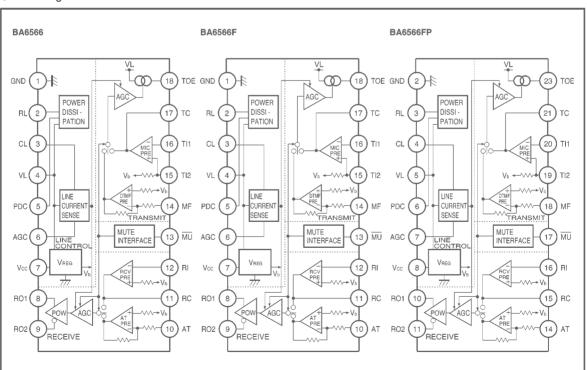
Speech network BA6566 / BA6566FP

The BA6566, BA6566F, and BA6566FP are speech network ICs which possess the basic functions required for handset communications. In addition to amplifying signals from a transmitter and sending them to a telephone line, they amplify only reception signals from a telephone line and drive the receiver. They also compensate for fluctuation in the volume at which signals are transmitted and received, caused by the length of the telephone line (AGC).


Applications

Telephones and telephone equipment

Features

- Can accommodate both dynamic and piezoelectric receivers, simply by changing the circuit constant for a wide dynamic reception range.
- Automatic gain control (AGC) is used, based on the transmission and reception telephone line current, for easier compliance with communications standards.
- Erroneous operation caused by high-frequency electrical wave interference is minimized.
- 4) An HSOP package is used, eliminating the need for an attached transistor to dissipate heat. This means that a common circuit can be shared when a DIP package is used (BA6566FP).

Block diagram

● Absolute maximum ratings (Ta=25°C)

Parameter		Symbol	Limits	Unit		
Applied voltage		VL	16.5	٧		
	BA6566		1100*1			
Power dissipation	BA6566F	Pd	600*2	mW		
	BA6566FP		1350* ³			
Operating temperature		Topr	−35~+60	င		
Storage temperatur	Storage temperature		− 55∼ + 125	င		
Current dissipation		اد	125*4	mA		

^{*1} Reduced by 11 mW for each increase in Ta of 1°C over 25°C.

With the BA6566FP, Reduced by 1 mA for each increase in Ta of 1°C over 50°C.

^{*2} Reduced by 6 mW for each increase in Ta of 1°C over 25°C.

^{*3} Reduced by 13.5 mW for each increase in Ta of 1°C over 25°C.

When mounted on 90 mm × 50 mm × 1.6 mm glass epoxy board, fins should be soldered to foil pattern.

^{*4} With the BA6566, Reduced by 1 mA for each increase in Ta of 1°C over 50°C.
With the BA6566F, Reduced by 1.4 mA for each increase in Ta of 1°C over 50°C.

