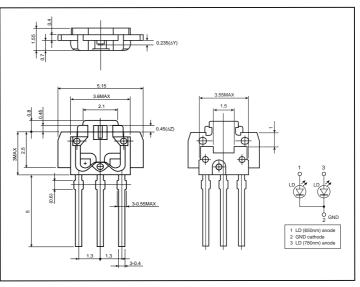
660nm High Power / 780nm Low Power Dual Wave Laser RLD2WMGS1

RLD2WMGS1 is a dual wave laser which achieved high emission point distance accuracy according to a emission point simultaneous process.


Applications

DVD recorder

Features

- 1) DVD / CD Po (Optical output) : 240mW / 20mW
- 2) Emission point distance accuracy : $110 \mu m \pm 1 \mu m$
- 3) High Heat Radiation Type : Slim frame package

•Dimensions (Unit:mm)

•Absolute maximum ratings (Tc=25°C)

Parameter	Symbol	Limits	Unit
Optical output	Po	Pulse 240	mW
Laser reverse voltage	Vr	2	V
Operating temperature	Тор	-10 to +75 (Pulse)	°C
Storage temperature	Tstg	-40 to +75	°C

CD

Parameter	Symbol	Limits	Unit
Optical output	Po	CW 20	mW
Lase reverse voltage	Vr	2	V
Operating temperature	Тор	-10 to +75 (Pulse)	°C
Storage temperature	Tstg	-40 to +75	°C

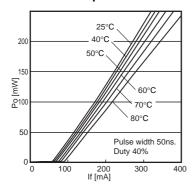
Laser Diodes

•Electrical and optical characteristics (Tc=25°C)

DVD						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Threshold current	Ith	-	60	75	mA	CW
Operating current	lop	-	150	200	mA	Po=80mW CW
Operating voltage	Vop	-	2.7	3.3	V	Po=80mW CW
Output efficiency	η	0.7	0.9	1.3	mW/mA	30mW/ (I (80mW)– I (50mW))
Beam diveragence (FWHM)	θ //	7.5	-	13	deg	
	$\theta \perp$	12.5	-	21	deg	Po=80mW CW
Beam tolerance	φ <i>'</i> //	-3	0	3	deg	
	ф	-3	0	3	deg	
Emission point accuracy	ΔX,Y,Z	-80	0	80	deg	-
Lasing wavelength	λ	655	662	665	nm	Po=80mW CW
Astigmatism	As	-	-	6	nm	NA=0.45, Po=5mW CW

CD

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Threshold current	Ith	-	50	80	mA	CW	
Operating current	lop	_	80	90	mA	Po=20mW CW	
Operating voltage	Vop	-	1.9	2.3	V	Po=20mW CW	
Output efficiency	η	0.5	0.7	1.2	mW/mA	4mW/ (I (8mW)– I (4mW))	
Beam diveragence (FWHM) Beam tolerance	θ //	6	7.5	12	deg	Po=20mW CW	
	$\theta \perp$	13	15.5	21	deg		
	ф //	-3	0	3	deg		
	ф ⊥	-3	0	3	deg		
Lasing wavelength	λ	770	782	790	nm	Po=20mW CW	
Resistance	Rs	_	3.5	5	Ω	Po=20mW CW	
Astigmatism	As	_	_	6	μm	NA=0.45, Po=5mW CW	


Note : θ $_{\perp},$ θ $_{\prime\prime}are$ defined as full width of half maximum.

[Common]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Emission point distance	-	109	110	111	μm	-

Laser Diodes

•Electrical and optical characteristics curves (Tc=25°C)

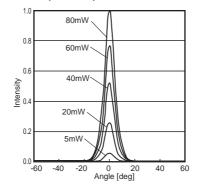


Fig.2 θ // power dependence

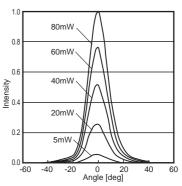


Fig.3 $\theta \perp$ power dependence

Fig.1 Optical output vs. operating current

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM