Power MOSFET

-30 V, -6.1 A, Single P-Channel, ChipFET™

Features

- ullet Offers an Ultra Low $R_{DS(on)}$ Solution in the ChipFET Package
- ChipFET Package 40% Smaller Footprint than TSOP-6
- Low Profile (<1.1 mm) for Extremely Thin Environments
- Standard Logic Level Gate Drive

Applications

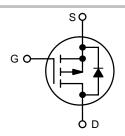
- Notebook Computer Load Switch
- Battery and Load Management Applications in Portable Equipment
- Charge Control in Battery Chargers
- Buck and Boost Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	-4.4	Α
Current (Note 1)	State	T _A = 85°C		-3.2	
	t≤10 s	T _A = 25°C		-6.1	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.3	W
	t≤10 s			2.5	
Continuous Drain	Steady	T _A = 25°C	I _D	-3.3	Α
Current (Note 2)	State	T _A = 85°C		-2.3	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.7	W
Pulsed Drain Current	tp = 10 μs		I _{DM}	-30	Α
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 150	ç	
Source Current (Body Diode)		IS	-2.1	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C	

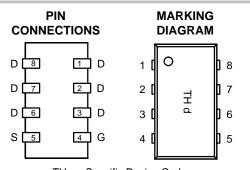
THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	95	°C/W
Junction-to-Ambient - t≤10 s (Note 1)	$R_{\theta JA}$	50	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	175	


- 1. Surface–mounted on FR4 board using 1 inch sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.045 in sq).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
-30 V	33 mΩ @ –10 V	–6.1 A	
00 V	52 mΩ @ –4.5 V	0.170	

P-Channel MOSFET

ChipFET CASE 1206A Style 1

TH = Specific Device Code d = Date Code

ORDERING INFORMATION

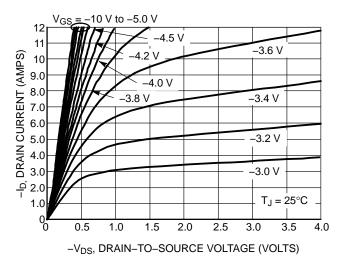
Device	Package	Shipping [†]
NTHS4111PT1	ChipFET	3000 Tape / Reel
NTHS4111PT1G	ChipFET (Pb-free)	3000 Tape / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D}$	= -250 μΑ	-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				-19		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			-1.0	μΑ
		$V_{GS} = 0 \text{ V},$ $V_{DS} = -24 \text{ V}$	T _J = 125°C			-100	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{c}$	_{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{DS}$	₀ = -250 μA	-1.0	-1.7	-3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V},$	$I_D = -4.4 \text{ A}$		33	45	mΩ
		$V_{GS} = -4.5 \text{ V},$	$I_D = -3.4 \text{ A}$		52	75	1
Forward Transconductance	9 _{FS}	$V_{DS} = -15 \text{ V},$	$I_D = -4.4 \text{ A}$		7.7		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCE						
Input Capacitance	C _{ISS}				882	1500	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = -1$	= 1.0 MHz, -24 V		143		1
Reverse Transfer Capacitance	C _{RSS}	v _{DS} = -24 v			105		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = -4.4 \text{ A}$			18.2	28	nC
Gate-to-Source Charge	Q _{GS}				2.95		1
Gate-to-Drain Charge	Q_{GD}				4.25		1
SWITCHING CHARACTERISTICS, V _{GS} = -10	0 V (Note 4)	_					
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -10 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$			9.0	18	ns
Rise Time	t _r				8.0	16	1
Turn-Off Delay Time	t _{d(OFF)}				45	90	1
Fall Time	t _f				26	52	1
SWITCHING CHARACTERISTICS, V _{GS} = -4.	.5 V (Note 4)					•	•
Turn-On Delay Time	t _{d(ON)}				11		ns
Rise Time	t _r	$V_{GS} = -4.5 \text{ V, }$	/nn = -15 V.		14		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 \text{ A}, I_D$	$R_G = 6.0 \Omega$		32		
Fall Time	t _f				23		
DRAIN - SOURCE DIODE CHARACTERIST	cs	•			•	•	•
Characteristic	Symbol	Test Cor	ndition	Min	Тур	Max	Unit
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$			-0.76	-1.2	V
		$I_{S} = -1.1 \text{ A}$	T _J = 125°C		-0.60		1
Reverse Recovery Time	t _{RR}				27	54	ns
Charge Time	ta	$V_{GS} = 0 \text{ V}$ $dI_S/dt = 100 \text{ A/}\mu\text{s}, I_S = -1.1 \text{ A}$			10		1
Discharge Time	t _b				17		
	-	1			1	!	1

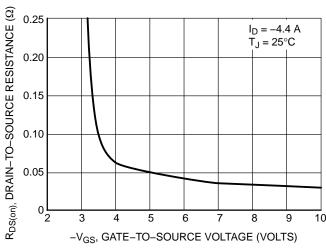
Reverse Recovery Charge


 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

12

nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

12 $V_{DS} = -15 \text{ V}$ 11 DRAIN CURRENT (AMPS) 10 9.0 8.0 T_J = 100°C 7.0 6.0 5.0 4.0 3.0 25°C ٻَ 2.0 1.0 1.0 1.5 2.0 3.0 3.5 4.5 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

