Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

1-to-4 Address Register / Driver with 3-state Outputs

ADE-205-215B (Z) 3rd. Edition January 2001

Description

This 1-bit to 4-bit address register / driver is designed for 2.3 V to 3.6 V V_{CC} operation.

The device is ideal for use in applications in which a single address bus is driving four separate memory locations. The HD74ALVCH162832 can be used as a buffer or a register, depending on the logic level of the select (SEL) input.

When \overline{SEL} is a logic high, the device is in the buffer mode. The outputs follow the inputs and are controlled by the two output enable (\overline{OE}) inputs. Each \overline{OE} controls two groups of seven outputs.

When \overline{SEL} is a logic low, the device is in the register mode. The register is an edge triggered D-type flip flop. On the positive transition of the clock (CLK) input, data at the A inputs is stored in the internal registers. \overline{OE} controls operate the same as in the buffer mode.

When OE is a logic low, the outputs are in a normal logic state (high or low logic level). When OE is a logic high, the outputs are in the high impedance state.

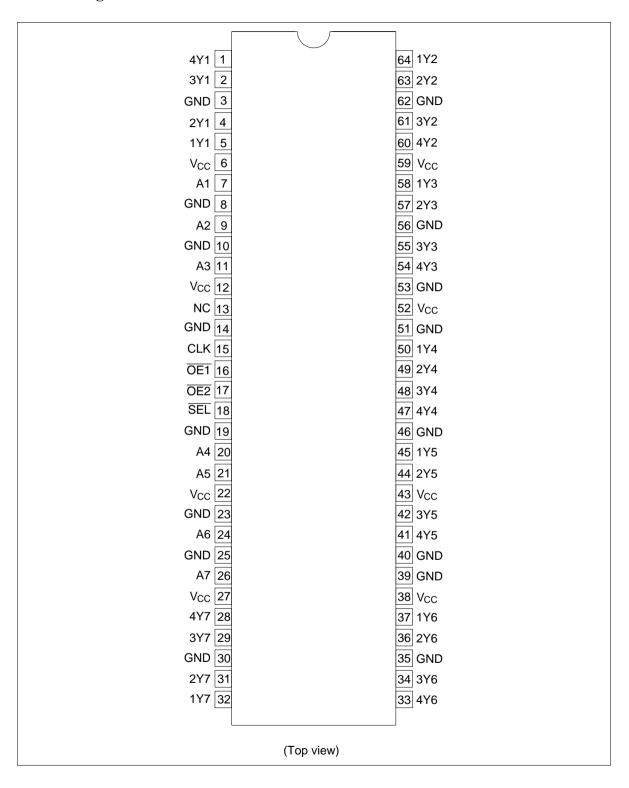
Neither SEL nor OE affect the internal operation of the flip flops. Old data can be retained or new data can be entered while the outputs are in the high impedance state.

To ensure the high impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current sinking capability of the driver.

Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level. All outputs, which are designed to sink up to 12 mA, include 26 Ω resistors to reduce overshoot and undershoot.

Features

- $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$
- Typical V_{OL} ground bounce < 0.8 V (@ V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.0 V (@ V_{CC} = 3.3 V, Ta = 25°C)
- High output current ± 24 mA (@V_{CC} = 3.0 V)
- Bus hold on data inputs eliminates the need for external pullup / pulldown resistors


• All outputs have equivalent 26 Ω series resistors, so no external resistors are required

Function Table

Inputs	Output Y			
ŌE	SEL	CLK	Α	
Н	X	Х	Х	Z
L	Н	Χ	L	L
L	Н	Х	Н	Н
L	L	↑	L	L
L	L	↑	Н	Н

H: High level
L: Low level
X: Immaterial
Z: High impedance
↑: Low to high transition