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit		С	ns	Measurement	
						IL (mA)	AGC	Mute	f=1kHz	circuit
Line voltage (5)	V _L (5)	_	2.0	-	V	5	_	-	-	Fig.2
Line voltage (20)	VL (20)	2.5	3.5	5.0	V	20	_	_	_	Fig.2
Line voltage (30)	V _L (30)	3.0	4.0	5.4	V	30	_	_	_	Fig.2
Line voltage (90)	V _L (90)	5.2	7.0	9.5	V	90	_	_	_	Fig.2
Mute input low level voltage	VIL	0.1	0.18	0.25	٧	20~90	_	_	_	Fig.2
Mute input low level current	lı∟	25	35	45	μΑ	20~90	_	_	-	Fig.2
Transmit gain 1 (20 - 90)	G _{T1} (20 - 90)	37	41	44	dB	20~90	OFF	OFF	V _{IN} =-50dBV	Fig.3
Transmit gain 1 (30 - 90)	G _{T1} (30 - 90)	38	41	44	dB	30~90	OFF	OFF	V _{IN} =-50dBV	Fig.3
Transmit gain 2 (20)	Gт2 (20)	38	41	45	dB	20	ON	OFF	V _{IN} =-50dBV	Fig.3
Transmit gain 2 (30)	G _{T2} (30)	38	41	44	dB	30	ON	OFF	V _{IN} =-50dBV	Fig.3
Transmit gain 2 (90)	GT2 (90)	34.5	37.5	40.5	dB	90	ON	OFF	V _{IN} =-50dBV	Fig.3
Transmit distortion attenuation	D⊤	_	-46	-20	dB	20~90	_	OFF	V _{IN} =-50dBV	Fig.3
Transmit noise level	Nτ	_	-68	-55	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.3
Maximum transmit output level (20 - 90)	O _T (20 - 90)	-2	3	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.3
Maximum transmit output level (30 - 90)	O _T (30 - 90)	0	3	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.3
Receive gain 1 (20 - 90)	G _{R1} (20 - 90)	-13	-10	- 7	dB	20~90	OFF	OFF	S ₁ =1 V _{IN} =-20dBV	Fig.4
Receive gain 1 (20)	G _{R1} (20)	-13	-10	- 7	dB	20	ON	OFF	S ₁ =1 V _{IN} =-20dBV	Fig.4
Receive gain 1 (30)	G _{R1} (30)	-13	-10	- 7	dB	30	ON	OFF	S₁=1 V _{IN} =-20dBV	Fig.4
Receive gain 1 (90)	G _{R1} (90)	-16.5	-13.5	-10.5	dB	90	ON	OFF	$S_1=1$ $V_{IN}=-20dBV$	Fig.4
Receive distortion attenuation 1	D _{R1}	_	-46	-20	dB	20~90	_	OFF	S ₁ =1 V _{IN} =-20dBV	Fig.4
Receive noise level 1	N _{R1}	_	-70	-60	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output level 1 (20 - 90)	O _{R1} (20 - 90)	-15	- 7	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.4
Maximum receive output level 1 (30 - 90)	O _{R1} (30 - 90)	-11	- 7	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.4
Receive gain 2 (20 - 90)	G _{R2} (20 - 90)	5	8	11	dB	20~90	OFF	OFF	S ₁ =2 V _{IN} =-20dBV	Fig.4
Receive gain 2 (20)	G _{R2} (20)	5	8	11	dB	20	ON	OFF	S ₁ =2 V _{IN} =-20dBV	Fig.4

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions				Measurement
						IL (mA)	AGC	Mute	f=1kHz	circuit
Receive gain 2 (30)	G _{R2} (30)	5	8	11	dB	30	ON	OFF	S ₁ =2 V _{IN} =-20dBV	Fig.4
Receive gain 2 (90)	G _{R2} (90)	1.5	4.5	7.5	dB	90	ON	OFF	S ₁ =2 V _{IN} =-20dBV	Fig.4
Receive distortion attenuation 2	D _{R2}	_	-46	-20	dB	20~90	_	OFF	S ₁ =2 V _{IN} =-20dBV	Fig.4
Receive noise level (20 - 90)	N _{R2} (20 - 90)	_	-66	-50	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Receive noise level 2 (30 - 90)	N _{R2} (30 - 90)	_	-66	-55	dBV	30~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output level 2 (20 - 90)	O _{R2} (20 - 90)	1	7	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.4
Maximum receive output level 2 (30 - 90)	O _{R2} (30 - 90)	3	7	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.4
DTMF gain 1 (20 - 90)	G _{D1} (20 - 90)	30.5	33.5	36.5	dB	20~90	OFF	ON	V _{IN} =-40dBV	Fig.5
DTMF gain 2 (20)	G _{D1} (20)	30	33	36	dB	20	ON	ON	V _{IN} =-40dBV	Fig.5
DTMF gain 2 (30)	G _{D2} (30)	30	33	36	dB	30	ON	ON	V _{IN} =-40dBV	Fig.5
DTMF gain 2 (90)	G _{D2} (90)	27	30	33	dB	90	ON	ON	V _{IN} =-40dBV	Fig.5
DTMF distortion attenuation	D₀	_	-41	-28	dB	20~90	_	ON	V _{IN} =-40dBV	Fig.5
DTMF noise level (20 - 90)	N⊳	_	-64	-55	dBV	20~90	_	ON	BPF=400Hz ~30kHz	Fig.5
Maximum DTMF output level (20 - 90)	O₀ (20 - 90)	-4.5	-0.5	_	dBV	20~90	_	ON	Dist=-28dB	Fig.5
Maximum DTMF output level (30 - 90)	O _D (30 - 90)	-3.5	-0.5	_	dBV	30~90	_	ON	Dist=-28dB	Fig.5
AT gain 1	G _{A1}	23.5	26.5	29.5	dB	20~90	_	ON	S ₁ =1 V _{IN} =-40dBV	Fig.6
AT gain 2	G _{A2}	26.5	29.5	32.5	dB	20~90	_	ON	S ₁ =2 V _{IN} =-40dBV	Fig.6
AC impedance	ZTEL	450	565	750	Ω	20~90	_	_	V _{IN} =-20dBV	Fig.7
Vcc pin voltage	Vccr	1.15	1.27	_	٧	20	_	_	S3=ON	Fig.2

