | Timer oper                                 |                                                         |                                                                                                                         |
|                  | (R4H3–R4H0) ← (A)                                                                                                                           | Description              | high-order<br>load registe<br>register A t | 4 bits of t<br>er R4H. Tr<br>to the low-                | nts of register B to the<br>imer 4 and timer 4 re-<br>ansfers the contents of<br>order 4 bits of timer 4<br>gister R4H. |



| MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued) |
|------------------------------------------------------|
|------------------------------------------------------|

| T4R4L (Tra       | ansfer data to timer 4 from register R4L)                                 |                                                                                                                                                  |                     |             |                                                    |
|------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|----------------------------------------------------|
| Instruction      | D9 D0                                                                     | Number of                                                                                                                                        | Number of           | Flag CY     | Skip condition                                     |
| code             | 1     0     1     0     1     0     1     1     1     2     2     9     7 | words<br>1                                                                                                                                       | cycles<br>1         | _           | _                                                  |
|                  |                                                                           | Crouning                                                                                                                                         | Timor on or         | ation       |                                                    |
| Operation:       | (T47–T44) ← (R4L7–R4L4)<br>(T43–T40) ← (R4L3–R4L0)                        | Grouping:<br>Description                                                                                                                         | Timer oper          |             | nts of reload register                             |
|                  | (145-140) (~ (K4L3-K4L0)                                                  |                                                                                                                                                  | R4L to time         |             |                                                    |
| TAB (Trans       | fer data to Accumulator from register B)                                  |                                                                                                                                                  |                     |             |                                                    |
| Instruction code | D9 D0<br>0 0 0 0 0 1 1 1 1 0 0 0 1 E 16                                   | Number of<br>words                                                                                                                               | Number of cycles    | Flag CY     | Skip condition                                     |
|                  |                                                                           | 1                                                                                                                                                | 1                   | -           | -                                                  |
| Operation:       | $(A) \leftarrow (B)$                                                      | Grouping:                                                                                                                                        | Register to         | register tr | ansfer                                             |
|                  |                                                                           | Description                                                                                                                                      | : Transfers         | the conten  | ts of register B to reg-                           |
| TAB1 (Trar       | nsfer data to Accumulator and register B from timer                       | 1)                                                                                                                                               |                     |             |                                                    |
| Instruction code | D9 D0<br>1 0 0 1 1 1 0 0 0 0 2 7 0                                        | Number of<br>words                                                                                                                               | Number of cycles    | Flag CY     | Skip condition                                     |
|                  |                                                                           | 1                                                                                                                                                | 1                   | -           | -                                                  |
| Operation:       | (B) ← (T17–T14)                                                           | Grouping:                                                                                                                                        | Timer oper          | ation       |                                                    |
|                  | (A) ← (T13–T10)                                                           | Description                                                                                                                                      | timer 1 to r        | egister B.  | der 4 bits (T17–T14) of<br>der 4 bits (T13–T10) of |
| TAB2 (Trar       | nsfer data to Accumulator and register B from timer 2                     | 2)                                                                                                                                               |                     |             |                                                    |
| Instruction code | D9 D0<br>1 0 0 1 1 1 0 0 0 1 2 7 1 4                                      | Number of<br>words                                                                                                                               | Number of<br>cycles | Flag CY     | Skip condition                                     |
|                  | 16                                                                        | 1                                                                                                                                                | 1                   | _           | _                                                  |
| Operation:       | (B) ← (T27–T24)                                                           | Grouping:                                                                                                                                        | Timer oper          |             |                                                    |
|                  | (A) ← (T23–T20)                                                           | Description: Transfers the high-order 4 bits (T27–T<br>timer 2 to register B.<br>Transfers the low-order 4 bits (T23–T<br>timer 2 to register A. |                     |             |                                                    |



|  | MACHINE INSTRUCTIONS | (INDEX B) | Y ALPHABET) | (continued) |
|--|----------------------|-----------|-------------|-------------|
|--|----------------------|-----------|-------------|-------------|

| TAB3 (Tran  | sfer                     | dat           | a to            | Acc              | um       | nula                                                                        | ator a                                                         | and              | l re  | gist       | er l | B fr  | om t    | imer     | 3)                                                               |                  |              |                                       |  |
|-------------|--------------------------|---------------|-----------------|------------------|----------|-----------------------------------------------------------------------------|----------------------------------------------------------------|------------------|-------|------------|------|-------|---------|----------|------------------------------------------------------------------|------------------|--------------|---------------------------------------|--|
| Instruction | D9                       |               |                 |                  |          |                                                                             |                                                                |                  |       | D0         |      |       |         |          | Number of                                                        | Number of        | Flag CY      | Skip condition                        |  |
| code        | 1                        | 0             | 0               | 1                | 1        | 1                                                                           | 0                                                              | 0                | 1     | 0          | ] [  | 2     | 7       | 2 16     | words                                                            | cycles           |              |                                       |  |
|             | Ŀ                        |               | Ŭ               | <u> </u>         | <u> </u> | ·                                                                           |                                                                | <u> </u>         |       | Ŭ          | 2    | -     |         | <u> </u> | 1                                                                | 1                | -            | _                                     |  |
| Operation:  | (B) ·                    | ← (T          | 37–T            | 34)              |          |                                                                             |                                                                |                  |       |            |      |       |         |          | Grouping:                                                        | Timer oper       | ation        |                                       |  |
| - p         | • •                      |               | 33–T            | ,                |          |                                                                             |                                                                |                  |       |            |      |       |         |          | Description                                                      |                  |              | der 4 bits (T37–T34) of               |  |
|             | ( )                      |               |                 | ,                |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  | timer 3 to r     | -            |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  | -            | ler 4 bits (T33-T30) of               |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  | timer 3 to r     |              | , , , , , , , , , , , , , , , , , , , |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  | U            |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
| TAB4 (Tran  | sfer                     | dat           | a to            | Acc              | um       | nula                                                                        | ator a                                                         | and              | l re  | aist       | erl  | B fr  | om t    | imer     | 4)                                                               |                  |              |                                       |  |
| Instruction | D9                       | uui           | <u>u 10</u>     | 1.00             |          | Ture                                                                        |                                                                |                  |       | D0         |      |       | 01111   |          | Number of                                                        | Number of        | Flag CY      | Skip condition                        |  |
| code        |                          | 0             |                 | 4                |          | 4                                                                           |                                                                | ~                | 4     | -          | 1 1  | 0     | 7       | 2        | words                                                            | cycles           |              | emp containen                         |  |
| oouo        | 1                        | 0             | 0               | 1                | 1        | 1                                                                           | 0                                                              | 0 1 1 2 2 7 3 16 |       |            | 1    | 1     | _       | _        |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
| Operation:  | (B) ·                    | ← (T          | 47–T            | <sup>.</sup> 44) |          |                                                                             |                                                                |                  |       |            |      |       |         |          | Grouping:                                                        | Timer oper       | ation        |                                       |  |
|             | (A) ·                    | ← (T          | 43–T            | <sup>.</sup> 40) |          |                                                                             |                                                                |                  |       |            |      |       |         |          | <b>Description:</b> Transfers the high-order 4 bits (T47–T44) of |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             | timer 4 to register B.                                         |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  | Transfers        | the low-ord  | ler 4 bits (T43-T40) of               |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  | timer 4 to r     | egister A.   |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
| TABE (Trar  | nsfer                    | da            | ta to           | Acc              | un       | nula                                                                        | ator                                                           | anc              | d re  | gist       | er   | B fı  | om I    | regist   | er E)                                                            |                  |              |                                       |  |
| Instruction | D9                       |               |                 |                  |          |                                                                             |                                                                | -                |       | D0         |      |       |         |          | Number of                                                        | Number of        | Flag CY      | Skip condition                        |  |
| code        | 0 0 0 0 1 0 1            |               |                 |                  | 1        | 0 1 0 0 2 A                                                                 |                                                                |                  | words | cycles     | _    |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          | -             |                 |                  |          | -                                                                           |                                                                | -                | -     | -          | 2    | •     | _       | 16       | 1                                                                | 1                | -            | -                                     |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
| Operation:  | • •                      | •             | E7-E4           | ,                |          |                                                                             |                                                                |                  |       |            |      |       |         |          | Grouping:                                                        | Register to      |              |                                       |  |
|             | $(A) \leftarrow (E3-E0)$ |               |                 |                  |          |                                                                             | <b>Description:</b> Transfers the high-order 4 bits (E7–E4) of |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          | register E to register B, and low-order 4 bits of register E to register A. |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  | of register      | E to regist  | er A.                                 |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          |                                                                  |                  | <u> </u>     |                                       |  |
| TABP p (Tr  |                          | er c          | ata             | to A             | CCL      | um                                                                          | ulato                                                          | r a              | na    | -          | ISte | er B  | fron    | n Pro    | ī                                                                |                  |              | 011                                   |  |
| Instruction | D9                       |               |                 |                  |          |                                                                             |                                                                |                  |       | D0         |      |       | 0       |          | Number of words                                                  | Number of cycles | Flag CY      | Skip condition                        |  |
| code        | 0                        | 0             | 1               | 0                | p5       | p4                                                                          | рз                                                             | p2               | p1    | <b>p</b> 0 | 2    | 0     | 8<br>+p | p   16   |                                                                  |                  |              |                                       |  |
|             |                          |               |                 |                  |          |                                                                             |                                                                |                  |       |            |      |       |         |          | 1                                                                | 3                | -            | -                                     |  |
| Operation:  | (CD                      |               | (SP)            | . 1              |          |                                                                             |                                                                |                  |       |            |      |       |         |          | Grouping:                                                        | Arithmetic       | operation    |                                       |  |
| Operation.  |                          |               | (3F) ·<br>) ← ( |                  |          |                                                                             |                                                                | Des              | crip  | otion      | : Ti | rans  | fers b  | its 7 to | o 4 to register                                                  | B and bits 3 t   | o 0 to regi  | ster A. These bits 7 to 0             |  |
|             | •                        | (0. )<br>H) ← | · ·             | 10)              |          |                                                                             |                                                                |                  |       |            |      |       |         |          | ern in address<br>bage p.                                        | s (DR2 DR1 D     | R0 A3 A2 A   | 1 A0)2 specified by reg-              |  |
|             |                          |               |                 | 2–DR             | 0 £      | <u>م_</u> 2                                                                 | ا (۵۷                                                          |                  |       |            |      |       |         |          | can be referre                                                   | ed as follows;   |              |                                       |  |
|             |                          |               |                 | PC))7            |          |                                                                             | ,                                                              |                  |       |            | af   | tert  | he SE   | 3K inst  | truction: 64 to                                                  | 127              |              |                                       |  |
|             | • •                      | •             |                 | PC)):            |          |                                                                             |                                                                |                  |       |            |      |       |         |          | truction: 0 to 6                                                 |                  | ed from no   | wer down: 0 to 63.                    |  |
|             |                          |               | (SK(S           |                  | 5        |                                                                             |                                                                | Not              |       |            | to 6 | 3 foi | M345    | 554M8    | and p is 0 to 9                                                  | 5 for M34554N    | MC, and p is | s 0 to 127 for M34554ED.              |  |
|             |                          |               | (SP) ·          |                  |          |                                                                             |                                                                |                  | Ŵ     | /hen       | this | s ins | structi | on is e  |                                                                  |                  |              | ack because 1 stage of                |  |
|             | · - · ·                  | ,             | (- <i>)</i>     |                  |          |                                                                             |                                                                |                  | S     | lack       | reg  | ister | is us   | ea.      |                                                                  |                  |              |                                       |  |

RENESAS

| TABPS (Tr                          | ansfer data to Accumulator and register B from Pres                                                                                      | Scaler)                                                                              |                                |                        |                                                                               |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|------------------------|-------------------------------------------------------------------------------|--|
| Instruction code                   | D9 D0<br>1 0 0 1 1 0 1 0 1 2 7 5 16                                                                                                      | Number of words                                                                      | Number of cycles               | Flag CY                | Skip condition                                                                |  |
|                                    |                                                                                                                                          | 1                                                                                    | 1                              | -                      | -                                                                             |  |
| Operation:                         | $(B) \leftarrow (TPS7\text{-}TPS4)$                                                                                                      | Grouping:                                                                            | Timer oper                     |                        |                                                                               |  |
|                                    | (A) ← (TPS3–TPS0)                                                                                                                        | Description                                                                          | TPS4) of                       | prescale<br>he low-ord | order 4 bits (TPS7–<br>r to register B, and<br>er 4 bits (TPS3–TPS0)<br>er A. |  |
| TAD (Trans                         | sfer data to Accumulator from register D)                                                                                                |                                                                                      |                                |                        |                                                                               |  |
| Instruction code                   | D9 D0<br>0 0 0 1 0 1 0 0 1 0 1 0 5 1                                                                                                     | Number of<br>words                                                                   | Number of cycles               | Flag CY                | Skip condition                                                                |  |
|                                    |                                                                                                                                          | 1                                                                                    | 1                              | -                      | -                                                                             |  |
| Operation:                         | $(A2-A0) \leftarrow (DR2-DR0)$                                                                                                           | Grouping:                                                                            | Register to                    |                        |                                                                               |  |
|                                    | $(A3) \leftarrow 0$                                                                                                                      | <b>Description:</b> Transfers the contents of register D to the                      |                                |                        |                                                                               |  |
|                                    |                                                                                                                                          | Iow-order 3 bits (A2–A0) of register A.Note:When this instruction is executed, "0" i |                                |                        |                                                                               |  |
|                                    |                                                                                                                                          |                                                                                      |                                |                        | b) of register A.                                                             |  |
| TAI1 (Trans<br>Instruction<br>code | Sfer data to Accumulator from register I1)         D0         1       0       1       0       1       1       2       5       3       16 | Number of<br>words                                                                   | Number of cycles               | Flag CY                | Skip condition                                                                |  |
|                                    |                                                                                                                                          | 1                                                                                    | 1                              | -                      | -                                                                             |  |
| Operation:                         | $(A) \leftarrow (I1)$                                                                                                                    | Grouping:                                                                            | Interrupt op                   | peration               |                                                                               |  |
|                                    |                                                                                                                                          | Description                                                                          | : Transfers t<br>register I1 t |                        | ts of interrupt control<br>A.                                                 |  |
| TAI2 (Trans                        | sfer data to Accumulator from register I2)                                                                                               |                                                                                      |                                |                        |                                                                               |  |
| Instruction                        |                                                                                                                                          | Number of words                                                                      | Number of cycles               | Flag CY                | Skip condition                                                                |  |
| code                               | 1     0     0     1     0     1     0     0     2     2     5     4                                                                      | 1                                                                                    | 1                              | -                      | _                                                                             |  |
| Operation:                         | (A) ← (I2)                                                                                                                               | Grouping:                                                                            | Interrupt op                   | peration               |                                                                               |  |
|                                    |                                                                                                                                          | Description                                                                          | : Transfers t<br>register I2 t |                        | ts of interrupt control<br>A.                                                 |  |
|                                    |                                                                                                                                          |                                                                                      |                                |                        |                                                                               |  |



| TAK0 (Trar       | sfer data to Accumulator from register K0)               |                 |                            |              |                                     |
|------------------|----------------------------------------------------------|-----------------|----------------------------|--------------|-------------------------------------|
| Instruction      | D9 D0                                                    | Number of       | Number of                  | Flag CY      | Skip condition                      |
| code             |                                                          | words           | cycles                     |              |                                     |
|                  | 10010101010102220016                                     | 1               | 1                          | -            | _                                   |
| Operation:       | (A) ← (K0)                                               | Grouping:       | Input/Outp                 | ut operatio  | n                                   |
| -                |                                                          |                 |                            |              | nts of key-on wakeup                |
|                  |                                                          |                 | control reg                | ister K0 to  | register A.                         |
| TAK1 (Trar       | sfer data to Accumulator from register K1)               |                 |                            |              |                                     |
| Instruction      | D9 D0                                                    | Number of       | Number of                  | Flag CY      | Skip condition                      |
| code             |                                                          | words           | cycles                     | r lag O l    | Skip condition                      |
| Coue             | 1 0 0 1 0 1 1 0 0 1 <sub>2</sub> 2 5 9 <sub>16</sub>     | 1               | 1                          | -            | _                                   |
| Operation:       | (A) ← (K1)                                               | Grouping:       | Input/Outp                 | ut operatio  | n                                   |
| •                |                                                          |                 | : Transfers                | the conter   | nts of key-on wakeup                |
|                  |                                                          |                 | control reg                | ister K1 to  | register A.                         |
| TAK2 (Trar       | sfer data to Accumulator from register K2)               | 1               |                            |              |                                     |
| Instruction      | D9 D0                                                    | Number of       | Number of                  | Flag CY      | Skip condition                      |
| code             | 1 0 0 1 0 1 1 0 1 0 <sub>2</sub> 2 5 A <sub>16</sub>     | words<br>1      | cycles<br>1                | _            |                                     |
|                  |                                                          |                 | 1                          | _            | _                                   |
| Operation:       | $(A) \leftarrow (K2)$                                    | Grouping:       | Input/Outp                 | ut operatio  | n                                   |
|                  |                                                          | Description     | : Transfers<br>control reg |              | its of key-on wakeup<br>register A. |
| TAI 1 (Tran      | sfer data to Accumulator from register L1)               |                 |                            |              |                                     |
| Instruction code | D9 D0                                                    | Number of words | Number of cycles           | Flag CY      | Skip condition                      |
| oout             | 1 0 0 1 0 0 1 0 1 0 1 0 <sub>2</sub> 2 4 A <sub>16</sub> | 1               | 1                          | -            | -                                   |
| Operation:       | $(A) \leftarrow (L1)$                                    | Grouping:       | LCD contro                 | ol operation | )                                   |
|                  |                                                          |                 |                            |              | control register L1 to              |
|                  |                                                          | 1               |                            |              |                                     |



