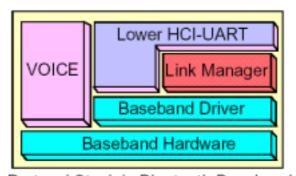


M64110WG

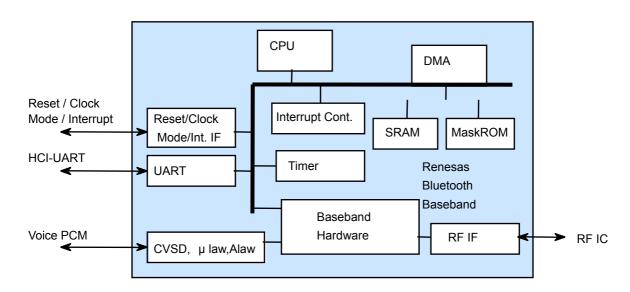
PRELIMINARY


REJ03F0002-0110Z Rev.1.10 2003.05.20

BLUETOOTH BASEBAND LSI (Under Development)

Description

The Renesas Bluetooth Baseband provides the full functionality of HCI, Link Manager and Baseband, compliant with Bluetooth specification V1.1. ACL links support DM1, DH1, DM3, DH3, DM5, DH5 and AUX packets, whereas SCO links for voice channels support HV1, HV2, HV3 and DV packets. Flexible connections can be configured by switch of master slave role and piconet. The baseband operates at 16MHz and reduces power dissipation using low frequency oscillator at 32.768kHz in Sniff, Hold and Park modes. On the transceiver side the Renesas radio IC is supported.


The host interface is built based on HCI-UART and has some vendor-specific commands for selecting Radio IC type, 79-hop or 23-hop system, Write BD ADDR and so on.

Protocol Stack in Bluetooth Baseband

Features

- Bluetooth V1.1 compliant
- HCI, Link Manager and Baseband functions
- Inquiry and Paging
- ACL link for command and data transfer
- SCO link for voice transfer (one channel)
- CRC, FEC, whitening and ARQ
- Authentication and Encryption
- Switch of master slave role
- Piconet (up to 7 devices)
- Sniff, Hold and Park mode operations
- Power control with low frequency oscillator at 32.768kHz
- Bluetooth test mode
- Radio interface for Renesas Radio IC
- Supports 79-hop and 23-hop systems
- 14-bit linear PCM interface for voice
- CVSD, µlaw and Alaw voice codecs
- Internal microprocessor running at 16MHz
- UART for HCI interface
- 100-pin FBGA 0.8mm ball pitch, 9mm x 9mm
- Operating Temperature Range -40 to 85 °C
- Digital supply voltage 1.8 to 2.0V for internal circuit Digital supply voltage 2.7 to 3.3V for I/O ports Analog supply voltage 2.7 to 3.3V

Functional Block Diagram

Bluetooth and Bluetooth logos are owned by its proprietor and used by Renesas Technology Corporation under license. This is not a final specification. Some parameters limits are Subject to change.

Device Pinout Diagram (100-pin FBGA)

Orientation from top of device

	1	2	3	4	5	6	7	8	9	10	
Α	NU	MODE[0]	VUDATA	VBITCLK	NU	DVSS18	MODE[2]	AVSS3	AVDD3	RSSIA	
В	NU	MODE[1]	VDDATA	DVSS3	NU	NU	AVSS3	AVDD3	O AVSS3	AVDD3	
С	URXD	NU	NU	EXIREQ	DVDD3	NU	AVDD3	AVSS3	PLLON	TXGATE	
D	DVDD3	UTXD	DVSS3	UCTS	V8KFP	NU	RXDATA	NU	NU	RXON	
E	INTOUT	DVSS18	DVDD18	URTS (CLK16MSEL	DVDD18	NU	TXON	DVDD18	DVSS18	
F	CLK16MXIN	CLK16MXOUT	DVSS3	DVDD3	NU	DVDD3	TXDATA	RXANT	TXANT	DVSS3	
G	CLK16MOUT	CLK16MREQ	RSTIN	NU	DVDD3	NU	SERLE	SERDATA	SERCLK	TXDBASE	
Н	CLK16MIN	CLKTHR	NU	NU	DVSS3	NU	NU	NU	NU	RXDBASE	
J	XRDY	CLK32KSEL	NU	NU	NU	DVSS18	NU	NU	NU	NU	
κ	CLK32KXIN	CLK32KXOUT	NU	NU	NU	DVDD18	NU	NU	NU	NU	

TOP VIEW

Pin Description for 100-pin FBGA

Pin Nan	ne for 100-pin	Туре	Dir	Description
HCI-UART	UTXD	Dig	Out	Transmit data
	URXD	Dig	In	Receive data
	URTS	Dig	Out	Request to send
	UCTS	Dig	In	Clear to send
Voice	VBITCLK	Dig	In/Out	Voice bit clock
Interface	V8KFP	Dig	In/Out	Voice 8kHz frame pulse
	VDDATA	Dig	In	Voice downstream data
	VUDATA	Dig	Out	Voice upstream data
RF	TXDATA	Dig	Out	Transmit data
Interface	TXGATE	Dig	Out	Transmit gate
	RXDATA	Ana	In	Receive data
	PLLON	Dig	Out	PLL power on
	TXANT	Dig	Out	Transmitter antenna select
	TXON	Dig	Out	Transmitter power on
	RXANT	Dig	Out	Receiver antenna select
	RXON	Dig	Out	Receiver power on
	SERCLK	Dig	Out	Serial interface clock
	SERLE	Dig	Out	Serial interface control
	SERDATA	Dig	Out	Serial interface data in
	RSSIA	Ana	In	RSSI(Reserved)
	TXDBASE	Dig	Out	Transmit data for Baseband connection(for Test/Debug)
	RXDBASE	Dig	In	Receive data for Baseband connection(for Test/Debug)
Mode	MODE[2:0]	Dig	In	Mode select
Interrupt	EXIREQ	Dig	In	External interrupt request in
	INTOUT	Dig	Out	Interrupt out
Reset	RSTIN	Dig	In	External reset in
Clock	XRDY	Dig	In	Oscillator circuit ready
	CLKTHR	Dig	In	16MHz clock source select
	CLK16MSEL	Dig	In	16MHz clock source select(TCXO or Oscillator)
	CLK16MREQ	Dig	Out	External 16MHz clock request
	CLK16MIN	Dig	In	External 16MHz clock in
	CLK16MXIN	Xin	In	16MHz crystal in
	CLK16MXOUT	Xout	Out	16MHz crystal out
	CLK16MOUT	Dig	Out	External 16MHz clock out
	CLK32KSEL	Dig	In	32.768KHz clock source select
	CLK32KXIN	Xin	In	32.768kHz crystal in
	CLK32KXOUT	Xout	Out	32.768kHz crystal out

M64110WG

Pin Name for 100-pin		Туре	Dir	Description
Power	DVDD3	VDD	-	Digital power supply for I/O ports
Ground	DVSS3	GND	-	Digital ground for I/O ports
DVDD18 VD		VDD	-	Digital power supply for internal logic
	DVSS18	GND	-	Digital ground for internal logic
	AVDD3	VDD	-	Analog Power Supply
	AVSS3	GND	-	Analog Ground

(Note1) NU pins should be opened.

M64110WG

Absolute Maximum Ratings

Symbol	Item	Condition	Rating	Unit
VDD3	Supply Voltage		-0.3 to 4.2	V
(Note1)				
VDD18	Supply Voltage		-0.3 to 2.5	V
(Note2)				
VI	Input Voltage	CLK16MIN	-0.3 to VDD18+0.3	V
VI	Input Voltage	Except	-0.3 to VDD3+0.3	V
	_	CLK16MIN		
VO	Output Voltage		-0.3 to VDD3+0.3	V
Tstg	Storage Temperature		-55 to +125	°C

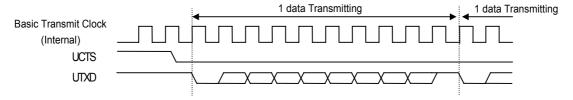
(Note1) DVDD3, AVDD3 (Note2) DVDD18

Recommended Operating Condition

Symbol	Item	Condition		Unit		
			Min	Тур	Max	
VDD3	Supply Voltage		2.7	3.0	3.3	V
(Note1)						
VDD18	Supply Voltage		1.8	1.9	2.0	V
(Note2)						
VIH	'H' Level Input Voltage	Except	0.7 x VDD3			V
VIL	'L' Level Input Voltage	CLK16MIN			0.8	V
Topr	Operating Temperature range		-40		85	°C

(Note1) DVDD3, AVDD3 (Note2) DVDD18 Electrical Characteristics (Unless otherwise stated: VDD3=2.7 to 3.3V,VDD18=1.8 to 2.0V,Topr=-40°C to +85°C)

