TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L1 Series

TMP91C820A

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = $(\overline{\text{NMI}}, \text{INT0 to INT3}, \text{INTRTC}, \text{INTALM0 to INTALM4}, \text{INTKEY})$, which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontrollers TMP91C820AF/JT5AW4-S

Outline and Features 1.

TMP91C82OA/JT5AW4 is a highnspelble of desit gmi ecol foot the co mid-tolarge-scale equipment.

TMP91C82OAF comes in a 1a4) e. pliTr5fAlWalt pacoknes in a 144-pad c Listed beloware the features.

(1) High-speed 16-bit CPU (900/L1 CPU)

Instruction mne modic cosmpate iulpolwa with TLCS-90

16 Mbytes of linear address space

General - purpose registers and register banks

16-bit multiplication and division instructions; bit Mi cro DMA: 4channels (432ns/2bytes at 36 MHz)

- (2) Minimuminstruction execution time: 111ns (at 36 MHz)
- (3) Built-in RAM: 8 Kbytes

Built-in ROM: 8 Kbytes (However, 9999 (ROM code) has no

- (4) External memory expansion
 - Expandable up to 136 Mbytes (Shared program/data are
 - Can si mul taneous ly support 8- or 16- bit width extern ... Dynami c data bus syzi ng
 - Separate bus system
- (5) 8-bittimers: 4channels
- (6) 16-bittimer/event counter: 1 channel
- (7) General punpesésce: alchannel s
 - UART/synchrodenous m
 - IrDA

- The information contained herein is subject to change without notice.
- The information contained herein is subject to change without notice.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to cally with the standards of safety in making a safe design for the entire system, and to avoid in the patents of the patents. situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to

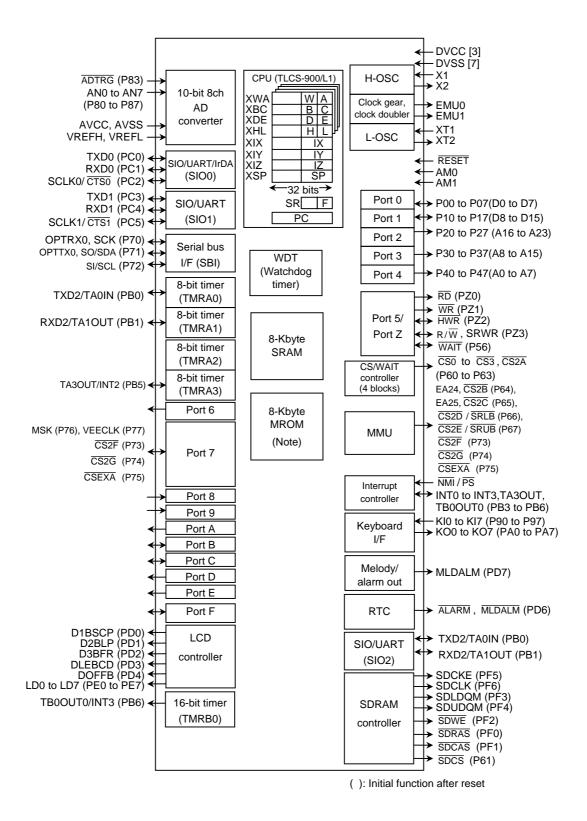
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal semiconductor). These TOSHIBA products are

- equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are intended for usage in equipment, office equipment, appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

Purchase of T²OSddImBAohents com vseyusnalericth 2C Plaitein pt sRI ghts to us these componerACssysnterm, I provided that the syAStSetmandonforms Specification as defined by Philips.

> 2004-02-16 91C820A-1


- (8) Serial businterface: 1 channel I2C bus mode/chrocorkosuysnscelect mode
- (9) LCDcontroller
 - Shiftregister/built-inRAMLCDdriver
 - Supported 16, 8 and 4 gray levels and black and white
 - Hardware blinking cursor
- (10) SDRAMcontroller