| TAM j (Trai                       | nsfer data to Accumulator from Memory)                                                                                                                        |                          |                                          |                                                        |                                                                                                           |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Instruction code                  | D9 D0<br>1 0 1 1 0 0 j j j j 2 C j 16                                                                                                                         | Number of<br>words       | Number of<br>cycles                      | Flag CY                                                | Skip condition                                                                                            |
|                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                         | 1                        | 1                                        | -                                                      | _                                                                                                         |
| Operation:                        | $\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$                                                    | Grouping:<br>Description | register A<br>performed                  | ferring the<br>, an exclu<br>between re<br>mediate fie | fer<br>contents of M(DP) to<br>sive OR operation is<br>egister X and the value<br>eld, and stores the re- |
| TAMR (Tra                         | nsfer data to Accumulator from register MR)                                                                                                                   |                          |                                          |                                                        |                                                                                                           |
| Instruction code                  | D9 D0<br>1 0 0 1 0 1 0 1 0 2 5 2                                                                                                                              | Number of<br>words       | Number of cycles                         | Flag CY                                                | Skip condition                                                                                            |
|                                   | <u> </u>                                                                                                                                                      | 1                        | 1                                        | -                                                      | _                                                                                                         |
| Operation:                        | $(A) \leftarrow (MR)$                                                                                                                                         | Grouping:                | Clock oper                               | ation                                                  |                                                                                                           |
|                                   |                                                                                                                                                               | Description              | : Transfers t<br>ister MR to             |                                                        | ts of clock control reg-                                                                                  |
| TAPU0 (Tra<br>Instruction<br>code | Dansfer data to Accumulator from register PU0)         D9       D0         1       0       1       0       1       1       1       2       5       7       16 | Number of<br>words       | Number of cycles                         | Flag CY                                                | Skip condition                                                                                            |
|                                   |                                                                                                                                                               | 1                        | 1                                        | -                                                      | _                                                                                                         |
| Operation:                        | (A) ← (PU0)                                                                                                                                                   | Grouping:<br>Description | Input/Outp<br>: Transfers<br>register PL | the conte                                              | nts of pull-up control                                                                                    |
| TAPU1 (Tra                        | ansfer data to Accumulator from register PU1)                                                                                                                 |                          |                                          |                                                        |                                                                                                           |
| Instruction code                  | D9 D0                                                                                                                                                         | Number of words          | Number of cycles                         | Flag CY                                                | Skip condition                                                                                            |
|                                   | 1 0 0 1 0 1 1 1 1 0 2 2 5 E <sub>16</sub>                                                                                                                     | 1                        | 1                                        | -                                                      | -                                                                                                         |
| Operation:                        | (A) ← (PU1)                                                                                                                                                   | Grouping:<br>Description | Input/Outp<br>: Transfers<br>register PL | the conte                                              | nts of pull-up control                                                                                    |



| TASP (Trar       | nsfer data to Accumulator from Stack Pointer)                              |                            |                     |              |                          |
|------------------|----------------------------------------------------------------------------|----------------------------|---------------------|--------------|--------------------------|
| Instruction code | D9 D0<br>0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0                           | Number of words            | Number of<br>cycles | Flag CY      | Skip condition           |
|                  |                                                                            | 1                          | 1                   | -            | -                        |
| Operation:       | $(A_2 - A_0) \leftarrow (SP_2 - SP_0)$                                     | Grouping:                  | Register to         | register tr  | ansfer                   |
|                  | (A3) ← 0                                                                   | Description                | : Transfers t       | he content   | s of stack pointer (SP)  |
|                  |                                                                            |                            | to the low-         | order 3 bits | s (A2–A0) of register A. |
|                  |                                                                            | Note:                      |                     |              | n is executed, "0" is    |
|                  |                                                                            |                            | stored to the       | ne bit 3 (Aa | b) of register A.        |
|                  |                                                                            |                            |                     |              |                          |
| TAV1 (Tran       | sfer data to Accumulator from register V1)                                 |                            |                     |              |                          |
| Instruction code | D9 D0<br>0 0 0 1 0 1 0 1 0 0 0 0 5 4 16                                    | Number of<br>words         | Number of<br>cycles | Flag CY      | Skip condition           |
|                  |                                                                            | 1                          | 1                   | -            | -                        |
| Operation:       | $(A) \leftarrow (V1)$                                                      | Grouping:                  | Interrupt o         | peration     |                          |
|                  |                                                                            | Description                | : Transfers         | the conter   | nts of interrupt control |
|                  |                                                                            |                            | register V1         | to registe   | r A.                     |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  | sfer data to Accumulator from register V2)                                 | 1                          | 1                   | 1 1          |                          |
| Instruction      |                                                                            | Number of<br>words         | Number of cycles    | Flag CY      | Skip condition           |
| code             | 0 0 0 1 0 1 0 1 0 1 2 0 5 5 16                                             |                            |                     |              |                          |
|                  |                                                                            | 1                          | 1                   | -            | -                        |
| Operation:       | $(A) \leftarrow (V2)$                                                      | Grouping:                  | Interrupt o         | peration     |                          |
|                  |                                                                            | Description                | : Transfers         | the conter   | nts of interrupt control |
|                  |                                                                            | register V2 to register A. |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  | nsfer data to Accumulator from register W1)                                |                            |                     |              |                          |
| Instruction      |                                                                            | Number of<br>words         | Number of cycles    | Flag CY      | Skip condition           |
| code             | 1     0     0     1     0     1     1     1     2     2     4     B     16 | 1                          | 1                   | _            |                          |
|                  |                                                                            | I                          | 1                   | _            |                          |
| Operation:       | $(A) \leftarrow (W1)$                                                      | Grouping:                  | Timer oper          | ation        |                          |
|                  |                                                                            | Description                | : Transfers t       | he conten    | ts of timer control reg- |
|                  |                                                                            |                            | ister W1 to         | register A   |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |
|                  |                                                                            |                            |                     |              |                          |



| TAW2 (Trai                         | nsfer data to Accumulator from register W2)                                                              |                          |                  |         |                          |
|------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|------------------|---------|--------------------------|
| Instruction                        | D9 D0                                                                                                    | Number of                | Number of        | Flag CY | Skip condition           |
| code                               | 1 0 0 1 0 0 1 1 0 0 <sub>1</sub> 1 <sub>1</sub> <sub>0</sub> <sub>0</sub> <sub>2</sub> 2 4 <sub>16</sub> | words<br>1               | cycles<br>1      | _       | _                        |
| Operation:                         | (A) ← (W2)                                                                                               | Grouping:<br>Description |                  |         | s of timer control reg-  |
| TAW3 (Trai                         | nsfer data to Accumulator from register W3)                                                              |                          |                  |         |                          |
| Instruction code                   |                                                                                                          | Number of<br>words       | Number of cycles | Flag CY | Skip condition           |
|                                    | 1 0 0 1 0 0 1 1 0 1 2 2 4 5 16                                                                           | 1                        | 1                | -       | _                        |
| Operation:                         | (A) ← (W3)                                                                                               | Grouping:<br>Description |                  |         | s of timer control reg-  |
| TAW4 (Train<br>Instruction<br>code | D9 D0<br>1 0 0 1 0 0 1 1 0 0 2 4 E                                                                       | Number of<br>words       | Number of cycles | Flag CY | Skip condition           |
| 0000                               | 1 0 0 1 0 0 1 1 0 <sub>2</sub> 2 4 E <sub>16</sub>                                                       | 1                        | 1                | -       | _                        |
| Operation:                         | (A) ← (W4)                                                                                               | Grouping:<br>Description |                  |         | s of timer control reg-  |
| TAW5 (Trai                         | nsfer data to Accumulator from register W5)                                                              |                          |                  |         |                          |
| Instruction code                   | D9 D0                                                                                                    | Number of words          | Number of cycles | Flag CY | Skip condition           |
| coue                               | 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                  | 1                        | 1                | -       | -                        |
| Operation:                         | (A) ← (W5)                                                                                               | Grouping:<br>Descriptior |                  |         | ts of timer control reg- |
|                                    |                                                                                                          |                          |                  |         |                          |



| TAW6 (Trai  | nsfer data to Accumulator from register W6)                  |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|-------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Instruction | D9 D0                                                        | Number of                                                   | Number of   | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Skip condition                     |
| code        |                                                              | words                                                       | cycles      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             | 1 0 0 1 0 1 0 0 0 0 2 2 0 16                                 | 1                                                           | 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  |
| Operation:  | $(A) \leftarrow (W6)$                                        | Grouping:                                                   | Timer oper  | ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|             |                                                              | Description                                                 | : Transfers | the conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ts of timer control reg-           |
|             |                                                              |                                                             | ister W6 to | o register A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| TAX (Trans  | fer data to Accumulator from register X)                     |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| Instruction | D9 D0                                                        | Number of                                                   | Number of   | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Skip condition                     |
| code        | 0 0 0 1 0 1 0 1 0 1 0 2 0 5 2 16                             | words                                                       | cycles      | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                  |
|             |                                                              | 1                                                           | 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  |
| Operation:  | $(A) \leftarrow (X)$                                         | Grouping:                                                   | Register to | register tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ansfer                             |
| operation.  | $(\Lambda) \leftarrow (\Lambda)$                             | Description                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ts of register X to reg-           |
|             |                                                              | ister A.                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| TAY (Trans  | fer data to Accumulator from register Y)                     |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| Instruction |                                                              | Number of                                                   | Number of   | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Skip condition                     |
| code        | $0 0 0 0 0 1 1 1 1 1 _{2} 0 1 F_{16}$                        | words                                                       | cycles      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              | 1                                                           | 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  |
| Operation:  | $(A) \leftarrow (Y)$                                         | Grouping:                                                   | Register to | register tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ansfer                             |
|             |                                                              | Description: Transfers the contents of register Y to regis- |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              | ter A.                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| TA7 (Trans  | fer data to Accumulator from register Z)                     |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| Instruction |                                                              | Number of                                                   | Number of   | Flag CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Skip condition                     |
| code        |                                                              | words                                                       | cycles      | , and the second s |                                    |
|             | 0 0 0 1 0 1 0 1 1 2 0 3 3 16                                 | 1                                                           | 1           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                  |
|             |                                                              | <b>.</b> .                                                  |             | <u>   </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| Operation:  | $(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$ | Grouping:                                                   | Register to |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ansfer<br>its of register Z to the |
|             | $(A3, A2) \leftarrow 0$                                      | Description                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ao) of register A.                 |
|             |                                                              | Note:                                                       |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n is executed, "0" is              |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rder 2 bits (A3, A2) of            |
|             |                                                              |                                                             | register A. | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                  |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|             |                                                              |                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |



| TBA (Trans       | sfer data to register B from Accumulator)            |                                              |                           |             |                                                |  |
|------------------|------------------------------------------------------|----------------------------------------------|---------------------------|-------------|------------------------------------------------|--|
| Instruction      | D9 D0                                                | Number of                                    | Number of                 | Flag CY     | Skip condition                                 |  |
| code             | 0 0 0 0 0 0 1 1 1 0 <sub>2</sub> 0 0 E <sub>16</sub> | words<br>1                                   | cycles<br>1               | _           |                                                |  |
|                  |                                                      |                                              |                           |             |                                                |  |
| Operation:       | $(B) \leftarrow (A)$                                 | Grouping:                                    | Register to               |             |                                                |  |
|                  |                                                      | Description                                  | ter B.                    | ne content  | s of register A to regis-                      |  |
| TDA (Trans       | sfer data to register D from Accumulator)            |                                              |                           |             |                                                |  |
| Instruction code | D9 D0<br>0 0 0 0 1 0 1 0 1 0 0 1 0 2 9 16            | Number of<br>words                           | Number of cycles          | Flag CY     | Skip condition                                 |  |
|                  |                                                      | 1                                            | 1                         | -           | -                                              |  |
| Operation:       | $(DR2-DR0) \leftarrow (A2-A0)$                       | Grouping:                                    | Register to               | register tr | ansfer                                         |  |
|                  |                                                      | Description                                  |                           |             | nts of the low-order 3<br>er A to register D.  |  |
|                  | nsfer data to register E from Accumulator and regist |                                              |                           |             |                                                |  |
| Instruction      |                                                      | Number of<br>words                           | Number of<br>cycles       | Flag CY     | Skip condition                                 |  |
| code             | 0 0 0 0 0 1 1 0 1 0 <sub>2</sub> 0 1 A <sub>16</sub> | 1                                            | 1                         | -           | -                                              |  |
| Operation:       | (E7–E4) ← (B)                                        | Grouping:                                    | Register to               | register tr | ansfer                                         |  |
|                  | (E3–E0) ← (A)                                        | Description                                  | -                         | -           | nts of register B to the                       |  |
|                  |                                                      | high-order 4 bits (E7–E4) of register E, and |                           |             |                                                |  |
|                  |                                                      |                                              | the conten<br>bits (E3–E0 | -           | er A to the low-order 4<br>er E.               |  |
| TFR0A (Tra       | ansfer data to register FR0 from Accumulator)        |                                              |                           |             |                                                |  |
| Instruction      | D9 D0                                                | Number of                                    | Number of                 | Flag CY     | Skip condition                                 |  |
| code             | 1 0 0 0 1 0 1 0 0 0 <sub>2</sub> 2 2 8 <sub>16</sub> | words<br>1                                   | cycles<br>1               | _           |                                                |  |
| Operation:       | $(FR0) \leftarrow (A)$                               | Grouping:                                    | Input/Outp                | ut operatio |                                                |  |
|                  |                                                      | Description                                  | : Transfers               | the conter  | nts of register A to the control register FR0. |  |
|                  |                                                      |                                              |                           |             |                                                |  |



| TFR1A (Tra  | ansfer data to register FR1 from Accumulator)                                    |                 |                              |              |                                 |
|-------------|----------------------------------------------------------------------------------|-----------------|------------------------------|--------------|---------------------------------|
| Instruction |                                                                                  | Number of words | Number of cycles             | Flag CY      | Skip condition                  |
| code        | 1 0 0 0 1 0 1 0 1 <u>2</u> 2 2 9 16                                              | 1               | 1                            | -            | -                               |
| Operation:  | $(FR1) \leftarrow (A)$                                                           | Grouping:       | Input/Outp                   | ut operatio  | n                               |
| -           |                                                                                  | Description     | : Transfers                  | the conter   | its of register A to the        |
|             |                                                                                  |                 | port output                  | structure    | control register FR1.           |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
| TER2A (Tr   | ansfer data to register FR2 from Accumulator)                                    |                 |                              |              |                                 |
| Instruction |                                                                                  | Number of       | Number of                    | Flag CY      | Skip condition                  |
| code        |                                                                                  | words           | cycles                       |              |                                 |
|             | 1000101010101010101010101010101010101010                                         | 1               | 1                            | -            | -                               |
| Operation:  | $(FR2) \leftarrow (A)$                                                           | Grouping:       | Input/Outpu                  | ut operatio  | n                               |
|             |                                                                                  | Description     |                              |              | ts of register A to the         |
|             |                                                                                  |                 | port output                  | structure    | control register FR2.           |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
| TI1A (Trans | sfer data to register I1 from Accumulator)                                       |                 |                              |              |                                 |
| Instruction | D9 D0                                                                            | Number of       | Number of                    | Flag CY      | Skip condition                  |
| code        | 1     0     0     0     1     0     1     1     1       2     1     7     16     | words           | cycles                       | Ű            |                                 |
|             |                                                                                  | 1               | 1                            | -            | -                               |
| Operation:  | (I1) ← (A)                                                                       | Grouping:       | Interrupt or                 | peration     |                                 |
|             |                                                                                  | Description     |                              |              | s of register A to inter-       |
|             |                                                                                  |                 | rupt contro                  | i register i | 1.                              |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
| TI2A (Trans | sfer data to register I2 from Accumulator)                                       |                 |                              |              |                                 |
| Instruction | D9 D0                                                                            | Number of words | Number of                    | Flag CY      | Skip condition                  |
| code        | 1     0     0     0     1     1     0     0     0     2     2     1     8     16 | 1               | cycles<br>1                  | _            | _                               |
|             |                                                                                  |                 | 1                            |              |                                 |
| Operation:  | $(12) \leftarrow (A)$                                                            | Grouping:       | Interrupt of                 |              |                                 |
|             |                                                                                  | Description     | : Transfers t<br>rupt contro |              | s of register A to inter-<br>2. |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |
|             |                                                                                  |                 |                              |              |                                 |



| TK0A (Transfer data to register K0 from Accumulator) |                                                      |                                                                                                |                                           |            |                         |  |
|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|------------|-------------------------|--|
| Instruction                                          | D9 D0                                                | Number of words                                                                                | Number of cycles                          | Flag CY    | Skip condition          |  |
| code                                                 | 1 0 0 0 0 1 1 0 1 1 <sub>2</sub> 2 1 B <sub>16</sub> | 1                                                                                              | 1                                         | -          | _                       |  |
| Operation:                                           | (K0) ← (A)                                           | Grouping: Input/Output operation                                                               |                                           |            | n                       |  |
|                                                      |                                                      | Description: Transfers the contents of register A to key-<br>on wakeup control register K0.    |                                           |            |                         |  |
| TK1A (Trai                                           | nsfer data to register K1 from Accumulator)          |                                                                                                |                                           |            |                         |  |
| Instruction code                                     | D9 D0 1 0 1 0 2 1 4                                  | Number of<br>words                                                                             | Number of cycles                          | Flag CY    | Skip condition          |  |
|                                                      |                                                      | 1                                                                                              | 1                                         | -          | -                       |  |
| Operation:                                           | $(K1) \leftarrow (A)$                                | Grouping: Input/Output operation                                                               |                                           |            |                         |  |
|                                                      |                                                      | <b>Description:</b> Transfers the contents of register A to key on wakeup control register K1. |                                           |            |                         |  |
| TK2A (Trai                                           | nsfer data to register K2 from Accumulator)          |                                                                                                |                                           |            |                         |  |
| Instruction code                                     | D9 D0 1 0 1 0 1 2 1 5                                | Number of<br>words                                                                             | Number of cycles                          | Flag CY    | Skip condition          |  |
|                                                      |                                                      | 1                                                                                              | 1                                         | -          | -                       |  |
| Operation:                                           | $(K2) \leftarrow (A)$                                | Grouping: Input/Output operation                                                               |                                           |            |                         |  |
|                                                      |                                                      | <b>Description:</b> Transfers the contents of register A to keyon wakeup control register K2.  |                                           |            |                         |  |
| TL1A (Trar                                           | nsfer data to register L1 from Accumulator)          |                                                                                                |                                           |            |                         |  |
| Instruction code                                     | D9 D0<br>1 0 0 0 0 1 0 1 0 2 0 A                     | Number of<br>words                                                                             | Number of<br>cycles                       | Flag CY    | Skip condition          |  |
| ooue                                                 | 1 0 0 0 0 0 1 0 1 0 2 2 0 A 16                       | 1                                                                                              | 1                                         | -          | -                       |  |
| Operation:                                           | (L1) ← (A)                                           | Grouping:<br>Description                                                                       | LCD opera<br>: Transfers t<br>control reg | the conten | ts of register A to LCD |  |
|                                                      |                                                      |                                                                                                |                                           |            |                         |  |