Measurement circuits

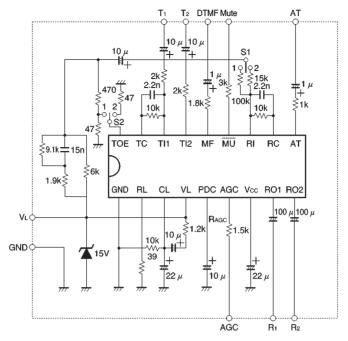


Fig. 1

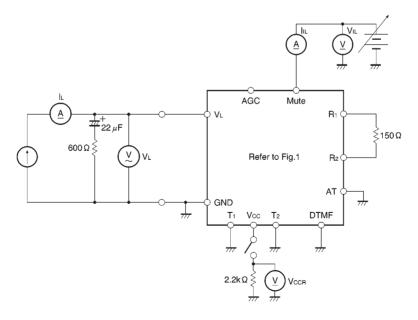


Fig. 2

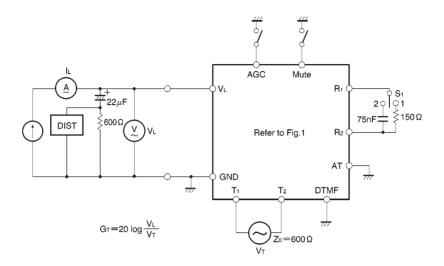


Fig. 3

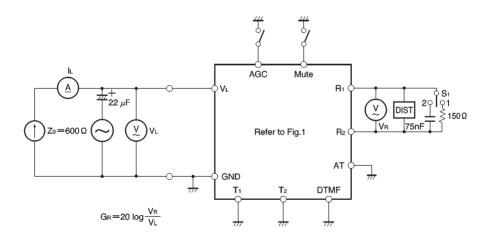


Fig. 4

222

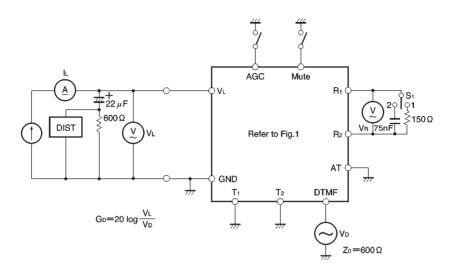


Fig. 5

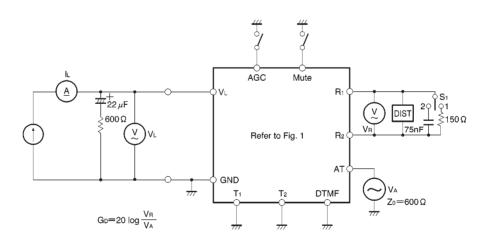


Fig. 6

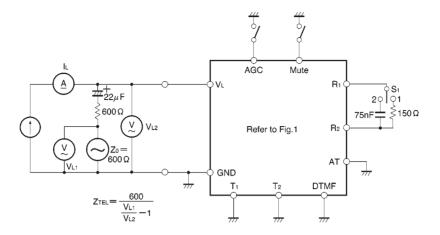
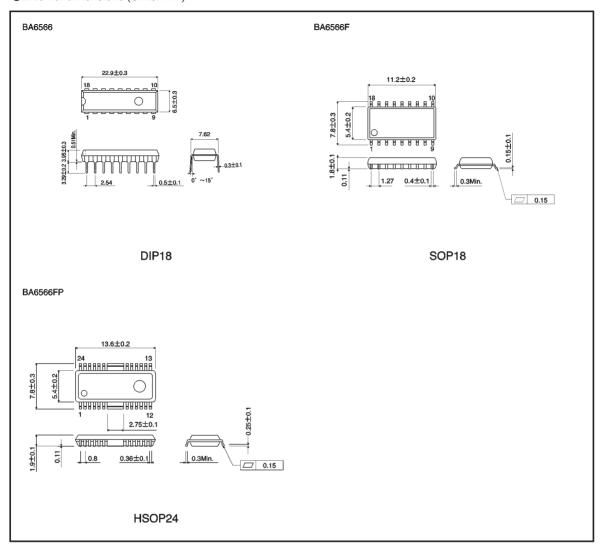



Fig. 7

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