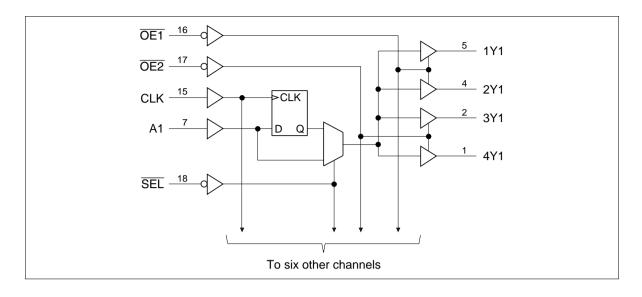
Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{cc}	-0.5 to 4.6	V	
Input voltage *1	Vı	-0.5 to 4.6	V	
Output voltage *1,2 V _o		-0.5 to V_{cc} +0.5	V	
Input clamp current	I _{IK}	-50	mA	V ₁ < 0
Output clamp current	I _{ok}	±50	mA	$V_{o} < 0 \text{ or } V_{o} > V_{cc}$
Continuous output current	Io	±50	mA	$V_{\rm o} = 0$ to $V_{\rm cc}$
V _{cc} , GND current / pin	I _{CC} or I _{GND}	±100	mA	
Maximum power dissipation at Ta = 55°C (in still air) ^{'3}	P _T	1	W	TSSOP
Storage temperature	T_{stg}	-65 to 150	°C	

Notes:

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


- 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

Recommended Operating Conditions

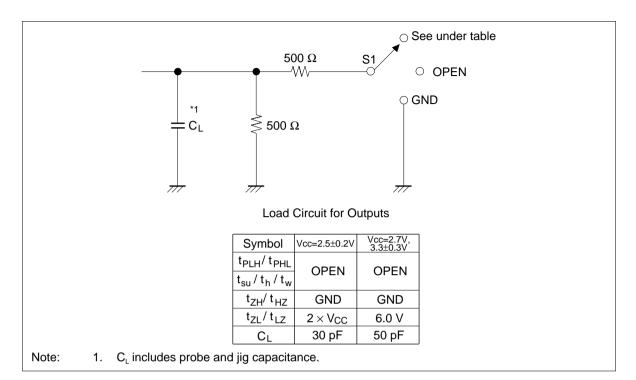
Item	Symbol	Min	Max	Unit	Conditions
Supply voltage	V _{cc}	2.3	3.6	V	
Input voltage	V _I	0	V _{cc}	V	
Output voltage	Vo	0	V _{cc}	V	
High level output current	I _{OH}	_	-6	mA	V _{CC} = 2.3 V
		_	-8		V _{CC} = 2.7 V
		_	-12		V _{CC} = 3.0 V
Low level output current	I _{OL}	_	6	mA	V _{CC} = 2.3 V
		_	8		V _{CC} = 2.7 V
		_	12		V _{CC} = 3.0 V
Input transition rise or fall rate	Δt / Δν	0	10	ns / V	
Operating temperature	T _a	-40	85	°C	

Note: Unused control inputs must be held high or low to prevent them from floating.