| TL2A (Tran       | sfer data to register L2 from Accumulator)                               |                                                                                                                                                                                                                                                           |                              |         |                         |  |
|------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|-------------------------|--|
| Instruction      | D9 D0                                                                    | Number of                                                                                                                                                                                                                                                 | Number of                    | Flag CY | Skip condition          |  |
| code             | 1 0 0 0 0 0 1 0 1 1 <sub>2</sub> 2 0 B <sub>16</sub>                     | words<br>1                                                                                                                                                                                                                                                | cycles<br>1                  | _       | _                       |  |
|                  |                                                                          | Onorminar                                                                                                                                                                                                                                                 |                              |         |                         |  |
| Operation:       | $(L2) \leftarrow (A)$                                                    | Grouping:<br>Description                                                                                                                                                                                                                                  | LCD opera                    |         | ts of register A to LCD |  |
|                  |                                                                          |                                                                                                                                                                                                                                                           | control reg                  |         |                         |  |
| TL3A (Tran       | sfer data to register L3 from Accumulator)                               |                                                                                                                                                                                                                                                           |                              |         |                         |  |
| Instruction code |                                                                          | Number of<br>words                                                                                                                                                                                                                                        | Number of cycles             | Flag CY | Skip condition          |  |
|                  |                                                                          | 1                                                                                                                                                                                                                                                         | 1                            | -       | -                       |  |
| Operation:       | $(L3) \gets (A)$                                                         | Grouping: LCD operation                                                                                                                                                                                                                                   |                              |         |                         |  |
|                  |                                                                          | Description                                                                                                                                                                                                                                               | : Transfers t<br>control reg |         | ts of register A to LCD |  |
|                  | nsfer data to timer LC and register RLC from Accum                       |                                                                                                                                                                                                                                                           |                              | 11      |                         |  |
| Instruction      |                                                                          | Number of<br>words                                                                                                                                                                                                                                        | Number of cycles             | Flag CY | Skip condition          |  |
| code             | 1 0 0 0 0 0 1 1 0 1 2 2 0 D 16                                           | 1                                                                                                                                                                                                                                                         | 1                            | -       | _                       |  |
| Operation:       | $(LC) \leftarrow (A)$                                                    | Grouping:                                                                                                                                                                                                                                                 | Timer oper                   | ation   |                         |  |
|                  | (RLC) ← (A)                                                              | <b>Description:</b> Transfers the contents of register A to timer LC and reload register RLC.                                                                                                                                                             |                              |         |                         |  |
| TMA j (Trar      | nsfer data to Memory from Accumulator)                                   |                                                                                                                                                                                                                                                           |                              |         |                         |  |
| Instruction code | D9 D0<br>1 0 1 0 1 1 j j j j 2 B j 46                                    | Number of words                                                                                                                                                                                                                                           | Number of cycles             | Flag CY | Skip condition          |  |
|                  |                                                                          | 1                                                                                                                                                                                                                                                         | 1                            | -       | -                       |  |
| Operation:       | $(M(DP)) \leftarrow (A)$<br>$(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15 | Grouping:RAM to register transferDescription:After transferring the contents of register A<br>to M(DP), an exclusive OR operation is per-<br>formed between register X and the value j<br>in the immediate field, and stores the result<br>in register X. |                              |         |                         |  |



| TMRA (Transfer data to register MR from Accumulator) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                             |            |                                  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|----------------------------------|--|
| Instruction                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of words                                                                                                                                                                                                                             | Number of cycles            | Flag CY    | Skip condition                   |  |
| code                                                 | <u>1 0 0 0 0 1 0 1 1 0</u> <u>2 2 1 6</u> <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                           | 1                           | _          | _                                |  |
| Operation:                                           | $(MR) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grouping: Other operation                                                                                                                                                                                                                   |                             |            |                                  |  |
| <b>o</b> porunom                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                             | the conten | ts of register A to clock        |  |
| TPAA (Trar                                           | nsfer data to register PA from Accumulator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                             |                             |            |                                  |  |
| Instruction code                                     | D9 D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of<br>words                                                                                                                                                                                                                          | Number of cycles            | Flag CY    | Skip condition                   |  |
|                                                      | 1 0 1 0 1 0 1 0 1 0 1 0 <u>1</u> 0 <u>0</u> <u>1</u> 0 <u>0</u> 0 0 <u>0</u> 0 0 <u>0</u> 0 0 0 0 | 1                                                                                                                                                                                                                                           | 1                           | -          | -                                |  |
| Operation:                                           | $(PA0) \leftarrow (A0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grouping: Timer operation                                                                                                                                                                                                                   |                             |            |                                  |  |
| •                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             | : Transfers t               | he conten  | ts of lowermost bit (Ao)         |  |
|                                                      | ansfer data to Pre-Scaler from Accumulator and reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lister R)                                                                                                                                                                                                                                   |                             |            |                                  |  |
| Instruction                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of                                                                                                                                                                                                                                   | Number of                   | Flag CY    | Skip condition                   |  |
| code                                                 | 1     0     0     1     1     0     1     0     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | words                                                                                                                                                                                                                                       | cycles                      |            |                                  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                           | 1                           | -          | _                                |  |
| Operation:                                           | $(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grouping:                                                                                                                                                                                                                                   | Timer oper                  |            |                                  |  |
|                                                      | $(PS7-PS4) \leftarrow (B)$<br>$(RPS3-RPS0) \leftarrow (A)$<br>$(TPS3-TPS0) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description: Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS. |                             |            |                                  |  |
| TPU0A (Tra                                           | ansfer data to register PU0 from Accumulator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             |                             |            |                                  |  |
| Instruction code                                     | D9 D0<br>1 0 0 0 1 0 1 1 0 1 2 2 D 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of words                                                                                                                                                                                                                             | Number of cycles            | Flag CY    | Skip condition                   |  |
|                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                           | 1                           | -          | -                                |  |
| Operation:                                           | $(PU0) \gets (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grouping: Input/Output operation                                                                                                                                                                                                            |                             |            |                                  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                 | : Transfers t<br>up control |            | ts of register A to pull-<br>JO. |  |



| TPU1A (Tra       | ansfer data to register PU1 from Accumulator)       |                                                                                                                                                                                              |                           |             |                                                 |  |
|------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-------------------------------------------------|--|
| Instruction code |                                                     | Number of<br>words                                                                                                                                                                           | Number of cycles          | Flag CY     | Skip condition                                  |  |
| 0000             | 1 0 0 0 1 0 1 1 0 <sub>2</sub> 2 2 E <sub>16</sub>  | 1                                                                                                                                                                                            | 1                         | _           | _                                               |  |
| Operation:       | $(PU1) \leftarrow (A)$                              | Grouping:                                                                                                                                                                                    | Input/Outp                | ut operatio | n                                               |  |
|                  |                                                     | Description                                                                                                                                                                                  | : Transfers<br>up control |             | ts of register A to pull-<br>J1.                |  |
| TR1AB (Tr        | ansfer data to register R1 from Accumulator and reg | gister B)                                                                                                                                                                                    |                           |             |                                                 |  |
| Instruction code | D9 D0 1 1 1 1 1 1 2 3 F                             | Number of<br>words                                                                                                                                                                           | Number of cycles          | Flag CY     | Skip condition                                  |  |
|                  |                                                     | 1                                                                                                                                                                                            | 1                         | -           | -                                               |  |
| Operation:       | (R17–R14) ← (B)                                     | Grouping:                                                                                                                                                                                    | g: Timer operation        |             |                                                 |  |
|                  | (R13–R10) ← (A)                                     | Description: Transfers the contents of register E<br>high-order 4 bits (R17–R14) of reload<br>ter R1, and the contents of register A<br>low-order 4 bits (R13–R10) of reload<br>ter R1.      |                           |             | 7–R14) of reload regisents of register A to the |  |
| TR3AB (Tr        | ansfer data to register R3 from Accumulator and reg | gister B)                                                                                                                                                                                    |                           |             |                                                 |  |
| Instruction code | D9 D0<br>1 0 0 0 1 1 1 0 1 1 2 2 3 B 16             | Number of<br>words                                                                                                                                                                           | Number of cycles          | Flag CY     | Skip condition                                  |  |
|                  |                                                     | 1                                                                                                                                                                                            | 1                         | -           | -                                               |  |
| Operation:       | (R37–R34) ← (B)                                     | Grouping: Timer operation                                                                                                                                                                    |                           |             |                                                 |  |
|                  | (R33–R30) ← (A)                                     | Description: Transfers the contents of register B thigh-order 4 bits (R37–R34) of reload r<br>ter R3, and the contents of register A to<br>low-order 4 bits (R33–R30) of reload r<br>ter R3. |                           |             | 7–R34) of reload regisents of register A to the |  |
| TV1A (Trar       | nsfer data to register V1 from Accumulator)         |                                                                                                                                                                                              |                           |             |                                                 |  |
| Instruction code | D9 D0<br>0 0 0 0 1 1 1 1 1 1 0 0 3 F 16             | Number of<br>words                                                                                                                                                                           | Number of cycles          | Flag CY     | Skip condition                                  |  |
|                  |                                                     | 1                                                                                                                                                                                            | 1                         | -           | -                                               |  |
| Operation:       | (V1) ← (A)                                          | Grouping:         Interrupt operation           Description:         Transfers the contents of register A to interrupt control register V1.                                                  |                           |             |                                                 |  |
|                  |                                                     |                                                                                                                                                                                              |                           |             |                                                 |  |



# MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

| TV2A (Trar  | nsfer data to register V2 from Accumulator)        |                          |                           |              |                            |
|-------------|----------------------------------------------------|--------------------------|---------------------------|--------------|----------------------------|
| Instruction | D9 D0                                              | Number of                | Number of                 | Flag CY      | Skip condition             |
| code        | 0 0 0 0 1 1 1 1 0 <sub>2</sub> 0 3 E <sub>16</sub> | words                    | cycles                    |              |                            |
|             |                                                    | 1                        | 1                         | -            | -                          |
| Operation:  | $(V2) \leftarrow (A)$                              | Grouping:                | Interrupt o               | peration     |                            |
|             |                                                    | Description              |                           |              | ts of register A to inter- |
|             |                                                    |                          | rupt contro               | l register \ | /2.                        |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
| TW1A (Tra   | nsfer data to register W1 from Accumulator)        | •                        |                           |              |                            |
| Instruction | D9 D0                                              | Number of                | Number of                 | Flag CY      | Skip condition             |
| code        | 1 0 0 0 0 0 1 1 1 0 2 2 0 E 16                     | words                    | cycles                    |              |                            |
|             |                                                    | 1                        | 1                         | -            | -                          |
| Operation:  | $(W1) \leftarrow (A)$                              | Grouping:                | Timer oper                | ation        |                            |
|             |                                                    | Description              |                           |              | ts of register A to timer  |
|             |                                                    |                          | control reg               | ister W1.    |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
| TW2A (Trai  | nsfer data to register W2 from Accumulator)        |                          |                           |              |                            |
| Instruction |                                                    | Number of                | Number of                 | Flag CY      | Skip condition             |
| code        |                                                    | words                    | cycles                    | 1.09.01      |                            |
|             |                                                    | 1                        | 1                         | -            | -                          |
| Operation:  | $(W2) \leftarrow (A)$                              | Grouping:                | Timer oper                | ation        |                            |
| operation   |                                                    | Description              |                           |              | ts of register A to timer  |
|             |                                                    |                          | control reg               | ister W2.    | -                          |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
| TW3A (Trai  | nsfer data to register W3 from Accumulator)        |                          |                           |              |                            |
| Instruction | D9 D0                                              | Number of                | Number of                 | Flag CY      | Skip condition             |
| code        |                                                    | words                    | cycles                    | i i i gʻe i  |                            |
|             |                                                    | 1                        | 1                         | -            | -                          |
| Operation   |                                                    | Crouning                 | Timer anar                | l<br>ation   |                            |
| Operation:  | (W3) ← (A)                                         | Grouping:<br>Description | Timer oper<br>Transfers t |              | ts of register A to timer  |
|             |                                                    | Decemption               | control reg               |              |                            |
|             |                                                    |                          | 0                         |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |
|             |                                                    |                          |                           |              |                            |



# MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

| TW4A (Tran       | nsfer data to register W4 from Accumulator)                                      |                          |                                          |            |                                     |
|------------------|----------------------------------------------------------------------------------|--------------------------|------------------------------------------|------------|-------------------------------------|
| Instruction code | D9 D0<br>1 0 0 0 1 0 0 1 2 2 1 1 16                                              | Number of<br>words       | Number of<br>cycles                      | Flag CY    | Skip condition                      |
|                  |                                                                                  | 1                        | 1                                        | -          | -                                   |
| Operation:       | $(W4) \leftarrow (A)$                                                            | Grouping:                | Timer ope                                | ration     |                                     |
|                  |                                                                                  | Description              | i: Transfers<br>control reg              |            | ts of register A to timer           |
| TW5A (Trar       | nsfer data to register W5 from Accumulator)                                      |                          |                                          |            |                                     |
| Instruction code | D9 D0 1 0 1 0 2 1 2                                                              | Number of<br>words       | Number of cycles                         | Flag CY    | Skip condition                      |
|                  |                                                                                  | 1                        | 1                                        | -          | -                                   |
| Operation:       | $(W5) \leftarrow (A)$                                                            | Grouping:                | Timer oper                               |            |                                     |
|                  |                                                                                  | Description              | : Transfers t<br>control reg             |            | ts of register A to timer           |
| TW6A (Trar       | nsfer data to register W6 from Accumulator)                                      |                          | 1                                        | 1          |                                     |
| Instruction      |                                                                                  | Number of<br>words       | Number of cycles                         | Flag CY    | Skip condition                      |
| code             | 1     0     0     0     1     0     0     1     1     2     2     1     3     16 | 1                        | 1                                        | -          | -                                   |
| Operation:       | (W6) ← (A)                                                                       | Grouping:<br>Description | Timer oper<br>Transfers t<br>control reg | the conten | ts of register A to timer           |
| TYA (Trans       | fer data to register Y from Accumulator)                                         |                          |                                          |            |                                     |
| Instruction      |                                                                                  | Number of words          | Number of cycles                         | Flag CY    | Skip condition                      |
| code             | 0 0 0 0 0 0 1 1 0 0 2 0 0 C <sub>16</sub>                                        | 1                        | 1                                        | -          | _                                   |
| Operation:       | $(Y) \leftarrow (A)$                                                             | Grouping:<br>Description | Register to<br>Transfers t<br>ter Y.     |            | ansfer<br>s of register A to regis- |
|                  |                                                                                  |                          |                                          |            |                                     |



# MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

| WRST (Wa         | tchdog timer ReSeT)                                                                                                                              |                          |                                                                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction      | D9 D0                                                                                                                                            | Number of                | Number of                                                                                                       | Flag CY                                                                                                                             | Skip condition                                                                                                                                                                                                                                                 |
| code             | 1 0 1 0 1 0 0 0 0 0 0 <u>1</u> 2 A 0 16                                                                                                          | words<br>1               | cycles<br>1                                                                                                     | -                                                                                                                                   | (WDF1) = 1                                                                                                                                                                                                                                                     |
| Operation:       | (WDF1) = 1 ?<br>After skipping, (WDF1) ← 0                                                                                                       | Grouping:<br>Descriptior | timer flag (<br>(0) to the<br>is "0," exe<br>stops the v                                                        | next instru<br>NDF1 is "1<br>NDF1 flag<br>cutes the<br>vatchdog t<br>e WRST in                                                      | uction when watchdog<br>." After skipping, clears<br>. When the WDF1 flag<br>next instruction. Also,<br>imer function when ex-<br>nstruction immediately<br>uction.                                                                                            |
| XAM i (eXc       | hange Accumulator and Memory data)                                                                                                               |                          |                                                                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                |
| Instruction code |                                                                                                                                                  | Number of<br>words       | Number of cycles                                                                                                | Flag CY                                                                                                                             | Skip condition                                                                                                                                                                                                                                                 |
|                  | 16 <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>                                                                                | 1                        | 1                                                                                                               | -                                                                                                                                   | -                                                                                                                                                                                                                                                              |
| Operation:       | $\begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \hookleftarrow (X) EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$                         | Grouping:<br>Description | with the co<br>OR operat<br>ter X and t                                                                         | nanging th<br>intents of r<br>ion is perf<br>he value j                                                                             | esfer<br>e contents of M(DP)<br>egister A, an exclusive<br>ormed between regis-<br>in the immediate field,<br>in register X.                                                                                                                                   |
| XAMD i (e)       | Change Accumulator and Memory data and Decre                                                                                                     | ment regist              | er Y and sk                                                                                                     | in)                                                                                                                                 |                                                                                                                                                                                                                                                                |
| Instruction code | D9 D0                                                                                                                                            | Number of<br>words       | Number of cycles                                                                                                | Flag CY                                                                                                                             | Skip condition                                                                                                                                                                                                                                                 |
| 0000             | 1 0 1 1 1 1 j j j j <sub>2</sub> 2 F j <sub>16</sub>                                                                                             | 1                        | 1                                                                                                               | -                                                                                                                                   | (Y) = 15                                                                                                                                                                                                                                                       |
| Operation:       | $\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$ | Grouping:<br>Description | with the co<br>OR operat<br>ter X and t<br>and stores<br>Subtracts<br>As a resul<br>tents of reg<br>is skipped. | anging th<br>ntents of r<br>ion is perf<br>he value j<br>the result<br>t from the<br>t of subtra<br>gister Y is<br>When the         | fer<br>e contents of M(DP)<br>egister A, an exclusive<br>ormed between regis-<br>in the immediate field,<br>in register X.<br>contents of register Y.<br>action, when the con-<br>15, the next instruction<br>contents of register Y<br>struction is executed. |
| XAMI j (eX       | change Accumulator and Memory data and Increme                                                                                                   | ent register             |                                                                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                |
| Instruction code | D9 D0<br>1 0 1 1 1 0 j j j j 2 E j te                                                                                                            | Number of words          | Number of cycles                                                                                                | Flag CY                                                                                                                             | Skip condition                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                  | 1                        | 1                                                                                                               | -                                                                                                                                   | (Y) = 0                                                                                                                                                                                                                                                        |
| Operation:       | $\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$ | Grouping:<br>Descriptior | with the co<br>OR operat<br>ter X and t<br>and stores<br>Adds 1 to t<br>sult of ac<br>register Y<br>skipped. w  | hanging the<br>ntents of r<br>ion is perf<br>he value j<br>the result<br>he content<br>Idition, w<br>' is 0, the<br>hen the content | efer<br>e contents of M(DP)<br>egister A, an exclusive<br>ormed between regis-<br>in the immediate field,<br>in register X.<br>s of register Y. As a re-<br>hen the contents of<br>e next instruction is<br>ontents of register Y is<br>ction is executed.     |