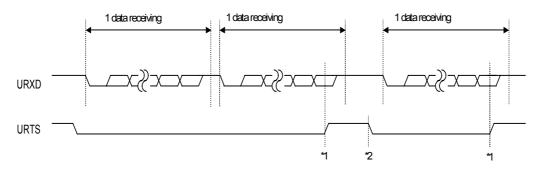
Symbol	Iten		Measurement		Rating	10 00 07	Unit
			Condition	Min	Тур	Max	
VOH1	'H' Level Output Voltage	UTXD,URTS,VBITCLK	IOH=-1mA	VDD3-0.4			V
		V8KFP,VUDATA,PLLON					
		TXGATE,TXON,RXON					
		SERLE,SERCLK					
VOL1	'L' Level Output Voltage	SERDATA,TXDBASE	IOL=+1mA			0.4	V
		CLK16MREQ,INTOUT					
		MODE[2:0]					
		TESTOUT[11:0]					
VOH2	'H' Level Output Voltage	CLK16MOUT	IOH=-2mA	VDD3-0.4			V
VOL2	'L' Level Output Voltage		IOL=+2mA			0.4	V
VOH3	'H' Level Output Voltage	TXDATA,TXANT,RXANT	IOH=-4mA	VDD3-0.4			V
VOL3	'L' Level Output Voltage		IOL=+4mA			0.4	V
IIH1	High State Input Current (Note 1)	URXD,UCTS,VBITCLK V8KFP,VDDATA,RSTIN XRDY,CLKTHR	VIH=VDD3			1	μA
IIL1	Low State Input Current (Note 1)	CLK16MSEL,INTOUT CLK32KSEL	VIL=0V	-1			μA
IIH2	High State Input Current	EXIREQ	VIH=VDD3			1	μA
IIL2	Low State Input Current		VDD3=3V VIL=0V	-30	-15	-10	μA
IIH3	High State Input Current (Note 1)	RXDBASE, TSTMODE[5:1] TESTOUT[11:0]	VDD3=3V VIH=VDD3	10	15	30	μA
IIL3	Low State Input Current (Note 1)	0.1.1.5	VIH=0V	-1			μA


(Note 1) In/Out pins were measured with Output off.

Timing Requirements (Unless otherwise stated: VDD3=2.7 to 3.3V,VDD18=1.8 to 2.0V)

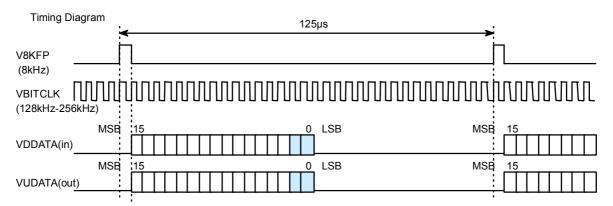
	()		,				
Symbol	Item	Condition	Rating			Unit	
				Min	Тур	Max	
fCLK16MIN	16MHz Clock Input Frequency	CLK16MIN	Within +/-20ppm		16		MHz
fCLK32KIN	32kHz Clock Input Frequency	CLK32XIN			32.768		kHz
fDUTY	Clock Input Duty	CLK16MIN		40		60	%
	, ,	CLK32XIN					
tr	Clock Input Rise Time	CLK16MIN				5	ns
tf	Clock Input Fall Time	CLK16MIN				5	ns
tw(RSTIN)	Reset Input 'L' Pulse width	RSTIN		2			ms
(Note1)							

(Note1) When power on, sufficient reset period is needed.


Example of UART Interface behavior Transmit Timing

Notes)

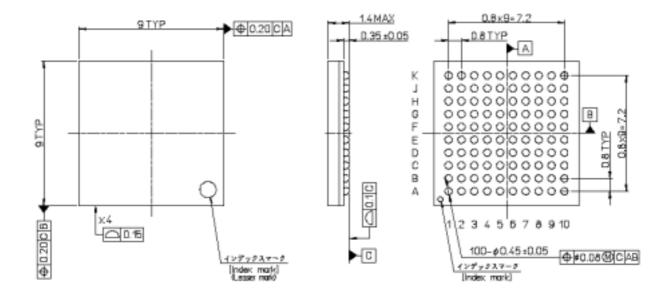
- If the UCTS input pin changes to 'H' during the transmission of data byte and active UCTS function, the transmission stops after finishing the current transmission.
- Start and stop of transmission and UCTS function are executed by internal processing of Baseband.
- Basic clock is determined by the value set by internal baud rate.


Receive Timing

Notes)

- The above timing chart shows the status when 2 bytes data are received, 1 of 2 bytes received data is read, and then the next receiving are executed.
- If the most significant bit of the new data is received before reading received data from the received data register, the URTS pin becomes 'H'
- When the URTS pin is 'H', the UART becomes receive data storage status. Although receive operation is completed, the contents of receive shift buffer is not stored in the received data register. (*1)
- When the URTS pin is 'H', if the received data register is read, then the data of receive shift buffer in receive data storage status is stored in the received data register, and then each receive error flag and receive buffer flag for receive data stored at that time are set cumulatively, and then the URTS pin becomes 'L' (*2).
- If negative edge (level sense) is fed into the URXD input pin, receive control circuit judge that it is start bit and then sampling is executed around center of start bit. If the sampling input is 'L', receive sequence is started.

Example of Voice Interface's behavior



Last2 bits shall be discarded

Notes)

- VBITCLK can use the frequencies between 128Hz and 8kHz in steps of 8kHz.
- Last 2 bits of VDDATA and VUDATA will be discarded.

Package Diagram (100FHE)

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

Renesses Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
- The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation or considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan.

REVISION HISTORY

M64110WG Data Sheet

Rev.	Date		Description
		Page	Summary
1.00	Apr. 1,2002	_	First Edition
1.10	Feb.11.2003	1,5,6	Digital supply voltage for I/O ports and analog supply voltage 2.7 to 3.3V
		1,5,6	Operating Temperature Range -40 to 85 °C