Supported 16-M, 64-Mand 128-Mbi t SDRAM with 16-bit dat

- (11) Ti mertiformerceaolck (RTC)
 - Based on TC8521A
- (12) Key-on wakeup (Interrupt keyinput)
- (13) 10-bit ADconverter: 8channels
- (14) Watchdog ti mer
- (15) Melody/alarmgenerator
 - Melody: Output of clock 4 to 5461 Hz
 - Alarm: Output of the 8ki nds of alarmpattern
 - Output of the 5ki nds of interval interrupt
- (16) Chipselect/wait controller: 4 channels
- (17) MMU
 - Expandable up to 136 Mbytes (4 local area/8-bank meth
- (18) Interrupts: 46 interrupts
 - 9CPUinterrupts: Softwareinterruptinstruction and
 - 31 internal interrupts: Sevenselectable priorityle
 - 6 external interrupts: Seven selectable priority leg
- (19) Input/outputtpeorttesr:n 27 pli6n spi(tadatabus memory)
- (20) Standby function

Three HALT modes: IDLE2 (Programmable), IDLE1, STOP

- (21) Hardware standby function (Power save function)
- (22) Triple-clock controller
 - Clock doubler (DFM)
 - Clock gear function: Select a high-frequency clock fctRTC (=f352.768 kHz)
- (23) Operating voltage
 - VCG 2. 7 V to 3 = 257/MHfzc)
 - VCG-3. OV to 3. 6=√3(6fMtHnza)x
- (24) Package
 - 144-pinQFP: P-LQFP144-1616-0. 40C
 - Chip form supply also atvalalsabbentaont of eur local representative.

Note: When ROM code is 9999, it has no ROM.

Figure 1.1 TMP91C820A Block Diagram

2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91C82OA follows:

2.1 Pin Assignment Diagram

Figure 2. 1. 1 shows the pinassi gnment of the TMP91C820.

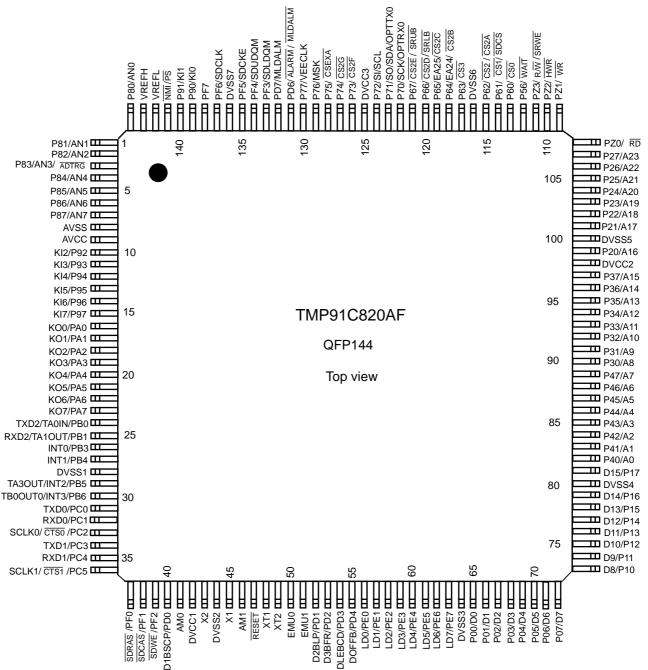


Figure 2.1.1 Pin Assignment Diagram (144-pin QFP)

2.2 PAD layout

(Chip size 5.75 mm \times 5.63 mm)