| Parameter                     |          |    | Instruction code |    |            |    |            |    |    |    |            |   | er of<br>Is | er of<br>es  |                    |                     |                                                                                                                                                  |
|-------------------------------|----------|----|------------------|----|------------|----|------------|----|----|----|------------|---|-------------|--------------|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of instructions          | Mnemonic | D9 | D8               | D7 | D6         | D5 | D4         | D3 | D2 | D1 | Do         |   | ade<br>otat | cimal<br>ion | Number of<br>words | Number of<br>cycles | Function                                                                                                                                         |
|                               | ТАВ      | 0  | 0                | 0  | 0          | 0  | 1          | 1  | 1  | 1  | 0          | 0 | 1           | Е            | 1                  | 1                   | $(A) \leftarrow (B)$                                                                                                                             |
|                               | ТВА      | 0  | 0                | 0  | 0          | 0  | 0          | 1  | 1  | 1  | 0          | 0 | 0           | Е            | 1                  | 1                   | $(B) \leftarrow (A)$                                                                                                                             |
|                               | TAY      | 0  | 0                | 0  | 0          | 0  | 1          | 1  | 1  | 1  | 1          | 0 | 1           | F            | 1                  | 1                   | $(A) \leftarrow (Y)$                                                                                                                             |
| <u> </u>                      | ΤΥΑ      | 0  | 0                | 0  | 0          | 0  | 0          | 1  | 1  | 0  | 0          | 0 | 0           | С            | 1                  | 1                   | $(Y) \leftarrow (A)$                                                                                                                             |
| Register to register transfer | TEAB     | 0  | 0                | 0  | 0          | 0  | 1          | 1  | 0  | 1  | 0          | 0 | 1           | A            | 1                  | 1                   | $\begin{array}{l} (E7-E4) \leftarrow (B) \\ (E3-E0) \leftarrow (A) \end{array}$                                                                  |
| register                      | TABE     | 0  | 0                | 0  | 0          | 1  | 0          | 1  | 0  | 1  | 0          | 0 | 2           | A            | 1                  | 1                   |                                                                                                                                                  |
| er to                         | TDA      | 0  | 0                | 0  | 0          | 1  | 0          | 1  | 0  | 0  | 1          | 0 | 2           | 9            | 1                  | 1                   | $(DR_2-DR_0) \leftarrow (A_2-A_0)$                                                                                                               |
| Registe                       | TAD      | 0  | 0                | 0  | 1          | 0  | 1          | 0  | 0  | 0  | 1          | 0 | 5           | 1            | 1                  | 1                   | $(A_2-A_0) \leftarrow (DR_2-DR_0)$<br>$(A_3) \leftarrow 0$                                                                                       |
|                               | TAZ      | 0  | 0                | 0  | 1          | 0  | 1          | 0  | 0  | 1  | 1          | 0 | 5           | 3            | 1                  | 1                   | $\begin{array}{l} (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \end{array}$                                                             |
|                               | ТАХ      | 0  | 0                | 0  | 1          | 0  | 1          | 0  | 0  | 1  | 0          | 0 | 5           | 2            | 1                  | 1                   | $(A) \leftarrow (X)$                                                                                                                             |
|                               | TASP     | 0  | 0                | 0  | 1          | 0  | 1          | 0  | 0  | 0  | 0          | 0 | 5           | 0            | 1                  | 1                   | $(A_2-A_0) \leftarrow (SP_2-SP_0)$<br>$(A_3) \leftarrow 0$                                                                                       |
|                               | LXY x, y | 1  | 1                | Х3 | <b>X</b> 2 | X1 | <b>X</b> 0 | уз | у2 | у1 | у0         | 3 | х           | у            | 1                  | 1                   | $ \begin{array}{l} (X) \leftarrow x \ x = 0 \ \text{to} \ 15 \\ (Y) \leftarrow y \ y = 0 \ \text{to} \ 15 \end{array} $                          |
| resses                        | LZ z     | 0  | 0                | 0  | 1          | 0  | 0          | 1  | 0  | Z1 | <b>Z</b> 0 | 0 | 4           | 8<br>+z      | 1                  | 1                   | $(Z) \leftarrow z \ z = 0 \text{ to } 3$                                                                                                         |
| RAM addresses                 | INY      | 0  | 0                | 0  | 0          | 0  | 1          | 0  | 0  | 1  | 1          | 0 | 1           | 3            | 1                  | 1                   | $(Y) \leftarrow (Y) + 1$                                                                                                                         |
|                               | DEY      | 0  | 0                | 0  | 0          | 0  | 1          | 0  | 1  | 1  | 1          | 0 | 1           | 7            | 1                  | 1                   | $(Y) \leftarrow (Y) - 1$                                                                                                                         |
|                               | TAM j    | 1  | 0                | 1  | 1          | 0  | 0          | j  | j  | j  | j          | 2 | С           | j            | 1                  | 1                   | $\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$                                       |
|                               | XAM j    | 1  | 0                | 1  | 1          | 0  | 1          | j  | j  | j  | j          | 2 | D           | j            | 1                  | 1                   | $\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$                           |
| RAM to register transfer      | XAMD j   | 1  | 0                | 1  | 1          | 1  | 1          | j  | j  | j  | j          | 2 | F           | j            | 1                  | 1                   | $\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$ |
| RAM to re                     | XAMI j   | 1  | 0                | 1  | 1          | 1  | 0          | j  | j  | j  | j          | 2 | E           | j            | 1                  | 1                   | $\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$ |
|                               | TMA j    | 1  | 0                | 1  | 0          | 1  | 1          | j  | j  | j  | j          | 2 | В           | j            | 1                  | 1                   | $(M(DP)) \leftarrow (A)$<br>$(X) \leftarrow (X)EXOR(j)$<br>j = 0  to  15                                                                         |
|                               |          |    |                  |    |            |    |            |    |    |    |            |   |             |              |                    |                     |                                                                                                                                                  |

## MACHINE INSTRUCTIONS (INDEX BY TYPES)



| Skip condition         | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                      | -             | Transfers the contents of register B to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register A to register B.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register Y to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register A to register Y.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of regis ter A to the low-order 4 bits (E3–E0) of register E.                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.                                                                                                                                                                                                                                                                                                               |
| -                      | -             | Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.                                                                                                                                                                                                                                                                                                                                                          |
| -                      | -             | Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.                                                                                                                                                                                                                                                                                                                                                         |
| -                      | -             | Transfers the contents of register X to register A.                                                                                                                                                                                                                                                                                                                                                                                          |
| _                      | -             | Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.                                                                                                                                                                                                                                                                                                                                                  |
| Continuous description | -             | Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.                                                                                                                                                            |
| -                      | -             | Loads the value z in the immediate field to register Z.                                                                                                                                                                                                                                                                                                                                                                                      |
| (Y) = 0                | -             | Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in struction is skipped. When the contents of register Y is not 0, the next instruction is executed.                                                                                                                                                                                                                           |
| (Y) = 15               | -             | Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15 the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.                                                                                                                                                                                                                 |
| -                      | -             | After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg ister X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                                              |
| -                      | -             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per formed between register X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                              |
| (Y) = 15               | _             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15 the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed. |
| (Y) = 0                | -             | After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in struction is skipped. When the contents of register Y is not 0, the next instruction is executed.           |
| _                      | -             | After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.                                                                                                                                                                                                                                               |



| Parameter               | n        |    | Instruction code |    |    |    |        |        |        |        |        |                       | er of | er of<br>ds<br>er of | er of<br>ss        |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|----------|----|------------------|----|----|----|--------|--------|--------|--------|--------|-----------------------|-------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of instructions    | Mnemonic | D9 | D8               | D7 | D6 | D5 | D4     | D3     | D2     | D1     | D0     | Hexadecin<br>notation | _     | words                | Number o<br>cycles | Function                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | LA n     | 0  | 0                | 0  | 1  | 1  | 1      | n      | n      | n      | n      | 07 n                  | 1     |                      |                    | (A) ← n<br>n = 0 to 15                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | TABP p   | 0  | 0                | 1  | 0  | р5 | р4     | рз     | р2     | p1     | po     | 08p<br>+p             | 1     |                      | 3                  | $\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p (\text{Note}) \\ (\text{PCL}) \leftarrow (\text{DR2-DR0}, \text{A3-A0}) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))7-4 \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))3-0 \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \end{array}$ |
|                         | АМ       | 0  | 0                | 0  | 0  | 0  | 0      | 1      | 0      | 1      | 0      | 0 0 A                 | . 1   |                      | 1                  | $(A) \leftarrow (A) + (M(DP))$                                                                                                                                                                                                                                                                                                                                                                                                 |
| ration                  | AMC      | 0  | 0                | 0  | 0  | 0  | 0      | 1      | 0      | 1      | 1      | 0 0 B                 | 1     |                      | 1                  | $(A) \leftarrow (A) + (M(DP)) + (CY)$<br>$(CY) \leftarrow Carry$                                                                                                                                                                                                                                                                                                                                                               |
| Arithmetic operation    | A n      | 0  | 0                | 0  | 1  | 1  | 0      | n      | n      | n      | n      | 06 n                  | 1     |                      |                    | (A) ← (A) + n<br>n = 0 to 15                                                                                                                                                                                                                                                                                                                                                                                                   |
| Arith                   | AND      | 0  | 0                | 0  | 0  | 0  | 1      | 1      | 0      | 0      | 0      | 0 1 8                 | 1     |                      | 1                  | (A) ← (A) AND (M(DP))                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | OR       | 0  | 0                | 0  | 0  | 0  | 1      | 1      | 0      | 0      | 1      | 0 1 9                 | 1     |                      | 1                  | $(A) \leftarrow (A) \; OR \; (M(DP))$                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | sc       | 0  | 0                | 0  | 0  | 0  | 0      | 0      | 1      | 1      | 1      | 007                   | 1     |                      | 1                  | (CY) ← 1                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | RC       | 0  | 0                | 0  | 0  | 0  | 0      | 0      | 1      | 1      | 0      | 006                   | 1     |                      | 1                  | $(CY) \leftarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | szc      | 0  | 0                | 0  | 0  | 1  | 0      | 1      | 1      | 1      | 1      | 02F                   | 1     |                      | 1                  | (CY) = 0 ?                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | СМА      | 0  | 0                | 0  | 0  | 0  | 1      | 1      | 1      | 0      | 0      | 010                   | ;   1 |                      | 1                  | $(A) \leftarrow (\overline{A})$                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | RAR      | 0  | 0                | 0  | 0  | 0  | 1      | 1      | 1      | 0      | 1      | 010                   | ) 1   |                      | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                       | SB j     | 0  | 0                | 0  | 1  | 0  | 1      | 1      | 1      | j      | j      | 05C                   |       |                      |                    | (Mj(DP)) ← 1<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bit operation           | RB j     | 0  | 0                | 0  | 1  | 0  | 0      | 1      | 1      | j      | j      | 04C<br>+              |       |                      | 1                  | (Mj(DP)) ← 0<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bit op                  | SZB j    | 0  | 0                | 0  | 0  | 1  | 0      | 0      | 0      | j      | j      | 02j                   | 1     |                      |                    | (Mj(DP)) = 0 ?<br>j = 0 to 3                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | SEAM     | 0  | 0                | 0  | 0  | 1  | 0      | 0      | 1      | 1      | 0      | 026                   | 1     |                      | 1                  | (A) = (M(DP)) ?                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comparison<br>operation | SEA n    | 0  | 0                | 0  | 0  | 1  | 0<br>1 | 0<br>n | 1<br>n | 0<br>n | 1<br>n | 025<br>07 n           |       | 2                    | 2                  | (A) = n ?<br>n = 0 to 15                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |          |    | -                | -  | -  |    | -      | -      | -      |        | -      |                       |       |                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |

## MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: p is 0 to 63 for M34554M8,

p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.



| Skip condition             | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous<br>description  | -             | Loads the value n in the immediate field to register A.<br>When the LA instructions are continuously coded and executed, only the first LA instruction is executed and<br>other LA instructions coded continuously are skipped.                                                                                                                                                                                                                                                                                           |
| _                          | _             | Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad-<br>dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p.<br>When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.<br>The pages which can be referred as follows;<br>after the SBK instruction: 64 to 127<br>after the RBK instruction: 0 to 63<br>after system is released from reset or returned from power down: 0 to 63. |
| _                          | -             | Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY re-<br>mains unchanged.                                                                                                                                                                                                                                                                                                                                                                                          |
| -                          | 0/1           | Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                            |
| Overflow = 0               | _             | Adds the value n in the immediate field to register A, and stores a result in register A.<br>The contents of carry flag CY remains unchanged.<br>Skips the next instruction when there is no overflow as the result of operation.<br>Executes the next instruction when there is overflow as the result of operation.                                                                                                                                                                                                     |
| -                          | -             | Takes the AND operation between the contents of register A and the contents of $M(DP)$ , and stores the result in register A.                                                                                                                                                                                                                                                                                                                                                                                             |
| -                          | -             | Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                          | 1             | Sets (1) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                          | 0             | Clears (0) to carry flag CY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (CY) = 0                   | -             | Skips the next instruction when the contents of carry flag CY is "0."                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                          | -             | Stores the one's complement for register A's contents in register A.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                          | 0/1           | Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                          | -             | Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                          | -             | Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Mj(DP)) = 0<br>j = 0 to 3 | -             | Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."<br>Executes the next instruction when the contents of bit j of M(DP) is "1."                                                                                                                                                                                                                                                                                                                 |
| (A) = (M(DP))              | -             | Skips the next instruction when the contents of register A is equal to the contents of $M(DP)$ .<br>Executes the next instruction when the contents of register A is not equal to the contents of $M(DP)$ .                                                                                                                                                                                                                                                                                                               |
| (A) = n                    | _             | Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field. field.                                                                                                                                                                                                                                                                                       |

| Parameter            |          | Instruction code |    |    |            |            |    |            | cod        | le         |            |                         | er of<br>Is     | er of<br>es        |                                                                                                                                                                                     |
|----------------------|----------|------------------|----|----|------------|------------|----|------------|------------|------------|------------|-------------------------|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of instructions | Mnemonic | D9               | D8 | D7 | D6         | D5         | D4 | D3         | D2         | D1         | Do         | Hexadecimal<br>notation | Number of words | Number o<br>cycles | Function                                                                                                                                                                            |
|                      | Ва       | 0                | 1  | 1  | <b>a</b> 6 | <b>a</b> 5 | a4 | аз         | a2         | aı         | a0         | 1 8 a<br>+a             | 1               | 1                  | (PCL) ← a6–a0                                                                                                                                                                       |
| ation                | BL p, a  | 0                | 0  | 1  | 1          | 1          | p4 | рз         | p2         | p1         | p0         | 0 E p<br>+p             | 2               | 2                  | (PCH) ← p (Note)<br>(PCL) ← a6–a0                                                                                                                                                   |
| Branch operation     |          | 1                | p6 | p5 | <b>a</b> 6 | <b>a</b> 5 | a4 | a3         | a2         | <b>a</b> 1 | <b>a</b> 0 | 2 p a<br>+p+a           |                 |                    |                                                                                                                                                                                     |
| Bran                 | BLA p    | 0                | 0  | 0  | 0          | 0          | 1  | 0          | 0          | 0          | 0          | 0 1 0                   | 2               | 2                  | (PCH) ← p (Note)<br>(PCL) ← (DR2–DR0, A3–A0)                                                                                                                                        |
|                      |          | 1                | p6 | р5 | p4         | 0          | 0  | рз         | p2         | p1         | p0         | 2 p p<br>+p             |                 |                    | (, , , , , , , , , , , , , , , , , , ,                                                                                                                                              |
|                      | BM a     | 0                | 1  | 0  | <b>a</b> 6 | <b>a</b> 5 | a4 | аз         | <b>a</b> 2 | a1         | <b>a</b> 0 | 1 a a                   | 1               | 1                  | $\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow 2 \\ (\text{PCL}) \leftarrow a6a0 \end{array}$ |
| Subroutine operation | BML p, a | 0                | 0  | 1  | 1          | 0          | p4 | рз         | p2         | p1         | p0         | 0 C p<br>+p             | 2               | 2                  | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$<br>$(PCH) \leftarrow p (Note)$                                                                                             |
| outine o             |          | 1                | p6 | p5 | <b>a</b> 6 | <b>a</b> 5 | a4 | <b>a</b> 3 | a2         | <b>a</b> 1 | a0         | 2 p a<br>+p+a           |                 |                    | $(PCL) \leftarrow a6-a0$                                                                                                                                                            |
| Subr                 | BMLA p   | 0                | 0  | 0  | 0          | 1          | 1  | 0          | 0          | 0          | 0          | 030                     | 2               | 2                  | $(SP) \leftarrow (SP) + 1$<br>$(SK(SP)) \leftarrow (PC)$                                                                                                                            |
|                      |          | 1                | p6 | p5 | p4         | 0          | 0  | рз         | p2         | p1         | p0         | 2 p p<br>+p             |                 |                    |                                                                                                                                                                                     |
|                      | RTI      | 0                | 0  | 0  | 1          | 0          | 0  | 0          | 1          | 1          | 0          | 046                     | 1               | 1                  | $\begin{array}{l} (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$                                                                                                 |
| Return operation     | RT       | 0                | 0  | 0  | 1          | 0          | 0  | 0          | 1          | 0          | 0          | 044                     | 1               | 2                  | (PC) ← (SK(SP))<br>(SP) ← (SP) − 1                                                                                                                                                  |
| Retur                | RTS      | 0                | 0  | 0  | 1          | 0          | 0  | 0          | 1          | 0          | 1          | 045                     | 1               | 2                  | (PC) ← (SK(SP))<br>(SP) ← (SP) − 1                                                                                                                                                  |

## **MACHINE INSTRUCTIONS (continued)**

Note: p is 0 to 63 for M34554M8,

p is 0 to 95 for M34554MC and

p is 0 to 127 for M34554ED.

