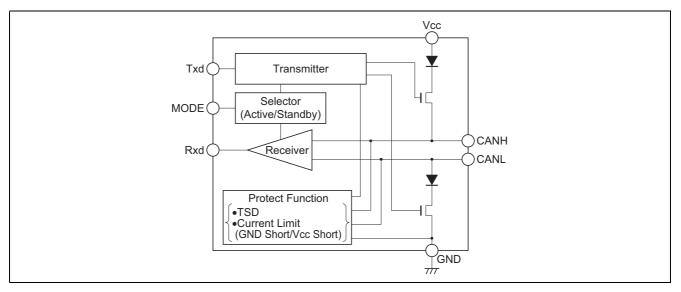


CAN Transceiver

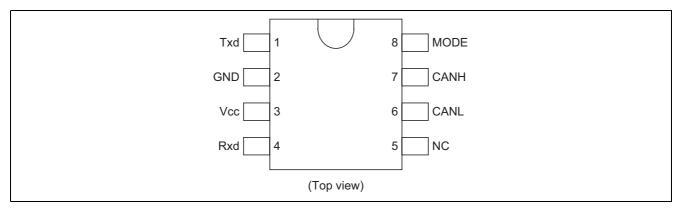
REJ03F0116-0100Z Rev.1.00 Jul 23, 2004


Description

HA13721RP/FP is a Interface IC between CAN protocol controller and CAN bus.

This IC provides functions that transmit data from Microcontroller to CAN bus and receive data through CAN bus to Microcontroller.

Functions


- "ISO-11898" compliant
- High speed CAN (up to 1 Mbps)
- Active \Leftrightarrow Standby mode
- Over temperature detection
- Over current detection (Vcc short / GND short detection)
- Optimized EMI performance
- Txd, MODE input pin ; 3.3 V compatible

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
1	Txd	Transmit data input. Connected with Microcontroller / Txd pin.
2	GND	Ground pin
3	Vcc	Power supply (5.0 V)
4	Rxd	Receive data output. Connected with Microcontroller / Rxd pin.
5	NC	Non connected
6	CANL	CAN bus low level
7	CANH	CAN bus high level
8	MODE	Select input (Active / Standby mode)

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Rati	ings		
Item	Symbol	HA13721RPJE	HA13721FPK	Unit	Application Pin
Supply voltage	Vcc	-0.3 to +5.5	-0.3 to +5.5	V	Vcc
Input voltage	Vin	-0.3 to Vcc+0.3	-0.3 to Vcc+0.3	V	Txd, MODE
		-5.0 to +36.0	-5.0 to +36.0	V	CANL, CANH
Operating temperature	Topr	-40 to +105	-40 to +125	°C	
Storage temperature	Tstg	-50 to +125	-50 to +150	°C	

Note: HA13721RPJE: JEDEC package HA13721FPK: JEITA package

Electrical Characteristics

 $(Ta = 25^{\circ}C, 4.5 V < Vcc < 5.5 V)$

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Application Pin
Supply voltage	Vcc	4.5	_	5.5	V		Vcc
Supply current 1	IccD	—	—	75	mA	Txd: GND, MODE: GND CANL–CANH: 60 Ω Terminal resistor	Vcc
Supply current 2	IccR	_	1.5	6	mA	Txd: open, MODE: GND CANL–CANH: 60 Ω Terminal resistor	Vcc
Supply current 3	IccStby	_	_	250	μΑ	Txd: open, MODE: open CANL, CANH: open	Vcc

Transmitter Section

- $RL = 60 \Omega$ (CANL to CANH Terminal resistor)
- Vdiff = VCANH–VCANL
- Recessive; Txd = Vcc, MODE = GND
- Dominant; Txd = GND, MODE = GND

$(Ta = 25^{\circ}C, 4.5 V < Vcc < 30)$	5.5	V)
--	-----	----

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Application Pin
Input high voltage	VIH	2.4	—	Vcc+0.3	V		Txd, MODE
Input low voltage	VIL	-0.3	—	0.8	V		Txd, MODE
Input resistance	Rin	13.5	27	54	kΩ		Txd, MODE
Recessive bus voltage	VCANL, VCANH	2	—	3	V	Recessive (Vcc = 5.0V)	CANL, CANH
Leakage current	ILO	-2	—	2	mA	-2.0V < CANL, CANH < 7.0V	CANL, CANH
Output voltage	age VCANH 3		—	4.5	V	Dominant	CANH
	VCANL	0.5	—	2	V	Dominant	CANL
Difference output voltage	Vdiff	1.5	—	3	V	Dominant 4.75 V < Vcc < 5.25 V 42.5 Ω < RL < 60 Ω	CANL, CANH
		-0.5	—	0.05	V	Recessive	
Output short	IsCANH	-200	—	-70	mA		CANH
current	IsCANL	70	_	200	mA		CANL
Thermal shutdown	TSD	150	_	190	°C		*1
point	TSD(hys)	_	10	_	°C		*1

Note: 1. It is design specification. The examination at the time of delivery is not performed.