Unit: µm

(Chip Siz	ze 5.75 mm $ imes$	5.63 mm)									Unit: μm
PIN				PIN				PIN			
No.	Name	X Point	Y Point	No.	Name	X Point	Y Point	No.	Name	X Point	Y Point
1	P81	-2742	2128	49	XT2	-485	-2682	97	P37	2736	758
2	P82	-2742	2004	50	EMU0	-370	-2682	98	DVCC2	2736	872
3	P83	-2742	1888	51	EMU1	-256	-2682	99	P20	2736	986
4	P84	-2742	1774	52	PD1	-142	-2682	100	DVSS5	2736	1202
5	P85	-2742	1660	53	PD2	-28	-2682	101	P21	2736	1318
6	P86	-2742	1546	54	PD3	86	-2682	102	P22	2736	1432
7	P87	-2742	1432	55	PD4	200	-2682	103	P23	2736	1546
8	AVSS	-2742	1318	56	PE0	314	-2682	104	P24	2736	1660
9	AVCC	-2742	1204	57	PE1	428	-2682	105	P25	2736	1774
10	P92	-2742	892	58	PE2	542	-2682	106	P26	2736	1888
11	P93	-2742	778	59	PE3	656	-2682	107	P27	2736	2004
12	P94	-2742	664	60	PE4	770	-2682	108	PZ0	2736	2128
13	P95	-2742	550	61	PE5	884	-2682	109	PZ1	2188	2676
14	P96	-2742	436	62	PE6	998	-2682	110	PZ2	2062	2676
15	P97	-2742	322	63	PE7	1112	-2682	111	PZ3	1948	2676
16	PA0	-2742	208	64	DVSS3	1246	-2682	112	P56	1834	2676
17	PA1	-2742	94	65	P00	1378	-2682	113	P60	1720	2676
18	PA2	-2742	-20	66	P01	1492	-2682	114	P61	1606	2676
19	PA3	-2742 -2742	-134	67	P02	1606	-2682	115	P62	1492	2676
20	PA4	-2742 -2742	-13 4 -248	68	P03	1720	-2682 -2682	116	DVSS6	1378	2676
21	PA4 PA5			69	P03				P63	1264	
		-2742	-362			1834	-2682	117			2676
22	PA6	-2742	-476 500	70	P05	1948	-2682	118	P64	1150	2676
23	PA7	-2742	-590 -704	71	P06	2062	-2682	119	P65	1036	2676
24	PB0	-2742	-704	72	P07	2188	-2682	120	P66	922	2676
25	PB1	-2742	-818	73	P10	2736	-2134	121	P67	808	2676
26	PB3	-2742	-932	74	P11	2736	-2010	122	P70	694	2676
27	PB4	-2742	-1046	75	P12	2736	-1894	123	P71	580	2676
28	DVSS1	-2742	-1210	76	P13	2736	-1780	124	P72	382	2676
29	PB5	-2742	-1324	77	P14	2736	-1666	125	DVCC3	268	2676
30	PB6	-2742	-1438	78	P15	2736	-1552	126	P73	68	2676
31	PC0	-2742	-1552	79	P16	2736	-1438	127	P74	-46	2676
32	PC1	-2742	-1666	80	DVSS4	2736	-1318	128	P75	-160	2676
33	PC2	-2742	-1780	81	P17	2736	-1066	129	P76	-274	2676
34	PC3	-2742	-1894	82	P40	2736	-952	130	P77	-388	2676
35	PC4	-2742	-2010	83	P41	2736	-838	131	PD6	-520	2676
36	PC5	-2742	-2134	84	P42	2736	-724	132	PD7	-634	2676
37	PF0	-2194	-2682	85	P43	2736	-610	133	PF3	-748	2676
38	PF1	-2068	-2682	86	P44	2736	-496	134	PF4	-862	2676
39	PF2	-1954	-2682	87	P45	2736	-382	135	PF5	-976	2676
40	PD0	-1840	-2682	88	P46	2736	-268	136	DVSS7	-1090	2676
41	AM0	-1726	-2682	89	P47	2736	-154	137	PF6	-1204	2676
42	DVCC1	-1612	-2682	90	P30	2736	-40	138	PF7	-1318	2676
43	X2	-1410	-2682	91	P31	2736	74	139	P90	-1432	2676
44	DVSS2	-1244	-2682	92	P32	2736	188	140	P91	-1546	2676
45	X1	-1079	-2682	93	P33	2736	302	141	NMI	-1660	2676
46	AM1	-963	-2682	94	P34	2736	416	142	VREFL	-1954	2676
47	RESET	-849	-2682	95	P35	2736	530	143	VREFH	-2068	2676
48	XT1	-734	-2682	96	P36	2736	644	144	P80	-2194	2676

2.3 Pin Names and Functions

The names of the input/output pins and their functions

Table 2.3.1 Pin Names and Functions (1/4)