| Skip condition      | Carry flag CY | Datailed description                                                                                                                                                                                                                                                           |
|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                   | -             | Branch within a page : Branches to address a in the identical page.                                                                                                                                                                                                            |
| -                   | -             | Branch out of a page : Branches to address a in page p.                                                                                                                                                                                                                        |
| -                   | _             | Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.                                                                                                                                                                |
| -                   | -             | Call the subroutine in page 2 : Calls the subroutine at address a in page 2.                                                                                                                                                                                                   |
| -                   | -             | Call the subroutine : Calls the subroutine at address a in page p.                                                                                                                                                                                                             |
| -                   |               | Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D<br>and A in page p.                                                                                                                                                  |
| -                   |               | Returns from interrupt service routine to main routine.<br>Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de-<br>scription of the LA/LXY instruction, register A and register B to the states just before interrupt. |
| -                   | -             | Returns from subroutine to the routine called the subroutine.                                                                                                                                                                                                                  |
| Skip at uncondition | _             | Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.                                                                                                                                                                   |



| Parameter            |          | Instruction code |    |    |    |    |    |    |    | le |    |   | er of<br>Is | er of<br>Is   |                 |                    |                                                                            |
|----------------------|----------|------------------|----|----|----|----|----|----|----|----|----|---|-------------|---------------|-----------------|--------------------|----------------------------------------------------------------------------|
| Type of instructions | Mnemonic | D9               | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do |   |             | ecima<br>tion | Number of words | Number o<br>cycles | Function                                                                   |
|                      | DI       | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0 | 0           | 4             | 1               | 1                  | $(INTE) \leftarrow 0$                                                      |
|                      | EI       | 0                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0 | 0           | 5             | 1               | 1                  | (INTE) ← 1                                                                 |
|                      | SNZ0     | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0 | 3           | 8             | 1               | 1                  | V10 = 0: (EXF0) = 1 ?<br>After skipping, (EXF0) ← 0<br>V10 = 1: SNZ0 = NOP |
|                      | SNZ1     | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 0 | 3           | 9             | 1               | 1                  | V11 = 0: (EXF1) = 1 ?<br>After skipping, (EXF1) ← 0<br>V11 = 1: SNZ1 = NOP |
|                      | SNZI0    | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 0 | 3           | А             | 1               | 1                  | l12 = 1 : (INT0) = "H" ?                                                   |
| ion                  |          |                  |    |    |    |    |    |    |    |    |    |   |             |               |                 |                    | l12 = 0 : (INT0) = "L" ?                                                   |
| Interrupt operation  | SNZI1    | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 0 | 3           | В             | 1               | 1                  | I22 = 1 : (INT1) = "H" ?                                                   |
| Interru              |          |                  |    |    |    |    |    |    |    |    |    |   |             |               |                 |                    | I22 = 0 : (INT1) = "L" ?                                                   |
|                      | TAV1     | 0                | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 0 | 5           | 4             | 1               | 1                  | $(A) \leftarrow (V1)$                                                      |
|                      | TV1A     | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0 | 3           | F             | 1               | 1                  | $(V1) \leftarrow (A)$                                                      |
|                      | TAV2     | 0                | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0 | 5           | 5             | 1               | 1                  | $(A) \leftarrow (V2)$                                                      |
|                      | TV2A     | 0                | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 0 | 3           | Е             | 1               | 1                  | $(V2) \leftarrow (A)$                                                      |
|                      | TAI1     | 1                | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 1  | 2 | 5           | 3             | 1               | 1                  | $(A) \leftarrow (I1)$                                                      |
|                      | TI1A     | 1                | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 2 | 1           | 7             | 1               | 1                  | (I1) ← (A)                                                                 |
|                      | TAI2     | 1                | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 2 | 5           | 4             | 1               | 1                  | (A) ← (I2)                                                                 |
|                      | TI2A     | 1                | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 2 | 1           | 8             | 1               | 1                  | (I2) ← (A)                                                                 |
|                      | TPAA     | 1                | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 2 | A           | Α             | 1               | 1                  | $(PA0) \leftarrow (A0)$                                                    |
|                      | TAW1     | 1                | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 2 | 4           | В             | 1               | 1                  | $(A) \leftarrow (W1)$                                                      |
|                      | TW1A     | 1                | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 2 | 0           | Е             | 1               | 1                  | (W1) ← (A)                                                                 |
|                      | TAW2     | 1                | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 0  | 0  | 2 | 4           | С             | 1               | 1                  | $(A) \leftarrow (W2)$                                                      |
| ç                    | TW2A     | 1                | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 2 | 0           | F             | 1               | 1                  | (W2) ← (A)                                                                 |
| eratio               | TAW3     | 1                | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 2 | 4           | D             | 1               | 1                  | $(A) \leftarrow (W3)$                                                      |
| Timer operation      | ТѠЗА     | 1                | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 2 | 1           | 0             | 1               | 1                  | $(W3) \leftarrow (A)$                                                      |
| Time                 | TAW4     | 1                | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 2 | 4           | Е             | 1               | 1                  | $(A) \leftarrow (W4)$                                                      |
|                      | TW4A     | 1                | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 2 | 1           | 1             | 1               | 1                  | $(W4) \leftarrow (A)$                                                      |
|                      | TAW5     | 1                | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 2 | 4           | F             | 1               | 1                  | (A) ← (W5)                                                                 |
|                      | TW5A     | 1                | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 2 | 1           | 2             | 1               | 1                  | $(W5) \leftarrow (A)$                                                      |
|                      |          |                  |    |    |    |    |    |    |    |    |    |   |             |               |                 |                    |                                                                            |

# MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)



| Skip condition                   | Carry flag CY | Datailed description                                                                                                                                                                                                                                                                                                     |
|----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                | -             | Clears (0) to interrupt enable flag INTE, and disables the interrupt.                                                                                                                                                                                                                                                    |
| -                                | -             | Sets (1) to interrupt enable flag INTE, and enables the interrupt.                                                                                                                                                                                                                                                       |
| V10 = 0: (EXF0) = 1              | _             | When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1) |
| V11 = 0: (EXF1) = 1              | -             | When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1) |
| (INT0) = "H"<br>However, I12 = 1 | -             | When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control reg-<br>ister I1)                                                                                                                                                                                          |
| (INT0) = "L"<br>However, I12 = 0 | -             | When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L."                                                                                                                                                                                                                                             |
| (INT1) = "H"<br>However, I22 = 1 | _             | When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control reg-<br>ister I2)                                                                                                                                                                                          |
| (INT1) = "L"<br>However, I22 = 0 | -             | When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."                                                                                                                                                                                                                                             |
| -                                | -             | Transfers the contents of interrupt control register V1 to register A.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of register A to interrupt control register V1.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of interrupt control register V2 to register A.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of register A to interrupt control register V2.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of interrupt control register I1 to register A.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of register A to interrupt control register I1.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of interrupt control register I2 to register A.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of register A to interrupt control register I2.                                                                                                                                                                                                                                                   |
| -                                | -             | Transfers the contents of register A to timer control register PA.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of timer control register W1 to register A.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of register A to timer control register W1.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of timer control register W2 to register A.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of register A to timer control register W2.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of timer control register W3 to register A.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of register A to timer control register W3.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of timer control register W4 to register A.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of register A to timer control register W4.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of timer control register W5 to register A.                                                                                                                                                                                                                                                       |
| -                                | -             | Transfers the contents of register A to timer control register W5.                                                                                                                                                                                                                                                       |
|                                  |               |                                                                                                                                                                                                                                                                                                                          |

| Mnemonic | -                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Instruction code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ້ອ<br>ອີອອີອອີອອີອອີອອອອອອອອອອອອອອອອອອອອອອ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | D9                                                                                                                                     | D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ade<br>otati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cimal<br>ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of<br>words                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number c<br>cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TAW6     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (A) ← (W6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TW6A     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(W6) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TABPS    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TPSAB    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} (RPS7-RPS4) \leftarrow (B) \\ (TPS7-TPS4) \leftarrow (B) \\ (RPS3-RPS0) \leftarrow (A) \\ (TPS3-TPS0) \leftarrow (A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TAB1     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) ← (T17–T14)<br>(A) ← (T13–T10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T1AB     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(R17-R14) \leftarrow (B)$<br>$(T17-T14) \leftarrow (B)$<br>$(R13-R10) \leftarrow (A)$<br>$(T13-T10) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TAB2     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) ← (T27–T24)<br>(A) ← (T23–T20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T2AB     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(R27-R24) \leftarrow (B)$<br>(T27-T24) $\leftarrow (B)$<br>(R23-R20) $\leftarrow (A)$<br>(T23-T20) $\leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TAB3     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) ← (T37–T34)<br>(A) ← (T33–T30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ТЗАВ     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} (\text{R37-R34}) \leftarrow (\text{B}) \\ (\text{T37-T34}) \leftarrow (\text{B}) \\ (\text{R33-R30}) \leftarrow (\text{A}) \\ (\text{T33-T30}) \leftarrow (\text{A}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TAB4     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) ← (T47–T44)<br>(A) ← (T43–T40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T4AB     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(R4L7-R4L4) \leftarrow (B)$<br>$(T47-T44) \leftarrow (B)$<br>$(R4L3-R4L0) \leftarrow (A)$<br>$(T43-T40) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T4HAB    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (R4H7–R4H4) ← (B)<br>(R4H3–R4H0) ← (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TR1AB    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (R17–R14) ← (B)<br>(R13–R10) ← (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TR3AB    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (R37–R34) ← (B)<br>(R33–R30) ← (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T4R4L    | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (T47–T40) ← (R4L7–R4L0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TLCA     | 1                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(LC) \leftarrow (A)$<br>$(RLC) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | TW6A<br>TABPS<br>TPSAB<br>TAB1<br>TAB1<br>TAB2<br>TAB2<br>TAB2<br>TAB3<br>TAB3<br>TAB3<br>TAB3<br>TAB3<br>TAB4<br>T4AB<br>T4AB<br>T4AB | TW6A       1         TABPS       1         TPSAB       1         TAB1       1         TAB2       1         TAB2       1         TAB3       1         TAB3       1         TAB4       1         TAB3       1         TAB4       1         TAB3       1         TAB4       1         TAB5       1         TAB4       1         TAB5       1         TAB4       1         TAB5       1         TAB6       1 <td>TW6A       1       0         TABPS       1       0         TPSAB       1       0         TAB1       1       0         TAB1       1       0         TAB2       1       0         TAB2       1       0         TAB2       1       0         TAB3       1       0         TAB3       1       0         TAB4       1       0         TR1AB       1       0         TR3AB       1       0         TAB4       1       0         TR3AB       1       0         TAB4       1       0         TAB4       1       0&lt;</td> <td>TW6A       1       0       0         TABPS       1       0       0         TPSAB       1       0       0         TAB1       1       0       0         TAB1       1       0       0         TAB2       1       0       0         TAB2       1       0       0         TAB3       1       0       0         TAB3       1       0       0         TAB4       1       0       0         TAB3       1       0       0         TAB4       1       0       0         T4AB       1       0       0         T4AB       1       0       0         TAB4       1</td> <td>TW6A       1       0       0         TABPS       1       0       0         TPSAB       1       0       0       1         TAB1       1       0       0       1         TAB1       1       0       0       1         TAB1       1       0       0       1         TAB2       1       0       0       1         TAB2       1       0       0       1         TAB3       1       0       0       1         TAB3       1       0       0       1         TAB4       1       0       0       1         TAB3       1       0       0       1         TAB4       1       0       0       1         TAB4       1       0       0       0         TAB4       1       0       0       0         TAB4       1       0       0       0         TABA       1       0       0       0         TAB4       1       0       0       0         TAB4       1       0       0       0         TAB4</td> <td>TW6A10001TABPS10011TPSAB10011TAB110011TAB110011TAB210011TAB310011TAB310011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB4<th< td=""><td>TW6A100001TABPS10011TPSAB10011TAB110011TAB210011TAB310011TAB310011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB41011TAB410011TAB410011TAB410001TAB410001TAB410001TAB410001TAB4<th< td=""><td>TW6A       1       0       0       0       1       1       0         TABPS       1       0       0       1       1       1       0         TPSAB       1       0       0       1       1       1       0         TAB1       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB4       1       0       0       0       1       1</td><td>TW6A       1       0       0       0       1       1       0       1         TABPS       1       0       0       1       1       1       0       1         TPSAB       1       0       0       1       1       1       0       1         TAB1       1       0       0       1       1       1       0       0         TAB1       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB3       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       0       1       1       1       0       0         TAB4       1       0       0</td><td>TW6A       1       0       0       0       0       1       0       0       1         TABPS       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A10001001011TABPS1001111011011TPSAB1000111100011001TAB11000111100000TAB21000111000110001TAB31000111000110011TAB4100011100110011TAB41000111001100110TAB410001110011111111111111111111111111111111111111111111111111111111111<td< td=""><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       1       0       0       1       1       1       2       1       3       1         TABPS       1       0       0       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       1       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<></td></th<></td></th<></td> | TW6A       1       0         TABPS       1       0         TPSAB       1       0         TAB1       1       0         TAB1       1       0         TAB2       1       0         TAB2       1       0         TAB2       1       0         TAB3       1       0         TAB3       1       0         TAB4       1       0         TR1AB       1       0         TR3AB       1       0         TAB4       1       0         TR3AB       1       0         TAB4       1       0         TAB4       1       0< | TW6A       1       0       0         TABPS       1       0       0         TPSAB       1       0       0         TAB1       1       0       0         TAB1       1       0       0         TAB2       1       0       0         TAB2       1       0       0         TAB3       1       0       0         TAB3       1       0       0         TAB4       1       0       0         TAB3       1       0       0         TAB4       1       0       0         T4AB       1       0       0         T4AB       1       0       0         TAB4       1 | TW6A       1       0       0         TABPS       1       0       0         TPSAB       1       0       0       1         TAB1       1       0       0       1         TAB1       1       0       0       1         TAB1       1       0       0       1         TAB2       1       0       0       1         TAB2       1       0       0       1         TAB3       1       0       0       1         TAB3       1       0       0       1         TAB4       1       0       0       1         TAB3       1       0       0       1         TAB4       1       0       0       1         TAB4       1       0       0       0         TAB4       1       0       0       0         TAB4       1       0       0       0         TABA       1       0       0       0         TAB4       1       0       0       0         TAB4       1       0       0       0         TAB4 | TW6A10001TABPS10011TPSAB10011TAB110011TAB110011TAB210011TAB310011TAB310011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB4 <th< td=""><td>TW6A100001TABPS10011TPSAB10011TAB110011TAB210011TAB310011TAB310011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB41011TAB410011TAB410011TAB410001TAB410001TAB410001TAB410001TAB4<th< td=""><td>TW6A       1       0       0       0       1       1       0         TABPS       1       0       0       1       1       1       0         TPSAB       1       0       0       1       1       1       0         TAB1       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB4       1       0       0       0       1       1</td><td>TW6A       1       0       0       0       1       1       0       1         TABPS       1       0       0       1       1       1       0       1         TPSAB       1       0       0       1       1       1       0       1         TAB1       1       0       0       1       1       1       0       0         TAB1       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB3       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       0       1       1       1       0       0         TAB4       1       0       0</td><td>TW6A       1       0       0       0       0       1       0       0       1         TABPS       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A10001001011TABPS1001111011011TPSAB1000111100011001TAB11000111100000TAB21000111000110001TAB31000111000110011TAB4100011100110011TAB41000111001100110TAB410001110011111111111111111111111111111111111111111111111111111111111<td< td=""><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       1       0       0       1       1       1       2       1       3       1         TABPS       1       0       0       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       1       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<></td></th<></td></th<> | TW6A100001TABPS10011TPSAB10011TAB110011TAB210011TAB310011TAB310011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB410011TAB41011TAB410011TAB410011TAB410001TAB410001TAB410001TAB410001TAB4 <th< td=""><td>TW6A       1       0       0       0       1       1       0         TABPS       1       0       0       1       1       1       0         TPSAB       1       0       0       1       1       1       0         TAB1       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB4       1       0       0       0       1       1</td><td>TW6A       1       0       0       0       1       1       0       1         TABPS       1       0       0       1       1       1       0       1         TPSAB       1       0       0       1       1       1       0       1         TAB1       1       0       0       1       1       1       0       0         TAB1       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB3       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       0       1       1       1       0       0         TAB4       1       0       0</td><td>TW6A       1       0       0       0       0       1       0       0       1         TABPS       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A10001001011TABPS1001111011011TPSAB1000111100011001TAB11000111100000TAB21000111000110001TAB31000111000110011TAB4100011100110011TAB41000111001100110TAB410001110011111111111111111111111111111111111111111111111111111111111<td< td=""><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       1       0       0       1       1       1       2       1       3       1         TABPS       1       0       0       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       1       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<></td></th<> | TW6A       1       0       0       0       1       1       0         TABPS       1       0       0       1       1       1       0         TPSAB       1       0       0       1       1       1       0         TAB1       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB2       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB3       1       0       0       1       1       1       0         TAB4       1       0       0       0       1       1 | TW6A       1       0       0       0       1       1       0       1         TABPS       1       0       0       1       1       1       0       1         TPSAB       1       0       0       1       1       1       0       1         TAB1       1       0       0       1       1       1       0       0         TAB1       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB2       1       0       0       1       1       1       0       0         TAB3       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       1       1       1       0       0         TAB4       1       0       0       0       1       1       1       0       0         TAB4       1       0       0 | TW6A       1       0       0       0       0       1       0       0       1         TABPS       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | TW6A10001001011TABPS1001111011011TPSAB1000111100011001TAB11000111100000TAB21000111000110001TAB31000111000110011TAB4100011100110011TAB41000111001100110TAB410001110011111111111111111111111111111111111111111111111111111111111 <td< td=""><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TWGA       1       0       0       1       0       0       1       1       1       2       1       3       1         TABPS       1       0       0       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td>TW6A       1       0       0       1       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td></td<> | TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | TW6A       1       0       0       0       1       0       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | TWGA       1       0       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | TWGA       1       0       0       1       0       0       1       1       1       2       1       3       1         TABPS       1       0       0       1       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | TW6A       1       0       0       1       0       0       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |



|                | С<br>С       |                                                                                                                                                                                                                                |
|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skip condition | Carry flag ( | Datailed description                                                                                                                                                                                                           |
|                | -            | Transfers the contents of timer control register W6 to register A.                                                                                                                                                             |
| -              | _            | Transfers the contents of register A to timer control register W6.                                                                                                                                                             |
| -              | -            | Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.                                                                                                     |
| -              | -            | Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS. |
| -              | -            | Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to regis-<br>ter A.                                                                                                    |
| _              | -            | Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.           |
| -              | -            | Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to regis-<br>ter A.                                                                                                    |
| -              | -            | Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.           |
| -              | -            | Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to regis-<br>ter A.                                                                                                    |
| _              | -            | Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.           |
| _              | -            | Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to regis-<br>ter A.                                                                                                    |
| _              | -            | Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.         |
| _              | -            | Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.                                 |
| -              | -            | Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.                                   |
| _              | -            | Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.                                   |
| -              | -            | Transfers the contents of timer 4 reload register R4L to timer 4.                                                                                                                                                              |
| _              | -            | Transfers the contents of register A to timer LC and timer LC reload register RLC.                                                                                                                                             |
|                |              |                                                                                                                                                                                                                                |
|                |              |                                                                                                                                                                                                                                |