Receiver Section

- $RL = 60 \Omega$ (CANL to CANH Terminal resistor)
- Vdiff = VCANH–VCANL
- Txd = Vcc, MODE = GND, -2.0 V < CANL, CANH < 7.0 V

 $(Ta = 25^{\circ}C, 4.5 V < Vcc < 5.5 V)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Application Pin
Difference input voltage (Recessive)	Vdiff(R)	—		0.5	V		CANL, CANH
Difference input voltage (Dominant1)	Vdiff(D1)	0.9		—	V		CANL, CANH
Difference input voltage (Dominant2)	Vdiff(D2)	1.0	_	_	V	MODE: Vcc	CANL, CANH
Difference input voltage (hysteresis)	Vdiff(hys)	100	_	200	mV	Vdiff(hys) = Vdiff(D1) – Vdiff(R)	CANL, CANH
Output high voltage	VOH	0.8Vcc	_	Vcc	V	IRxd = -100 μA	Rxd
Output low voltage	VOL	—	_	0.1Vcc	V	IRxd = 1 mA	Rxd
Input resistance (CANH)	Rin	10	_	50	kΩ		CANH
Input resistance (CANL)	Rin	10	_	50	kΩ		CANL
Input resistance (CANH, CANL)	Rdiff	20		100	kΩ		CANL, CANH

Receiver Section

- $RL = 60 \Omega$ (CANL to CANH Terminal resistor)
- CL(CANL to CANH) = 100 pF
- Txd input tr/tf = 5.0 ns/1.2 V
- CRxd(Rxd to GND) = 30 pF

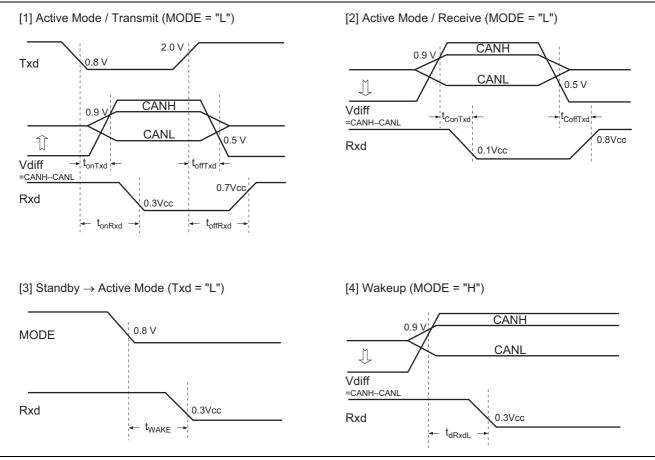
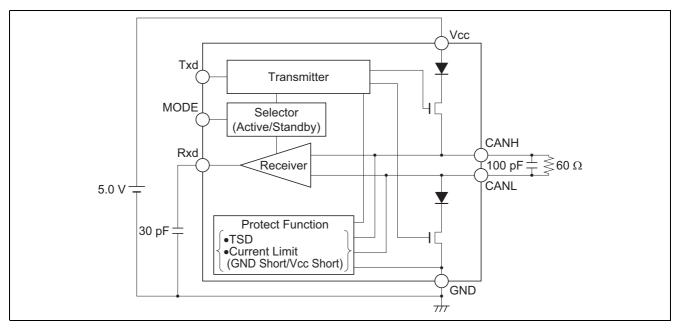
 $(Ta = 25^{\circ}C, 4.5 V < Vcc < 5.5 V)$

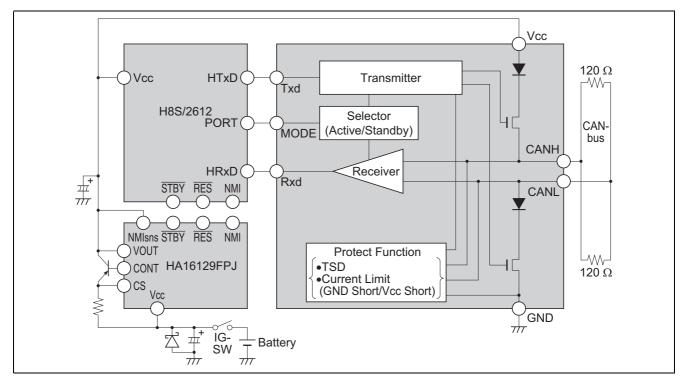
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Application Pin
Baud rate		_		1	Mbps		
Delay time 1	tonTxd	_	80	160	ns	MODE: GND, refer fig.1(1)	Txd, CANL, CANH
Delay time 2	toffTxd	_	100	180	ns	MODE: GND, refer fig.1(1)	Txd, CANL, CANH
Delay time 3	tonRxd		120	280	ns	MODE: GND, refer fig.1(1)	Txd, Rxd
Delay time 4	toffRxd		140	280	ns	MODE: GND, refer fig.1(1)	Txd, Rxd
Delay time 5	tConRxd	_	_	150	ns	MODE: GND, refer fig.1(1)	Rxd, CANL, CANH
Delay time 6	tCoffRxd	_	_	150	ns	MODE: GND, refer fig.1(1)	Rxd, CANL, CANH
Wakeup 1	tWAKE	_	—	20	μs	Txd: GND, refer fig.1(2)	MODE, Rxd
Wakeup 2	tdRxdL	_	—	3	μS	Txd: Vcc, MODE: Vcc, refer fig.1(3)	CANL,CANH, Rxd