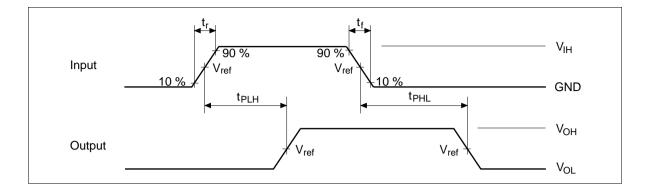
Logic Diagram

Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

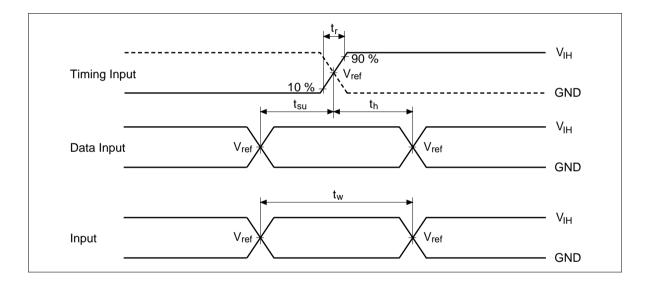
Item	Symbol	V_{cc} (V) *1	Min	Max	Unit	Test Conditions
Input voltage	V _{IH}	2.3 to 2.7	1.7	_	V	
		2.7 to 3.6	2.0	_		
	V _{IL}	2.3 to 2.7	_	0.7		
		2.7 to 3.6	_	0.8		
Output voltage	V _{OH}	2.3 to 3.6	V _{cc} -0.2	_	V	$I_{OH} = -100 \ \mu A$
		2.3	1.9	_		$I_{OH} = -4 \text{ mA}, V_{IH} = 1.7 \text{ V}$
		2.3	1.7	_		$I_{OH} = -6 \text{ mA}, V_{IH} = 1.7 \text{ V}$
		2.7	2.0	_		$I_{OH} = -8 \text{ mA}, V_{IH} = 2.0 \text{ V}$
		3.0	2.4	_		$I_{OH} = -6 \text{ mA}, V_{IH} = 2.0 \text{ V}$
		3.0	2.0	_		$I_{OH} = -12 \text{ mA}, V_{IH} = 2.0 \text{ V}$
	V _{OL}	2.3 to 3.6	_	0.2		$I_{OL} = 100 \mu A$
		2.3	_	0.4		$I_{OL} = 4 \text{ mA}, V_{IL} = 0.7 \text{ V}$
		2.3	_	0.55		$I_{OL} = 6 \text{ mA}, V_{IL} = 0.7 \text{ V}$
		2.7	_	0.6		$I_{OL} = 8 \text{ mA}, V_{IL} = 0.8 \text{ V}$
		3.0	_	0.55		$I_{OL} = 6 \text{ mA}, V_{IL} = 0.8 \text{ V}$
		3.0	_	0.8		$I_{OL} = 12 \text{ mA}, V_{IL} = 0.8 \text{ V}$
Input current	I _{IN}	3.6	_	±5	μΑ	$V_{IN} = V_{CC}$ or GND
	I _{IN (hold)}	2.3	45	_		V _{IN} = 0.7 V
		2.3	-45	_		V _{IN} = 1.7 V
		3.0	75	_		V _{IN} = 0.8 V
		3.0	- 75	_		V _{IN} = 2.0 V
		3.6	_	±500		$V_{IN} = 0 \text{ to } 3.6 \text{ V}^{*2}$
Off state output current	l _{oz}	3.6	_	±10	μΑ	$V_{OUT} = V_{CC}$ or GND
Quiescent supply current	t I _{cc}	3.6	_	40	μΑ	$V_{IN} = V_{CC}$ or GND
	ΔI_{CC}	3.0 to 3.6	_	750	μΑ	V_{IN} = one input at (V_{CC} -0.6) V, other inputs at V_{CC} or GND


Notes: 1. For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

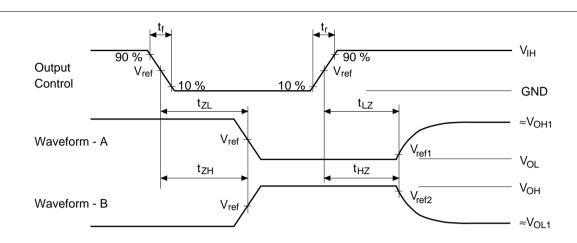
^{2.} This is the bus hold maximum dynamic current required to switch the input from one state to another.