| Parameter              | r        | Instruction code |    |    |    |    |    |    |    | le |    |   |             |               | er of<br>ds        | er of<br>es         | <b>5</b> :                                                                  |
|------------------------|----------|------------------|----|----|----|----|----|----|----|----|----|---|-------------|---------------|--------------------|---------------------|-----------------------------------------------------------------------------|
| Type of instructions   | Mnemonic | D9               | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do |   | ade<br>otat | ecimal<br>ion | Number of<br>words | Number of<br>cycles | Function                                                                    |
|                        | SNZT1    | 1                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2 | 8           | 0             | 1                  | 1                   | V12 = 0: (T1F) = 1 ?<br>After skipping, (T1F) ← 0    V12 = 1: NOP           |
| tion                   | SNZT2    | 1                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 2 | 8           | 1             | 1                  | 1                   | V13 = 0: (T2F) = 1 ?<br>After skipping, (T2F) ← 0   V13 = 1: NOP            |
| Timer operation        | SNZT3    | 1                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 2 | 8           | 2             | 1                  | 1                   | V20 = 0: (T3F) = 1 ?<br>After skipping, (T3F) ← 0    V20 = 1: NOP           |
| Time                   | SNZT4    | 1                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 2 | 8           | 3             | 1                  | 1                   | V23 = 0: (T4F) = 1 ?<br>After skipping, (T4F) ← 0    V23 = 1: NOP           |
|                        | SNZT5    | 1                | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 2 | 8           | 4             | 1                  | 1                   | V21 = 0: (T5F) = 1 ?<br>After skipping, (T5F) ← 0 V21 = 1: NOP              |
|                        | IAP0     | 1                | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 2 | 6           | 0             | 1                  | 1                   | $(A) \leftarrow (P0)$                                                       |
|                        | OP0A     | 1                | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 2 | 2           | 0             | 1                  | 1                   | $(P0) \leftarrow (A)$                                                       |
|                        | IAP1     | 1                | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 1  | 2 | 6           | 1             | 1                  | 1                   | (A) ← (P1)                                                                  |
|                        | OP1A     | 1                | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 2 | 2           | 1             | 1                  | 1                   | $(P1) \leftarrow (A)$                                                       |
|                        | IAP2     | 1                | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 2 | 6           | 2             | 1                  | 1                   | (A) ← (P2)                                                                  |
|                        | IAP3     | 1                | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 1  | 2 | 6           | 3             | 1                  | 1                   | (A) ← (P3)                                                                  |
|                        | CLD      | 0                | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 0 | 1           | 1             | 1                  | 1                   | (D) ← 1                                                                     |
|                        | RD       | 0                | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0 | 1           | 4             | 1                  | 1                   | $\begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 9 \end{array}$ |
|                        | SD       | 0                | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0 | 1           | 5             | 1                  | 1                   | $(D(Y)) \leftarrow 1$<br>(Y) = 0  to  9                                     |
| tion                   | SZD      | 0                | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0 | 2           | 4             | 1                  | 1                   | (D(Y)) = 0?                                                                 |
| ppera                  |          | 0                | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 0 | 2           | в             | 1                  | 1                   | (Y) = 0 to 7                                                                |
| tput o                 | RCP      | 1                | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 2 | 8           | С             | 1                  | 1                   | $(C) \leftarrow 0$                                                          |
| Input/Output operation | SCP      | 1                | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 2 | 8           | D             | 1                  | 1                   | $(C) \leftarrow 1$                                                          |
| lnpu                   | TAPU0    | 1                | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 2 | 5           | 7             | 1                  | 1                   | $(A) \leftarrow (PU0)$                                                      |
|                        | TPU0A    | 1                | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 2 | 2           | D             | 1                  | 1                   | $(PU0) \leftarrow (A)$                                                      |
|                        | TAPU1    | 1                | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 2 | 5           | Е             | 1                  | 1                   | $(A) \leftarrow (PU1)$                                                      |
|                        | TPU1A    | 1                | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 2 | 2           | Е             | 1                  | 1                   | $(PU1) \leftarrow (A)$                                                      |
|                        |          |                  |    |    |    |    |    |    |    |    |    |   |             |               |                    |                     |                                                                             |



|                                   | ~             |                                                                                                                                                                                       |
|-----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skip condition                    | Carry flag CY | Datailed description                                                                                                                                                                  |
| V12 = 0: (T1F) = 1                | -             | Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the con-<br>tents of T1F flag is "1." After skipping, clears (0) to T1F flag. |
| V13 = 0: (T2F) =1                 | -             | Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the con-<br>tents of T2F flag is "1." After skipping, clears (0) to T2F flag. |
| V20 = 0: (T3F) = 1                | -             | Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 is "0" and the con-<br>tents of T3F flag is "1." After skipping, clears (0) to T3F flag. |
| V23 = 0: (T4F) =1                 | -             | Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and the con-<br>tents of T4F flag is "1." After skipping, clears (0) to T4F flag. |
| V21 = 0: (T5F) =1                 | -             | Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the con-<br>tents of T5F flag is "1." After skipping, clears (0) to T5F flag. |
| -                                 | -             | Transfers the input of port P0 to register A.                                                                                                                                         |
| -                                 | -             | Outputs the contents of register A to port P0.                                                                                                                                        |
| _                                 | -             | Transfers the input of port P1 to register A.                                                                                                                                         |
| _                                 | -             | Outputs the contents of register A to port P1.                                                                                                                                        |
| -                                 | _             | Transfers the input of port P2 to register A.                                                                                                                                         |
| -                                 | _             | Transfers the input of port P3 to register A.                                                                                                                                         |
| -                                 | _             | Sets (1) to all port D.                                                                                                                                                               |
| -                                 | -             | Clears (0) to a bit of port D specified by register Y.                                                                                                                                |
| -                                 | -             | Sets (1) to a bit of port D specified by register Y.                                                                                                                                  |
| (D(Y)) = 0<br>However, (Y)=0 to 7 | _             | Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."                    |
| -                                 | _             | Clears (0) to port C.                                                                                                                                                                 |
| -                                 | _             | Sets (1) to port C.                                                                                                                                                                   |
| -                                 | -             | Transfers the contents of pull-up control register PU0 to register A.                                                                                                                 |
| _                                 | -             | Transfers the contents of register A to pull-up control register PU0.                                                                                                                 |
| -                                 | _             | Transfers the contents of pull-up control register PU1 to register A.                                                                                                                 |
| -                                 | -             | Transfers the contents of register A to pull-up control register PU1.                                                                                                                 |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |
|                                   |               |                                                                                                                                                                                       |



| Paramete               | r        |    | Instruction code ခြင်္ခ နိုင်ငံ<br>မြန်နိုင်ငံ ခြင်ခိုင်ငံ မြန်နိုင်ငံ မြန်နိုင်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန်ငံမှန် |    |    |    |    |    |    |    |    |      |              |   |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                         |  |
|------------------------|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|------|--------------|---|-----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Type of<br>nstructions | Mnemonic | D9 | D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do | Hexa | ade<br>otati |   | Number<br>words | Number (<br>cycles | $\begin{array}{l} (0) \leftarrow (A) \\ (1) \leftarrow (K1) \\ (1) \leftarrow (A) \\ (2) \leftarrow (K2) \\ (2) \leftarrow (K2) \\ (2) \leftarrow (A) \\ (R0) \leftarrow (A) \\ (R1) \leftarrow (A) \\ (R2) \leftarrow (A) \\ (R2) \leftarrow (A) \\ (1) \leftarrow (A) \\ (2) \leftarrow (L1) \\ (1) \leftarrow (A) \\ (2) \leftarrow (A) \\ (3) \leftarrow (A) \\ (4) \\ \end{array}$ |  |
|                        | TAK0     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 2    | 5            | 6 | 1               | 1                  | (A) ← (K0)                                                                                                                                                                                                                                                                                                                                                                              |  |
|                        | ткоа     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 2    | 1            | В | 1               | 1                  | (K0) ← (A)                                                                                                                                                                                                                                                                                                                                                                              |  |
| ion                    | TAK1     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 2    | 5            | 9 | 1               | 1                  | $(A) \leftarrow (K1)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| perat                  | TK1A     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 2    | 1            | 4 | 1               | 1                  | $(K1) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| put o                  | TAK2     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 2    | 5            | А | 1               | 1                  | $(A) \leftarrow (K2)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| Input/Output operation | TK2A     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 2    | 1            | 5 | 1               | 1                  | $(K2) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| ndul                   | TFR0A    | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 2    | 2            | 8 | 1               | 1                  | (FR0) ← (A)                                                                                                                                                                                                                                                                                                                                                                             |  |
|                        | TFR1A    | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 2    | 2            | 9 | 1               | 1                  | $(FR1) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                  |  |
|                        | TFR2A    | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 2    | 2            | А | 1               | 1                  | $(FR2) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                  |  |
| ç                      | TAL1     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 2    | 4            | А | 1               | 1                  | (A) ← (L1)                                                                                                                                                                                                                                                                                                                                                                              |  |
| LCD operation          | TL1A     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 2    | 0            | А | 1               | 1                  | (L1) ← (A)                                                                                                                                                                                                                                                                                                                                                                              |  |
| D ope                  | TL2A     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 2    | 0            | В | 1               | 1                  | $(L2) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| LC                     | TL3A     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 2    | 0            | С | 1               | 1                  | (L3) ← (A)                                                                                                                                                                                                                                                                                                                                                                              |  |
| ion                    | СМСК     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 2    | 9            | А | 1               | 1                  | Ceramic resonator selected                                                                                                                                                                                                                                                                                                                                                              |  |
| oerati                 | CRCK     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 2    | 9            | В | 1               | 1                  | RC oscillator selected                                                                                                                                                                                                                                                                                                                                                                  |  |
| Clock operation        | TAMR     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 2    | 5            | 2 | 1               | 1                  | $(A) \leftarrow (MR)$                                                                                                                                                                                                                                                                                                                                                                   |  |
| G                      | TMRA     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 2    | 1            | 6 | 1               | 1                  | $(MR) \leftarrow (A)$                                                                                                                                                                                                                                                                                                                                                                   |  |
|                        | NOP      | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0            | 0 | 1               | 1                  | $(PC) \leftarrow (PC) + 1$                                                                                                                                                                                                                                                                                                                                                              |  |
|                        | POF      | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0    | 0            | 2 | 1               | 1                  | Transition to clock operating mode                                                                                                                                                                                                                                                                                                                                                      |  |
|                        | POF2     | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0    | 0            | 8 | 1               | 1                  | Transition to RAM back-up mode                                                                                                                                                                                                                                                                                                                                                          |  |
|                        | EPOF     | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0    | 5            | в | 1               | 1                  | POF, POF2 instructions valid                                                                                                                                                                                                                                                                                                                                                            |  |
|                        | SNZP     | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0    | 0            | 3 | 1               | 1                  | (P) = 1 ?                                                                                                                                                                                                                                                                                                                                                                               |  |
| Other operation        | WRST     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 2    | A            | 0 | 1               | 1                  | (WDF1) = 1 ?<br>After skipping, (WDF1) ← 0                                                                                                                                                                                                                                                                                                                                              |  |
| ther of                | DWDT     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 2    | 9            | С | 1               | 1                  | Stop of watchdog timer function enabled                                                                                                                                                                                                                                                                                                                                                 |  |
| Ö                      | RBK*     | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 4            | 0 | 1               | 1                  | When TABP p instruction is executed, P6 $\leftarrow$                                                                                                                                                                                                                                                                                                                                    |  |
| SBK*                   |          | 0  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0    | 4            | 1 | 1               | 1                  | When TABP p instruction is executed, P6 $\leftarrow$                                                                                                                                                                                                                                                                                                                                    |  |
|                        | SVDE     | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 2    | 9            | 3 | 1               | 1                  | At power down mode, voltage drop detection circuit valid                                                                                                                                                                                                                                                                                                                                |  |

## MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Note: \* (SBK, RBK) cannot be used in the M34554M8.

The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.



| Skip condition | Carry flag CY | Datailed description                                                                                                                                                                                                                 |
|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -              | -             | Transfers the contents of key-on wakeup control register K0 to register A.                                                                                                                                                           |
| -              | -             | Transfers the contents of register A to key-on wakeup control register K0.                                                                                                                                                           |
| -              | -             | Transfers the contents of key-on wakeup control register K1 to register A.                                                                                                                                                           |
| _              | -             | Transfers the contents of register A to key-on wakeup control register K1.                                                                                                                                                           |
| _              | -             | Transfers the contents of key-on wakeup control register K2 to register A.                                                                                                                                                           |
| -              | -             | Transfers the contents of register A to key-on wakeup control register K2.                                                                                                                                                           |
| -              | -             | Transferts the contents of register A to port output format control register FR0.                                                                                                                                                    |
| -              | _             | Transferts the contents of register A to port output format control register FR1.                                                                                                                                                    |
| -              | _             | Transferts the contents of register A to port output format control register FR2.                                                                                                                                                    |
| -              | _             | Transfers the contents of LCD control register L1 to register A.                                                                                                                                                                     |
| -              | _             | Transfers the contents of register A to LCD control register L1.                                                                                                                                                                     |
| -              | _             | Transfers the contents of register A to LCD control register L2.                                                                                                                                                                     |
| -              | -             | Transfers the contents of register A to LCD control register L3.                                                                                                                                                                     |
| _              | -             | Selects the ceramic resonator for main clock, stops the on-chip oscillator (internal oscillator).                                                                                                                                    |
| -              | -             | Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).                                                                                                                               |
| -              | -             | Transfers the contents of clock control regiser MR to register A.                                                                                                                                                                    |
| -              | -             | Transfers the contents of register A to clock control register MR.                                                                                                                                                                   |
| _              | -             | No operation; Adds 1 to program counter value, and others remain unchanged.                                                                                                                                                          |
| -              | -             | Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.                                                                                                                       |
| -              | -             | Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.                                                                                                                         |
| -              | _             | Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.                                                                                                                                           |
| (P) = 1        | _             | Skips the next instruction when the P flag is "1".<br>After skipping, the P flag remains unchanged.                                                                                                                                  |
| (WDF1) = 1     |               | Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag.<br>Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction. |
| -              | -             | Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.                                                                                                                                      |
| _              |               | Sets referring data area to pages 0 to 63 when the TABP p instruction is executed.<br>This instruction is valid only for the TABP p instruction.                                                                                     |
| -              | -             | Sets referring data area to pages 64 to 127 when the TABP p instruction is executed.<br>This instruction is valid only for the TABP p instruction.                                                                                   |
| _              | _             | Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode) when VDCE pin is "H".                                                                                                         |
|                |               |                                                                                                                                                                                                                                      |

### INSTRUCTION CODE TABLE

| NOT   |                  |        | 001    |          | DLE    |         |         |         |          |            |            |             |             |        |        |        |        |                  |       |
|-------|------------------|--------|--------|----------|--------|---------|---------|---------|----------|------------|------------|-------------|-------------|--------|--------|--------|--------|------------------|-------|
| Ľ     | 09–D4            | 000000 | 000001 | 000010   | 000011 | 000100  | 000101  | 000110  | 000111   | 001000     | 001001     | 001010      | 001011      | 001100 | 001101 | 001110 | 001111 | 010000<br>010111 |       |
| D3-D0 | Hex.<br>notation | 00     | 01     | 02       | 03     | 04      | 05      | 06      | 07       | 08         | 09         | 0A          | 0B          | 0C     | 0D     | 0E     | 0F     | 10–17            | 18–1F |
| 0000  | 0                | NOP    | BLA    | SZB<br>0 | BMLA   | RBK**   | TASP    | A<br>0  | LA<br>0  | TABP<br>0  | TABP<br>16 | TABP<br>32* | TABP<br>48* | BML    | BML    | BL     | BL     | BM               | В     |
| 0001  | 1                | -      | CLD    | SZB<br>1 | -      | SBK**   | TAD     | A<br>1  | LA<br>1  | TABP<br>1  | TABP<br>17 | TABP<br>33* | TABP<br>49* | BML    | BML    | BL     | BL     | BM               | В     |
| 0010  | 2                | POF    | _      | SZB<br>2 | -      | -       | ТАХ     | A<br>2  | LA<br>2  | TABP<br>2  | TABP<br>18 | TABP<br>34* | TABP<br>50* | BML    | BML    | BL     | BL     | BM               | В     |
| 0011  | 3                | SNZP   | INY    | SZB<br>3 | -      | -       | TAZ     | A<br>3  | LA<br>3  | TABP<br>3  | TABP<br>19 | TABP<br>35* | TABP<br>51* | BML    | BML    | BL     | BL     | BM               | В     |
| 0100  | 4                | DI     | RD     | SZD      | -      | RT      | TAV1    | A<br>4  | LA<br>4  | TABP<br>4  | TABP<br>20 | TABP<br>36* | TABP<br>52* | BML    | BML    | BL     | BL     | BM               | В     |
| 0101  | 5                | EI     | SD     | SEAn     | -      | RTS     | TAV2    | A<br>5  | LA<br>5  | TABP<br>5  | TABP<br>21 | TABP<br>37* | TABP<br>53* | BML    | BML    | BL     | BL     | BM               | В     |
| 0110  | 6                | RC     | -      | SEAM     | -      | RTI     | -       | A<br>6  | LA<br>6  | TABP<br>6  | TABP<br>22 | TABP<br>38* | TABP<br>54* | BML    | BML    | BL     | BL     | BM               | В     |
| 0111  | 7                | SC     | DEY    | -        | _      | _       | _       | A<br>7  | LA<br>7  | TABP<br>7  | TABP<br>23 | TABP<br>39* | TABP<br>55* | BML    | BML    | BL     | BL     | BM               | В     |
| 1000  | 8                | POF2   | AND    | -        | SNZ0   | LZ<br>0 | -       | A<br>8  | LA<br>8  | TABP<br>8  | TABP<br>24 | TABP<br>40* | TABP<br>56* | BML    | BML    | BL     | BL     | BM               | В     |
| 1001  | 9                | _      | OR     | TDA      | SNZ1   | LZ<br>1 | _       | A<br>9  | LA<br>9  | TABP<br>9  | TABP<br>25 | TABP<br>41* | TABP<br>57* | BML    | BML    | BL     | BL     | BM               | В     |
| 1010  | А                | AM     | TEAB   | TABE     | SNZI0  | LZ<br>2 | _       | A<br>10 | LA<br>10 | TABP<br>10 | TABP<br>26 | TABP<br>42* | TABP<br>58* | BML    | BML    | BL     | BL     | вм               | в     |
| 1011  | В                | AMC    | _      | -        | SNZI1  | LZ<br>3 | EPOF    | A<br>11 | LA<br>11 | TABP<br>11 | TABP<br>27 | TABP<br>43* | TABP<br>59* | BML    | BML    | BL     | BL     | BM               | в     |
| 1100  | С                | TYA    | СМА    | -        | _      | RB<br>0 | SB<br>0 | A<br>12 | LA<br>12 | TABP<br>12 | TABP<br>28 | TABP<br>44* | TABP<br>60* | BML    | BML    | BL     | BL     | вм               | в     |
| 1101  | D                | -      | RAR    | -        | _      | RB<br>1 | SB<br>1 | A<br>13 | LA<br>13 | TABP<br>13 | TABP<br>29 | TABP<br>45* | TABP<br>61* | BML    | BML    | BL     | BL     | вм               | в     |
| 1110  | Е                | ТВА    | ТАВ    | -        | TV2A   | RB<br>2 | SB<br>2 | A<br>14 | LA<br>14 | TABP<br>14 | TABP<br>30 | TABP<br>46* | TABP<br>62* | BML    | BML    | BL     | BL     | вм               | В     |
| 1111  | F                | -      | TAY    | szc      | TV1A   | RB<br>3 | SB<br>3 | A<br>15 | LA<br>15 | TABP<br>15 | TABP<br>31 | TABP<br>47* | TABP<br>63* | BML    | BML    | BL     | BL     | BM               | В     |