Function Table

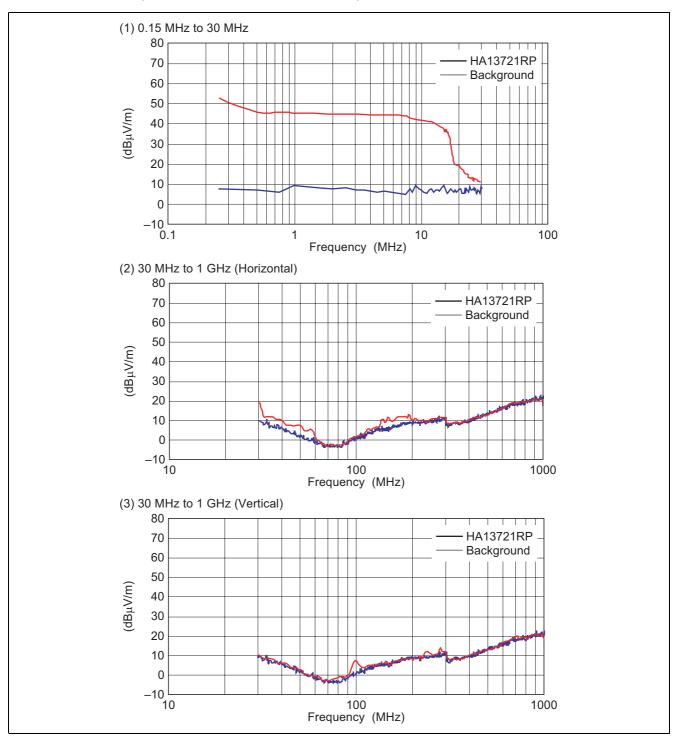
Txd	MODE	Division No.	Mode	CANL	CANH	Rxd
0	0	Fig.1(1)	Dominant	Low (output)	High (output)	0
1 or floating	0	Fig.1(1)	Recessive	floating	floating	1
—	1 or floating	Fig.1(2)	Standby	floating	floating	1
—	1 or floating	Fig.1(3)	Dominant(Wakeup)	Low (input)	High (input)	0

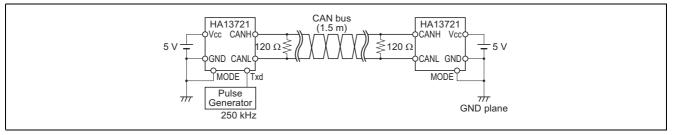
Timing Chart

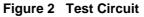




Figure 1 Timing Chart

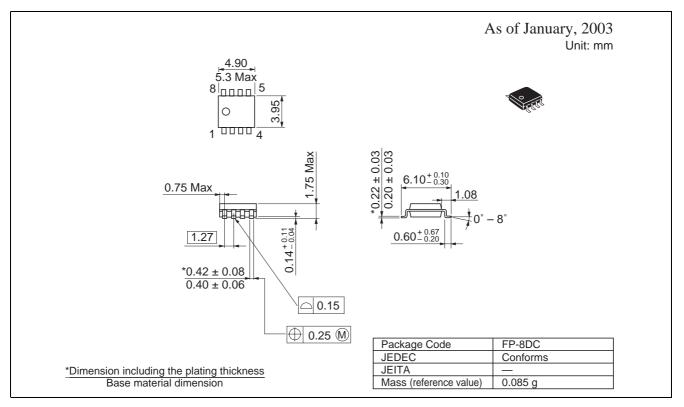
Test Circuit

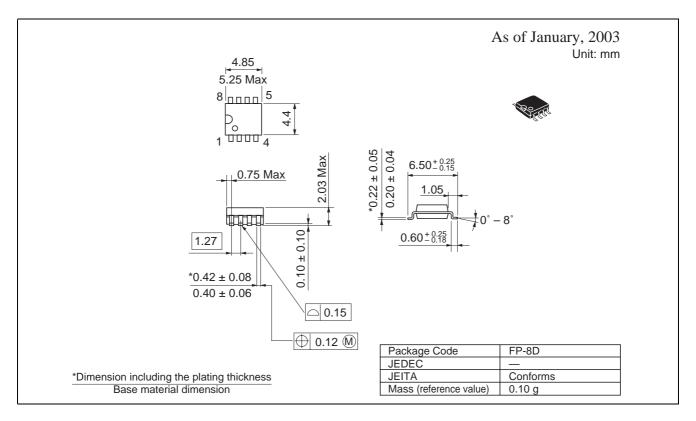



Application Example



Reference Data (Emission Noise Characteristic)





Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infiringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. Sasumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information actal system before making a final decision on the applicability of the information and products. Renesas Technology Corp. semiconductor home page (htt

- is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001