Switching Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)	TO (Output)
Maximum clock frequency	f _{max}	2.5±0.2	150	_	_	MHz		
		2.7	150	_	_			
		3.3±0.3	150	_	_			
Propagation delay time	t _{PLH}	2.5±0.2	1.1	_	4.7	ns	А	Υ
	$t_{\tiny PHL}$	2.7	_	_	4.8			
		3.3±0.3	1.5	_	4.3			
		2.5±0.2	1.0	_	5.3		CLK	Υ
		2.7	_	_	5.3	_		
		3.3±0.3	1.4	_	4.7			
		2.5±0.2	1.1	_	6.0		SEL	Υ
		2.7	_	_	6.2			
		3.3±0.3	1.5	_	4.8			
Output enable time	t _{zH}	2.5±0.2	1.0	_	5.9	ns	ŌĒ	Υ
	t_{zL}	2.7	_	_	5.9			
		3.3±0.3	1.1	_	5.1			
Output disable time	t _{HZ}	2.5±0.2	1.4	_	6.3	ns	ŌĒ	Υ
	t_{LZ}	2.7	_	_	5.4	 -		
		3.3±0.3	1.6	_	5.1			
Setup time	t _{su}	2.5±0.2	2.0	_	_	ns		
		2.7	2.0	_	_	 -		
		3.3±0.3	1.6	_	_			
Hold time	t _h	2.5±0.2	0.7	_	_	ns		
		2.7	0.5	_	_			
		3.3±0.3	1.1	_	_			
Pulse width	t _w	2.5±0.2	3.3	_	_	ns		
		2.7	3.3	_	_	_		
		3.3±0.3	3.3	_	_			
Input capacitance	C _{IN}	3.3	_	4.5	_	pF	Control in	nputs
		3.3	_	5.0	_		Data inpu	
Output capacitance	C _o	3.3	_	7.5	_	pF	Outputs	


Test Circuit

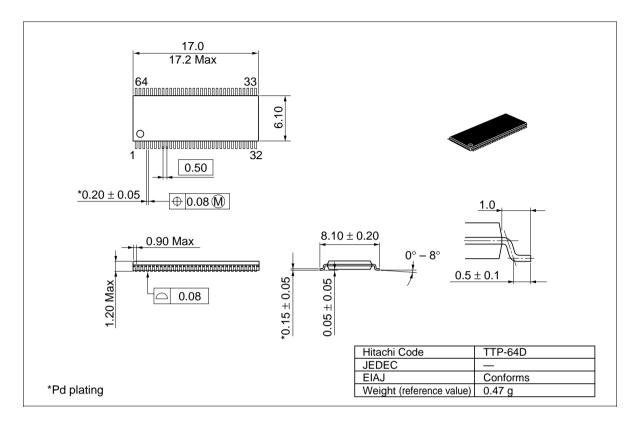
Waveforms – 1



Waveforms – 2

^

Waveforms - 3


TEST	Vcc=2.5±0.2V	Vcc=2.7V, 3.3±0.3V		
V_{IH}	V_{CC}	2.7 V		
V_{ref}	1/2 V _{CC}	1.5 V		
V _{ref1}	V _{OL} +0.15 V	V _{OL} +0.3 V		
V_{ref2}	V _{OH} -0.15 V	V _{OH} -0.3 V		
V _{OH1}	V _{CC}	3.0 V		
V_{OL1}	GND	GND		

Notes:

- 1. All input pulses are supplied by generators having the following characteristics : PRR \leq 10 MHz, Zo = 50 Ω , $t_{_f} \leq$ 2.0 ns, $t_{_f} \leq$ 2.0 ns. (V_{CC} = 2.5 \pm 0.2 V) PRR \leq 10 MHz, Zo = 50 Ω , $t_{_f} \leq$ 2.5 ns, $t_{_f} \leq$ 2.5 ns. (V_{CC} = 2.7 V, 3.3 \pm 0.3 V)
- 2. Waveform A is for an output with internal conditions such that the output is low except when disabled by the output control.
- 3. Waveform B is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. The output are measured one at a time with one transition per measurement.

Package Dimensions

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACHI

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe Asia http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Germany

Hitachi Europe GmbH Electronic Components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Fax: <1>(408) 433-0223 Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

> Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel: <65>-538-6533/538-8577 Fax: <65>-538-6933/538-3877 URL: http://www.hitachi.com.sg

Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel: <886>-(2)-2718-3666

Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong

Tel : <852>-(2)-735-9218 Fax: <852>-(2)-730-0281 URL: http://www.hitachi.com.hk

Copyright @ Hitachi, Ltd., 2001. All rights reserved. Printed in Japan.