The above table shows the relationship between machine language codes and machine language instructions. D<sub>3</sub>–D<sub>0</sub> show the low-order 4 bits of the machine language code, and D<sub>9</sub>–D<sub>4</sub> show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

|      | The | secon | d word |
|------|-----|-------|--------|
| BL   | 1p  | paaa  | aaaa   |
| BML  | 1р  | paaa  | aaaa   |
| BLA  | 1p  | pp00  | рррр   |
| BMLA | 1p  | pp00  | рррр   |
| SEA  | 00  | 0111  | nnnn   |
| SZD  | 00  | 0010  | 1011   |

- \*\* (SBK and RBK instructions) cannot be used in the M34554M8.
- $\vec{}$  \* cannot be used after the SBK instruction is executed in the M34554MC.
  - A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34554MC/ED.
  - The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.
  - The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34554ED.
    - (Ex. TABP  $0 \rightarrow TABP 64$ )
  - The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.
  - When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.

|       |                  |        |        |        |        |        |        | -      |        |        |        |        |           |           |           |            |            |                  |
|-------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|-----------|-----------|------------|------------|------------------|
|       | D9–D4            | 100000 | 100001 | 100010 | 100011 | 100100 | 100101 | 100110 | 100111 | 101000 | 101001 | 101010 | 101011    | 101100    | 101101    | 101110     | 101111     | 110000<br>111111 |
| D3–D0 | Hex.<br>notation | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 2A     | 2B        | 2C        | 2D        | 2E         | 2F         | 30–3F            |
| 0000  | 0                | -      | тwза   | OP0A   | T1AB   | -      | TAW6   | IAP0   | TAB1   | SNZT1  | -      | WRST   | ТМА<br>0  | TAM<br>0  | XAM<br>0  | XAMI<br>0  | XAMD<br>0  | LXY              |
| 0001  | 1                | _      | TW4A   | OP1A   | T2AB   | -      | _      | IAP1   | TAB2   | SNZT2  | -      | -      | TMA<br>1  | TAM<br>1  | XAM<br>1  | XAMI<br>1  | XAMD<br>1  | LXY              |
| 0010  | 2                | -      | TW5A   | -      | ТЗАВ   | -      | TAMR   | IAP2   | ТАВЗ   | SNZT3  | -      | -      | TMA<br>2  | TAM<br>2  | XAM<br>2  | XAMI<br>2  | XAMD<br>2  | LXY              |
| 0011  | 3                | I      | TW6A   | -      | T4AB   | -      | TAI1   | IAP3   | TAB4   | SNZT4  | SVDE   | -      | TMA<br>3  | TAM<br>3  | XAM<br>3  | XAMI<br>3  | XAMD<br>3  | LXY              |
| 0100  | 4                | -      | TK1A   | -      | -      | -      | TAI2   | -      | -      | SNZT5  | -      | -      | TMA<br>4  | TAM<br>4  | XAM<br>4  | XAMI<br>4  | XAMD<br>4  | LXY              |
| 0101  | 5                | -      | TK2A   | -      | TPSAB  | _      | -      | _      | TABPS  | _      | -      | -      | TMA<br>5  | TAM<br>5  | XAM<br>5  | XAMI<br>5  | XAMD<br>5  | LXY              |
| 0110  | 6                | -      | TMRA   | -      | -      | -      | TAK0   | -      | -      | -      | -      | -      | TMA<br>6  | TAM<br>6  | XAM<br>6  | XAMI<br>6  | XAMD<br>6  | LXY              |
| 0111  | 7                | -      | TI1A   | -      | T4HAB  | _      | TAPU0  | -      | -      | -      | T4R4L  | _      | TMA<br>7  | TAM<br>7  | XAM<br>7  | XAMI<br>7  | XAMD<br>7  | LXY              |
| 1000  | 8                | Ι      | TI2A   | TFR0A  | -      | -      | -      | Ι      | -      | -      | -      | -      | TMA<br>8  | TAM<br>8  | XAM<br>8  | XAMI<br>8  | XAMD<br>8  | LXY              |
| 1001  | 9                | Ι      | -      | TFR1A  | -      | -      | TAK1   | Ι      | -      | -      | -      | -      | TMA<br>9  | TAM<br>9  | XAM<br>9  | XAMI<br>9  | XAMD<br>9  | LXY              |
| 1010  | А                | TL1A   | -      | TFR2A  | -      | TAL1   | TAK2   | Ι      | -      | -      | смск   | TPAA   | TMA<br>10 | TAM<br>10 | XAM<br>10 | XAMI<br>10 | XAMD<br>10 | LXY              |
| 1011  | В                | TL2A   | TK0A   | -      | TR3AB  | TAW1   | -      | -      | -      | -      | CRCK   | -      | TMA<br>11 | TAM<br>11 | XAM<br>11 | XAMI<br>11 | XAMD<br>11 | LXY              |
| 1100  | с                | TL3A   | -      | -      | -      | TAW2   | -      | -      | -      | RCP    | DWDT   | _      | TMA<br>12 | TAM<br>12 | XAM<br>12 | XAMI<br>12 | XAMD<br>12 | LXY              |
| 1101  | D                | TLCA   | -      | TPU0A  | -      | ТАWЗ   | _      |        | -      | SCP    | -      | -      | TMA<br>13 | TAM<br>13 | XAM<br>13 | XAMI<br>13 | XAMD<br>13 | LXY              |
| 1110  | E                | TW1A   | -      | TPU1A  | -      | TAW4   | TAPU1  | Ι      | _      | -      | _      | _      | TMA<br>14 | TAM<br>14 | XAM<br>14 | XAMI<br>14 | XAMD<br>14 | LXY              |
| 1111  | F                | TW2A   | -      | -      | TR1AB  | TAW5   | _      | _      | -      | -      | -      | -      | TMA<br>15 | TAM<br>15 | XAM<br>15 | XAMI<br>15 | XAMD<br>15 | LXY              |

### **INSTRUCTION CODE TABLE (continued)**

The above table shows the relationship between machine language codes and machine language instructions.  $D_3-D_0$  show the loworder 4 bits of the machine language code, and  $D_9-D_4$  show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

|      | The | secon | d word |
|------|-----|-------|--------|
| BL   | 1р  | paaa  | aaaa   |
| BML  | 1p  | paaa  | aaaa   |
| BLA  | 1р  | pp00  | рррр   |
| BMLA | 1p  | pp00  | рррр   |
| SEA  | 00  | 0111  | nnnn   |
| SZD  | 00  | 0010  | 1011   |



## **ABSOLUTE MAXIMUM RATINGS**

| Symbol | Parameter                                                   | Conditions                          | Ratings         | Unit |
|--------|-------------------------------------------------------------|-------------------------------------|-----------------|------|
| Vdd    | Supply voltage                                              |                                     | -0.3 to 6.5     | V    |
| VI     | Input voltage P0, P1, P2, P3, D0–D7, RESET, XIN, XCIN, VDCE |                                     | -0.3 to VDD+0.3 | V    |
| VI     | Input voltage CNTR0, CNTR1, INT0, INT1                      |                                     | -0.3 to VDD+0.3 | V    |
| Vo     | Output voltage P0, P1, D0–D9, RESET, CNTR0, CNTR1           | Output transistors in cut-off state | -0.3 to VDD+0.3 | V    |
| Vo     | Output voltage C, XOUT, XCOUT                               |                                     | -0.3 to VDD+0.3 | V    |
| Vo     | Output voltage SEG0–SEG31, COM0–COM3                        |                                     | -0.3 to VDD+0.3 | V    |
| Pd     | Power dissipation                                           | Ta = 25 °C                          | 300             | mW   |
| Topr   | Operating temperature range                                 |                                     | -20 to 85       | °C   |
| Tstg   | Storage temperature range                                   |                                     | -40 to 125      | °C   |



### **RECOMMENDED OPERATING CONDITIONS 1**

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted)

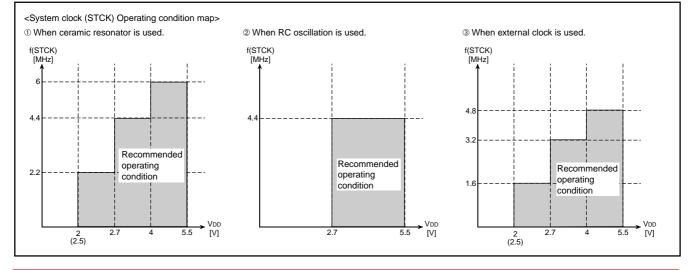
(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol     | Parameter                                       | Conditio                  | ons                           |         | Limits |         | Unit     |
|------------|-------------------------------------------------|---------------------------|-------------------------------|---------|--------|---------|----------|
| ,          |                                                 |                           | 1                             | Min.    | Тур.   | Max.    | V        |
| Vdd        | Supply voltage                                  | Mask ROM version          | $f(STCK) \le 6 MHz$           | 4       |        | 5.5     | - ×      |
|            | (when ceramic resonator is used)                |                           | $f(STCK) \le 4.4 \text{ MHz}$ | 2.7     |        | 5.5     | 4        |
|            |                                                 |                           | f(STCK) ≤ 2.2 MHz             | 2       |        | 5.5     | -        |
|            |                                                 | One Time PROM version     | · ,                           | 4       |        | 5.5     | -        |
|            |                                                 |                           | f(STCK) ≤ 4.4 MHz             | 2.7     |        | 5.5     | -        |
|            |                                                 |                           | f(STCK) ≤ 2.2 MHz             | 2.5     |        | 5.5     | <u> </u> |
| Vdd        | Supply voltage<br>(when RC oscillation is used) | f(STCK) ≤ 4.4 MHz         |                               | 2.7     |        | 5.5     | V        |
| VRAM       | RAM back-up voltage                             | at RAM back-up mode       |                               | 1.8     |        |         | V        |
| Vss        | Supply voltage                                  |                           |                               |         | 0      |         | V        |
| VLC3       | LCD power supply (Note 1)                       | Mask ROM version          |                               | 2       |        | Vdd     | V        |
|            |                                                 | One Time PROM version     |                               | 2.5     |        | Vdd     |          |
| Viн        | "H" level input voltage                         | P0, P1, P2, P3, D0-D7, VI | DCE                           | 0.8Vdd  |        | Vdd     | V        |
| Viн        | "H" level input voltage                         | XIN, XCIN                 |                               | 0.7Vdd  |        | Vdd     | V        |
| Vih        | "H" level input voltage                         | RESET                     |                               | 0.85Vdd |        | Vdd     | V        |
| Viн        | "H" level input voltage                         | CNTR0, CNTR1, INT0, IN    | T1                            | 0.8Vdd  |        | Vdd     | V        |
| VIL        | "L" level input voltage                         | P0, P1, P2, P3, D0–D7, VI |                               | 0       |        | 0.2VDD  | V        |
| VIL        | "L" level input voltage                         | XIN, XCIN                 |                               | 0       |        | 0.3VDD  | V        |
| VIL        | "L" level input voltage                         | RESET                     |                               | 0       |        | 0.3VDD  | V        |
| VIL        | "L" level input voltage                         | CNTR0, CNTR1, INT0, IN    | Τ1                            | 0       |        | 0.15VDD | V        |
| IOH(peak)  | "H" level peak output current                   | P0, P1, D0–D6             | VDD = 5 V                     | -       |        | -20     | mA       |
| ion(pour)  |                                                 | 10,11,0000                | VDD = 3 V                     |         |        | -10     | -        |
| IOн(peak)  | "H" level peak output current                   | D7, C                     | VDD = 5 V                     |         |        | -30     | mA       |
| ιοπ(ροακ)  |                                                 | CNTR0, CNTR1              | $\overline{VDD} = 3 V$        |         |        | -15     |          |
| IOн(avg)   | "H" level average output current                | P0, P1, D0–D6             | VDD = 5 V                     |         |        | -10     | mA       |
| ion(avg)   | (Note 2)                                        |                           | VDD = 3 V                     |         |        | -5      |          |
| Iон(avg)   | "H" level average output current                | D7, C                     | VDD = 5 V                     |         |        | -20     | mA       |
| ion(avy)   | (Note 2)                                        | CNTR0, CNTR1              | VDD = 3 V<br>VDD = 3 V        |         |        | -10     |          |
| IOL(peak)  | "L" level peak output current                   | P0, P1                    | VDD = 5 V                     |         |        | 24      | mA       |
| ioc(peak)  |                                                 | FU, F1                    | VDD = 3 V<br>VDD = 3 V        |         |        | 12      | -  '''^  |
| lou (neek) | "I " lovel peek output ourrest                  |                           | VDD = 3 V<br>VDD = 5 V        |         |        | 24      | mA       |
| IOL(peak)  | "L" level peak output current                   | D0-D6, C                  | VDD = 3 V<br>VDD = 3 V        |         |        | 12      | - '''^   |
| IOL(peak)  | "I " lovel pools output ourrept                 | CNTR0, CNTR1<br>RESET     | VDD = 3 V<br>VDD = 5 V        |         |        | 12      | mA       |
| iol(peak)  | "L" level peak output current                   | RESET                     | VDD = 3 V<br>VDD = 3 V        |         |        | 4       |          |
|            |                                                 | D0 D4                     |                               |         |        |         |          |
| loL(avg)   | "L" level average output current                | P0, P1                    | VDD = 5 V                     |         |        | 12      | mA       |
|            | (Note 2)                                        |                           | VDD = 3 V<br>VDD = 5 V        |         |        | 6       |          |
| loL(avg)   | "L" level average output current                | Do-D6, C                  |                               |         |        | 15      | mA       |
|            | (Note 2)                                        | CNTR0, CNTR1              | VDD = 3 V                     |         |        | 7       | ^        |
| loL(avg)   | "L" level average output current                | RESET                     | VDD = 5 V                     |         |        | 5       | mA       |
|            | (Note 2)                                        |                           | VDD = 3 V                     |         |        | 2       | + -      |
| ΣIOH(avg)  | "H" level total average current                 |                           |                               |         |        | -60     | mA       |
|            |                                                 | D7, C, CNTR0, CNTR1       |                               |         |        | -60     |          |
| ΣIOL(avg)  | "L" level total average current                 | P0, P1, D0–D6             |                               |         |        | 80      | mA       |
|            |                                                 | D7–D9, C, RESET, CNTR0    | , CNTR1                       |         |        | 80      |          |

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

2: The average output current is the average value during 100 ms.


### **RECOMMENDED OPERATING CONDITIONS 2**

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted)

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol   | Parameter                           |                   | Conditions          |                             | Limits |      |           |      |
|----------|-------------------------------------|-------------------|---------------------|-----------------------------|--------|------|-----------|------|
| Cymbol   | i arameter                          |                   |                     |                             | Min.   | Тур. | Max.      | Uni  |
| f(Xin)   | Oscillation frequency               | Mask ROM          | Through mode        | VDD = 4 to 5.5 V            |        |      | 6         | MH   |
|          | (with a ceramic resonator)          | version           |                     | VDD = 2.7 to 5.5 V          |        |      | 4.4       |      |
|          |                                     |                   |                     | VDD = 2 to 5.5 V            |        |      | 2.2       |      |
|          |                                     |                   | Frequency/2 mode    | VDD = 2.7 to 5.5 V          |        |      | 6         |      |
|          |                                     |                   |                     | VDD = 2 to 5.5 V            |        |      | 4.4       | -    |
|          |                                     |                   | Frequency/4, 8 mode | VDD = 2 to 5.5 V            |        |      | 6         | -    |
|          |                                     | One Time PROM     | Through mode        | VDD = 4 to 5.5 V            |        |      | 6         |      |
|          |                                     | version           |                     | VDD = 2.7 to 5.5 V          |        |      | 4.4       |      |
|          |                                     |                   |                     | VDD = 2.5 to 5.5 V          |        |      | 2.2       | 1    |
|          |                                     |                   | Frequency/2 mode    | VDD = 2.7 to 5.5 V          |        |      | 6         |      |
|          |                                     |                   |                     | VDD = 2.5 to 5.5 V          |        |      | 4.4       |      |
|          |                                     |                   | Frequency/4, 8 mode | VDD = 2.5 to 5.5 V          |        |      | 6         | -    |
| f(XIN)   | Oscillation frequency               | VDD = 2.7 to 5.5  | /                   |                             |        |      | 4.4       | MH   |
|          | (at RC oscillation) (Note)          |                   |                     |                             |        |      |           |      |
| f(XIN)   | Oscillation frequency               | Mask ROM          | Through mode        | VDD = 4 to 5.5 V            |        |      | 4.8       | MH:  |
|          | (with a ceramic resonator selected, | version           |                     | VDD = 2.7 to 5.5 V          |        |      | 3.2       |      |
|          | external clock input)               |                   |                     | VDD = 2 to 5.5 V            |        |      | 1.6       |      |
|          |                                     |                   | Frequency/2 mode    | VDD = 2.7 to 5.5 V          |        |      | 4.8       | ]    |
|          |                                     |                   |                     | VDD = 2 to 5.5 V            |        |      | 3.2       | 1    |
|          |                                     |                   | Frequency/4, 8 mode | VDD = 2 to 5.5 V            |        |      | 4.8       | 1    |
|          |                                     | One Time PROM     | Through mode        | VDD = 4 to 5.5 V            |        |      | 4.8       | 1    |
|          |                                     | version           |                     | VDD = 2.7 to 5.5 V          |        |      | 3.2       |      |
|          |                                     |                   |                     | VDD = 2.5 to 5.5 V          |        |      | 1.6       | -    |
|          |                                     |                   | Frequency/2 mode    | VDD = 2.7 to 5.5 V          |        |      | 4.8       |      |
|          |                                     |                   |                     | VDD = 2.5 to 5.5 V          |        |      | 3.2       | 1    |
|          |                                     |                   | Frequency/4, 8 mode | VDD = 2.5 to 5.5 V          |        |      | 4.8       |      |
| f(XCIN)  | Oscillation frequency (sub-clock)   | Quartz-crystal os | cillator            | ł                           |        |      | 50        | kHz  |
| f(CNTR)  | Timer external input frequency      | CNTR0, CNTR1      |                     |                             |        |      | f(STCK)/6 | 6 Hz |
| tw(CNTR) | Timer external input period         | CNTR0, CNTR1      |                     |                             |        |      | , ,       | s    |
| . ,      | ("H" and "L" pulse width)           |                   |                     |                             |        |      |           |      |
| TPON     | Power-on reset circuit              | Mask ROM versio   | n                   | $VDD = 0 \rightarrow 2 V$   |        |      | 100       | μs   |
|          | valid supply voltage rising time    | One Time PROM     | version             | $VDD = 0 \rightarrow 2.5 V$ |        |      | 100       | 1    |

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.



Rev.3.00 Aug 06, 2004 page 130 of 136 REJ03B0043-0300Z

#### ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted)

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol | Parameter                          | Test conditions    |              |      | Limits |      |    |
|--------|------------------------------------|--------------------|--------------|------|--------|------|----|
| Symbol | Falameter                          | It                 | Min.         | Тур. | Max.   | Unit |    |
| Vон    | "H" level output voltage           | VDD = 5 V          | Iон = -10 mA | 3    |        |      | V  |
|        | P0, P1, D0–D6                      |                    | Iон = -3 mA  | 4.1  |        |      |    |
|        |                                    | VDD = 3 V          | Iон = -5 mA  | 2.1  |        |      | 1  |
|        |                                    |                    | Iон = -1 mA  | 2.4  |        |      | 1  |
| Vон    | "H" level output voltage           | VDD = 5 V          | Iон = -20 mA | 3    |        |      | V  |
|        | D7, C, CNTR0, CNTR1                |                    | IOH = -6 mA  | 4.1  |        |      | 1  |
|        |                                    | VDD = 3 V          | Iон = -10 mA | 2.1  |        |      | 1  |
|        |                                    |                    | IOH = -3 mA  | 2.4  |        |      | ]  |
| Vol    | "L" level output voltage           | VDD = 5 V          | IOL = 12 mA  |      |        | 2    | V  |
|        | P0, P1                             |                    | IOL = 4 mA   |      |        | 0.9  | 1  |
|        |                                    | VDD = 3 V          | IOL = 6 mA   |      |        | 0.9  |    |
|        |                                    |                    | IOL = 2 mA   |      |        | 0.6  |    |
| Vol    | "L" level output voltage           | VDD = 5 V          | IOL = 15 mA  |      |        | 2    | V  |
|        | D0–D9, C, CNTR0, CNTR1             |                    | IOL = 5 mA   |      |        | 0.9  | 1  |
|        |                                    | VDD = 3 V          | IOL = 9 mA   |      |        | 1.4  |    |
|        |                                    |                    | IOL = 3 mA   |      |        | 0.9  | 1  |
| Vol    | "L" level output voltage           | VDD = 5 V          | IOL = 5 mA   |      |        | 2    | V  |
|        | RESET                              |                    | IOL = 1 mA   |      |        | 0.6  | 1  |
|        |                                    | VDD = 3 V          | IOL = 2 mA   |      |        | 0.9  | 1  |
| Іін    | "H" level input current            | VI = VDD           |              |      |        | 1    | μA |
|        | P0, P1, P2, P3, D0-D7, VDCE, RESET |                    |              |      |        |      |    |
|        | CNTR0, CNTR1, INT0, INT1           |                    |              |      |        |      |    |
| lı∟    | "L" level input current            | VI = 0 V P0, P1 No | o pull-up    |      |        | -1   | μA |
|        | P0, P1, P2, P3, D0–D7, VDCE,       |                    |              |      |        |      |    |
|        | CNTR0, CNTR1, INT0, INT1           |                    |              |      |        |      |    |



### **ELECTRICAL CHARACTERISTICS 2**

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

| Symbol    |                                                 | Parameter Test conditions                 |                                        |                    | Limits<br>Min. Typ. Max. |     |     | Unit     |
|-----------|-------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------|--------------------------|-----|-----|----------|
| IDD       | Supply current                                  | at active mode                            | VDD = 5 V                              | f(STCK) = f(XIN)/8 | IVIIII.                  | 1.4 | 2.8 | mA       |
|           |                                                 | (with a ceramic resonator)                | f(XIN) = 6  MHz                        | f(STCK) = f(XIN)/4 |                          | 1.6 | 3.2 |          |
|           |                                                 |                                           | f(XCIN) = 32  kHz                      | f(STCK) = f(XIN)/2 |                          | 2   | 4   | -        |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)/2 |                          | 2.8 | 5.6 | -        |
|           |                                                 |                                           | VDD = 5 V                              | f(STCK) = f(XIN)/8 |                          | 1.1 | 2.2 | mA       |
|           |                                                 |                                           | f(XIN) = 4  MHz                        |                    |                          | 1.1 | 2.2 |          |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)/4 |                          | 1.2 |     |          |
|           |                                                 |                                           | f(XCIN) = 32 kHz                       | f(STCK) = f(XIN)/2 |                          |     | 3   | -        |
|           |                                                 |                                           | VDD = 3 V                              | f(STCK) = f(XIN)   |                          | 2   | 4   |          |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)/8 |                          | 0.4 | 0.8 | mA       |
|           |                                                 |                                           | f(XIN) = 4 MHz                         | f(STCK) = f(XIN)/4 |                          | 0.5 | 1   | -        |
|           |                                                 |                                           | f(XCIN) = 32 kHz                       | f(STCK) = f(XIN)/2 |                          | 0.6 | 1.2 | -        |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)   |                          | 0.8 | 1.6 | <u> </u> |
|           |                                                 | at active mode                            | VDD = 5 V                              | f(STCK) = f(XIN)/8 | _                        | 55  | 110 | μA       |
|           |                                                 | (with a quartz-crystal                    | f(XIN) = stop                          | f(STCK) = f(XIN)/4 |                          | 60  | 120 |          |
|           |                                                 | oscillator)                               | f(XCIN) = 32 kHz                       | f(STCK) = f(XIN)/2 |                          | 65  | 130 |          |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)   |                          | 70  | 140 |          |
|           |                                                 |                                           | VDD = 3 V                              | f(STCK) = f(XIN)/8 |                          | 12  | 24  | μA       |
|           |                                                 |                                           | f(XIN) = stop                          | f(STCK) = f(XIN)/4 |                          | 13  | 26  |          |
|           |                                                 |                                           | f(XCIN) = 32 kHz                       | f(STCK) = f(XIN)/2 |                          | 14  | 28  |          |
|           |                                                 |                                           |                                        | f(STCK) = f(XIN)   |                          | 15  | 30  | 1        |
|           |                                                 | at clock operation mode                   | f(XCIN) = 32 kHz                       | VDD = 5 V          |                          | 20  | 60  | μA       |
|           |                                                 | (POF instruction execution)               |                                        | Vdd = 3 V          |                          | 5   | 15  | 1        |
|           |                                                 | at RAM back-up mode                       | Ta = 25 °C                             |                    |                          | 0.1 | 1   | μA       |
|           |                                                 | (POF2 instruction execution)              | VDD = 5 V                              |                    |                          |     | 10  | 1'       |
|           |                                                 |                                           | VDD = 3 V                              |                    |                          |     | 6   | -        |
| Rpu       | Pull-up resistor                                | value                                     | VI = 0 V                               | VDD = 5 V          | 30                       | 60  | 125 | kΩ       |
|           | P0, P1, RESET                                   |                                           |                                        | VDD = 3 V          | 50                       | 120 | 250 |          |
| Vt+ – Vt– |                                                 |                                           | VDD = 5 V<br>VDD = 3 V                 |                    |                          | 0.2 | 230 | V        |
| VI+ VI-   |                                                 |                                           |                                        |                    |                          | 0.2 |     | - V      |
| VT+ – VT– | Hysteresis RES                                  |                                           | VDD = 5 V                              |                    |                          | 1   |     | V        |
| vi+- vi-  | TYSIELESIS RES                                  |                                           | VDD = 3 V<br>VDD = 3 V                 |                    |                          | 0.4 |     |          |
|           |                                                 | ten els els fre en este                   |                                        |                    | -                        |     | 2   |          |
| f(RING)   | On-chip oscillator clock frequency              |                                           | VDD = 5 V                              |                    | 1                        | 2   | 3   | MHz      |
|           |                                                 | VDD = 3 V<br>VDD = 5 V ± 10 %, Ta = 25 °C |                                        | 0.5                | 1                        | 1.8 |     |          |
| ∆f(Xin)   | Frequency error                                 |                                           | $vDD = 5 v \pm 10 \%$ , 1a             | = 25 °C            |                          |     | ±17 | %        |
|           | (with RC oscillation,                           |                                           |                                        |                    |                          |     |     | -        |
|           | error of external R, C not included )<br>(Note) |                                           | VDD = 5 V ± 10 %, Ta = 25 °C           |                    |                          |     | ±17 |          |
| RCOM      | COM output impedance                            |                                           | VDD = 5 V                              |                    |                          | 1.5 | 7.5 | kΩ       |
|           |                                                 |                                           | VDD = 3 V                              |                    |                          | 2   | 10  | ]        |
| RSEG      | SEG output impedance                            |                                           | VDD = 5 V           VDD = 3 V          |                    |                          | 1.5 | 7.5 | kΩ       |
|           |                                                 |                                           |                                        |                    |                          | 2   | 10  |          |
| RVLC      | Internal resisto                                | r for LCD power supply                    | When dividing resistor 2r X 3 selected |                    | 300                      | 480 | 960 | kΩ       |
|           | · · · · · · · · · · · · · · · · · · ·           |                                           | When dividing resistor 2r X 2 selected |                    |                          | 320 | 640 | 1        |
|           |                                                 |                                           | When dividing resisto                  |                    | 200<br>150               | 240 | 480 | 1        |
|           |                                                 |                                           | When dividing resisto                  |                    | 100                      | 160 | 320 | 1        |

Note: When RC oscillation is used, use the external 33 pF capacitor (C).



### **VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS**

(Ta = -20 °C to 85 °C, unless otherwise noted)

| Symbol           | Parameter                  | Test conditions                         | Test conditions |      | Limits |      |      |  |
|------------------|----------------------------|-----------------------------------------|-----------------|------|--------|------|------|--|
| Symbol Parameter |                            | lest conditions                         |                 | Min. | Тур.   | Max. | Unit |  |
| Vrst             | Detection voltage (Note 1) |                                         |                 | 1.4  | 1.5    | 1.6  | V    |  |
|                  |                            | Ta = 25 °C                              |                 | 1.1  |        | 1.9  |      |  |
| IRST             | Operation current          | at power down                           | VDD = 5 V       |      | 50     | 100  | μA   |  |
|                  |                            | (Note 2)                                | VDD = 3 V       |      | 30     | 60   |      |  |
| TRST             | Detection time             | $VDD \rightarrow (VRST-0.1 V) (Note 3)$ |                 |      | 0.2    | 1.2  | ms   |  |

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

2: After the SVDE instruction is executed, the voltage drop detectin circuit is valid at power down mode.

3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST-0.1 V].

#### **BASIC TIMING DIAGRAM**

| Parameter P                   | Machine cycle<br>'in (signal) name       | Mi | Mi+1 |
|-------------------------------|------------------------------------------|----|------|
| System clock                  | STCK                                     |    |      |
| Port D output                 | Do-Da                                    |    | X    |
| Port D input                  | D0D7                                     |    |      |
| Ports P0, P1 output           | P00–P03<br>P10–P13                       |    |      |
| Ports P0, P1, P2, P3<br>input | P00–P03<br>P10–P13<br>P20–P23<br>P30–P33 |    |      |
| Interrupt input               | INTO, INT1                               |    |      |

#### **BUILT-IN PROM VERSION**

In addition to the mask ROM versions, the 4554 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

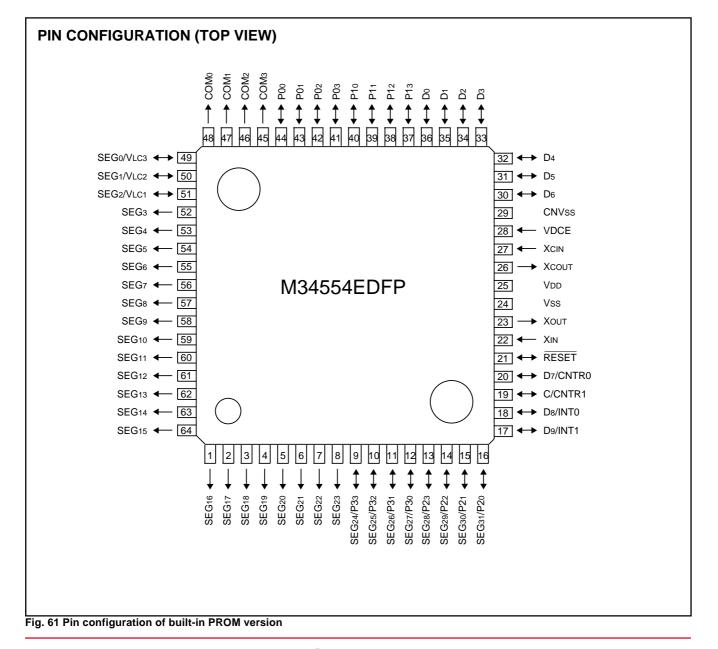

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 25 shows the product of built-in PROM version. Figure 61 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

#### Table 25 Product of built-in PROM version

| Part number | PROM size<br>(X 10 bits) | RAM size<br>(X 4 bits) | Package | ROM type                         |
|-------------|--------------------------|------------------------|---------|----------------------------------|
| M34554EDFP  | 16384 words              | 512 words              | 64P6N-A | One Time PROM [shipped in blank] |



#### (1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer. • Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 62.

#### (2) Notes on handling

①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.

②For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 63 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

#### (3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, built-in ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

#### Table 26 Programming adapter

| Part number | Name of Programming Adapter |  |  |  |
|-------------|-----------------------------|--|--|--|
| M34554EDFP  | PCA7448                     |  |  |  |

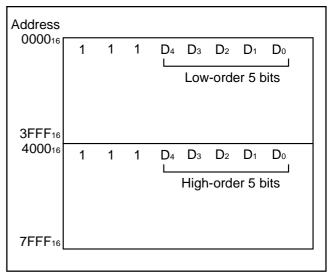



Fig. 62 PROM memory map

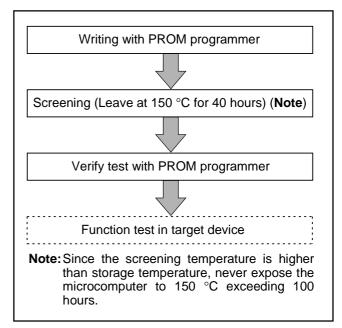
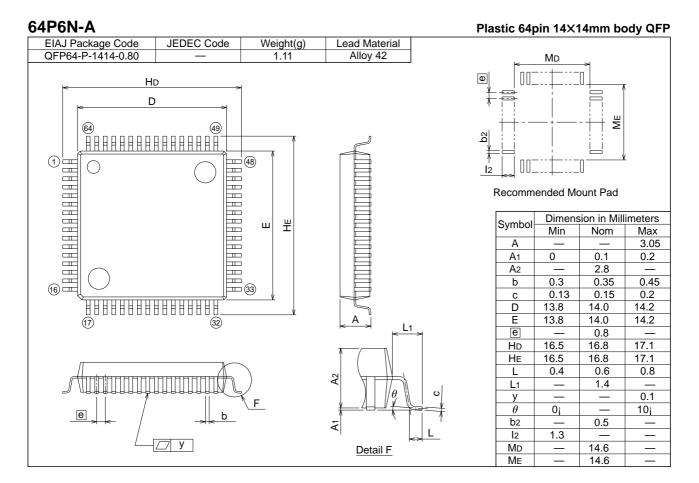




Fig. 63 Flow of writing and test of the product shipped in blank



### PACKAGE OUTLINE





# **REVISION HISTORY**

# 4554 Group Data Sheet

| Rev. Date Description |               | Description |                                                                                    |  |  |  |
|-----------------------|---------------|-------------|------------------------------------------------------------------------------------|--|--|--|
|                       |               | Page        | Summary                                                                            |  |  |  |
| 1.00                  | Nov. 27, 2001 | _           | First edition issued                                                               |  |  |  |
| 2.00                  | Jul. 01, 2003 | All pages   | "Preliminary Notice: This is not a final specification. Some parametric limits are |  |  |  |
|                       |               |             | subject to change." eliminated.                                                    |  |  |  |
| 2.01                  | Sep.18, 2003  | 54          | Note on voltage drop detection circuit added.                                      |  |  |  |
|                       |               | 55          | Table 15 Port level revised.                                                       |  |  |  |
|                       |               | 66          | Note on voltage drop detection circuit added.                                      |  |  |  |
| 3.00                  | Aug. 06, 2004 | All pages   | Words standardized: On-chip oscillator                                             |  |  |  |
|                       |               | 4           | Power dissipation: "Ta=25°C" added.                                                |  |  |  |
|                       |               | 5<br>29     | Description of RESET pin revised.<br>Fig.20: Some description added.               |  |  |  |
|                       |               | 30          | Fig.23: Some description added.                                                    |  |  |  |
|                       |               | 34          | Fig.26 : Note 9 added.                                                             |  |  |  |
|                       |               | 44          | Some description revised.                                                          |  |  |  |
|                       |               | 45          | Fig.31 : "DI" instruction added.                                                   |  |  |  |
|                       |               | 50          | (5) LCD power supply circuit revised.                                              |  |  |  |
|                       |               | 53          | Fig.40 : State of quartz-crystal oscillator added.                                 |  |  |  |
|                       |               | 57          | Fig.44 : Note 5 added.                                                             |  |  |  |
|                       |               | 64          | Fig.56: Some description added.                                                    |  |  |  |
|                       |               | 65          | Fig.57: Some description added.                                                    |  |  |  |
|                       |               | 66          | Note on Power Source Voltage added.                                                |  |  |  |
|                       |               |             |                                                                                    |  |  |  |

#### Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

#### Notes regarding these materials

- Notes regarding these materials
  1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
  2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
  3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
  The information before purchasing a product listed herein.
  The information described here may contain technical inaccuracies or typographical errors.
  Renesas Technology Corp. assumes no responsibility for any damage, ilability, or other loss rising from these inaccuracies or errors.
  Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
  When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for unter loss resu

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
- a mode products of country other than the approved destination.
   Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
   8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.



#### **RENESAS SALES OFFICES**

#### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

©2001, 2004. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .1.0

#### http://www.renesas.com