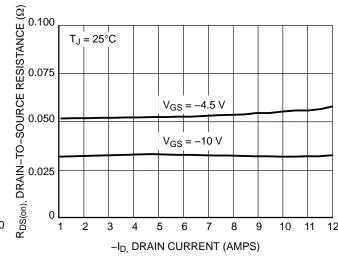
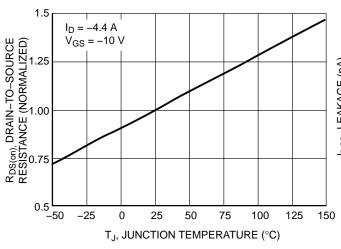



Figure 3. R_{DS(on)} vs. V_{GS}

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

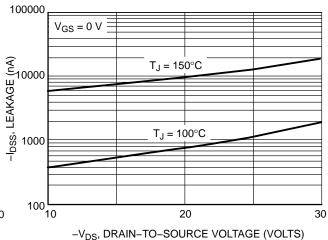
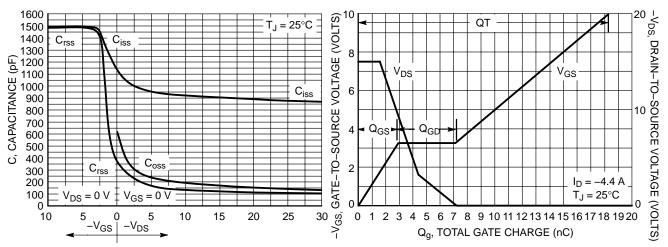



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

-GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

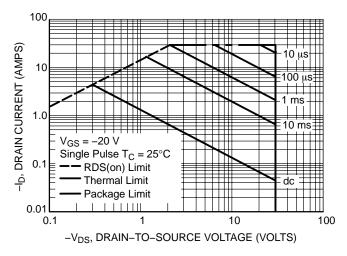


Figure 9. Maximum Rated Forward Biased Safe Operating Area

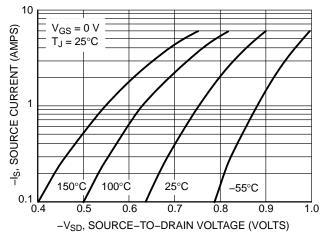


Figure 10. Diode Forward Voltage vs. Current

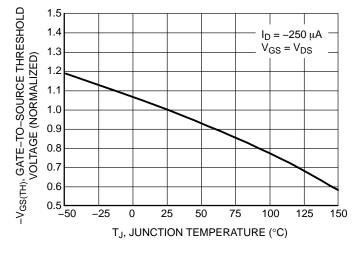


Figure 11. V_{GS(TH)} Variation with Temperature

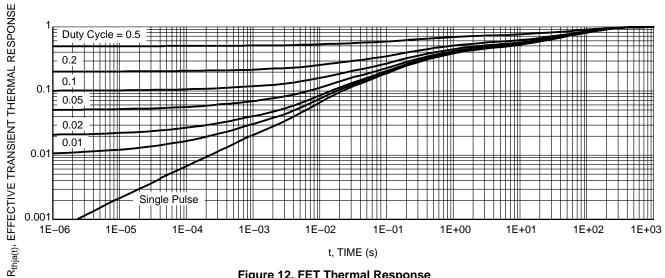
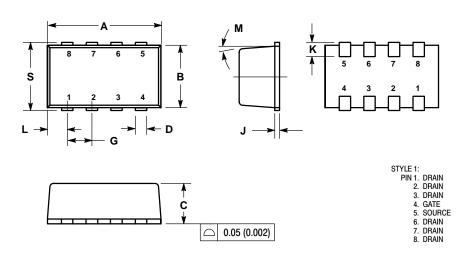



Figure 12. FET Thermal Response

PACKAGE DIMENSIONS

ChipFET CASE 1206A-03 **ISSUE E**

NOTES:

- AUTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM

- PER SIDE.

 4. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
- 5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE
- BURRS.
 NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.
 1206A-01 AND 1206A-02 OBSOLETE. NEW STANDARD IS 1206A-03.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2.95	3.10	0.116	0.122		
В	1.55	1.70	0.061	0.067		
С	1.00	1.10	0.039	0.043		
D	0.25	0.35	0.010	0.014		
G	0.65	0.65 BSC		0.025 BSC		
J	0.10	0.20	0.004	0.008		
K	0.28	0.42	0.011	0.017		
L	0.55	0.55 BSC		2 BSC		
M	5°	5° NOM		5° NOM		
S	1.80	2.00	0.072	0.080		

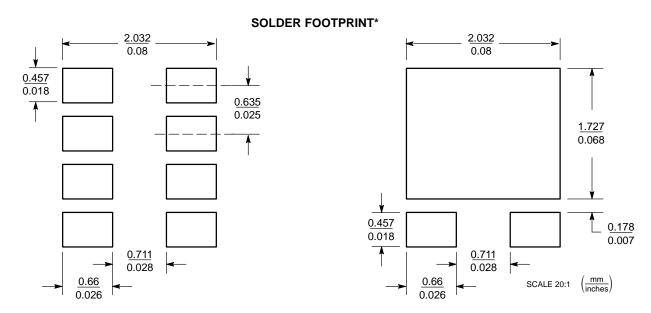


Figure 13. Basic

Figure 14. Style 1

*For information on soldering specifications, please refer to our Soldering Reference Manual, SOLDERRM/D.

Notes

ChipFET is a trademark of Vishay Siliconix

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

N. American Technical Support: 800-282-9855 Toll Free

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.