Pin Name	Number of Pins	I/O	Functions
P00 to P07 D0 to D7	8	I/O I/O	Port 0: I/O port that allows I/O to be selected at the bit level Data (Lower): Bits 0 to 7 of data bus
P10 to P17	8	I/O	Port 1: I/O port that allows I/O to be selected at the bit level (When used to the external 8-bit bus)
D8 to D15		I/O	Data (Upper): Bits 8 to15 of data bus
P20 to P27	8	Output	Port 2: I/O port
A16 to A23		Output	Address: Bits 16 to 23 of address bus
P30 to P37	8	Output	Port 3: I/O port
A8 to A15		Output	Address: Bits 8 to 15 of address bus
P40 o P47	8	Output	Port 4: I/O port
A0 to A7		Output	Address: Bits 0 to 7 of address bus
PZ0	1	Output	Port Z0: Output port
RD		Output	Read: Strobe signal for reading external memory
PZ1	1	Output	Port Z1: Output port
WR		Output	Write: Strobe signal for writing data to pins D0 to D7
PZ2	1	I/O	Port Z2: I/O port (with pull-up resistor)
HWR		Output	High write: Strobe signal for writing data to pins D8 to D15
PZ3	1	I/O	Port Z3: I/O port (with pull-up resistor)
R/\overline{W}		Output	Read/write: 1 represents read or dummy cycle; 0 represents write cycle.
SRWR		Output	Write for SRAM: Strobe signal for writing data.
P56	1	I/O	Port 56: I/O port (with pull-up resistor)
WAIT		Input	Wait: Pin used to request CPU bus wait
P60	1	Output	Port 60: Output port
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.
P61	1	Output	Port 61: Output port
CS1		Output	Chip select 1: Outputs 0 when address is within specified address area
SDCS		Output	Chip select for SDRAM: Outputs 0 when address is within SDRAM address area
P62	1	Output	Port 62: Output port
CS2		Output	Chip select 2: Outputs 0 when address is within specified address area
CS2A		Output	Expand chip select 2A: Outputs 0 when address is within specified address area
P63	1	Output	Port 63: Output port
CS3		Output	Chip select 3: Outputs 0 when address is within specified address area
P64	1	Output	Port 64: Output port
EA24		Output	Chip select 24: Outputs 0 when address is within specified address area
CS2B			Expand chip select 2B: Outputs 0 when address is within specified address area
P65	1	Output	Port 65: Output port
EA25		Output	Chip select 25: Outputs 0 when address is within specified address area
CS2C		Output	Expand chip select 2C: Outputs 0 when address is within specified address area
P66	1	Output	Port 66: Output port
CS2D		Output	Expand chip select 2D: Outputs 0 when address is within specified address area
SRLB		Output	Lower byte enable for SRAM: Outputs 0 when lower data is enable.
P67	1	Output	Port 67: Output port
CS2E		Output	Expand chip select 2E: Outputs 0 when address is within specified address area
SRUB		Output	Upper byte enable for SRAM: Outputs 0 when upper data is enable.

Table 2.3.2 Pin Names and Functions (2/4)

Pin Name	Number of Pins	I/O	Functions
P70	1	I/O	Port 70: I/O port
SCK		I/O	Serial bus interface clock I/O data at SIO mode
OPTRX0		Input	Serial 0 recive data
P71	1	I/O	Port 71: I/O port
S0		Output	Serial bus interface send data at SIO mode
SDA		I/O	Serial bus interface send/recive data at I ² C bus mode
			Open-drain output mode by programmable
OPTRX0		Output	Serial 0 send data
P72	1	I/O	Port 72: I/O port
SI		Input	Serial bus interface recive data at SIO mode
SCL		I/O	Serial bus interface clock I/O data at I ² C bus mode
			Open-drain output mode by programmable
P73	1	I/O	Port 73: I/O port
CS2F		Output	Expand chip select 2F: Outputs 0 when address is within specified address area
P74	1	I/O	Port 74: I/O port
CS2G		Output	Expand chip select 2G: Outputs 0 when address is within specified address area
P75	1	I/O	Port 75: I/O port
CSEXA		Output	Expand chip select EXA: Outputs 0 when address is within specified address area
P76	1	I/O	Port 76: I/O port
MSK		Input	Mask: Use for disable to output VEECLK for LCD driver
P77	1	I/O	Port 77: I/O port
VEECLK		Output	Output 32.768 kHz clock to LCD driver. (Can be disabled by MSK pin.)
P80 to P87	8	Input	Port 80 to 87: Pin used to input ports
AN0 to AN7		Input	Analog input 0 to 7: Pin used to input to AD conveter
ADTRG		Input	AD trigger: Signal used to request AD start (with used to P83)
P90 to P97	8	Input	Port 90 to 97: Pin used to input ports
KI0 to KI7		Input	Key input 0 to 7: Pin used of key-on wakeup 0 to 7
			(Schmitt input, with pull-up resistor)
PA0 to PA7	8	Output	Port A0 to A7: Pin used to output ports
KO0 to KO7		Output	Key output 0 to 7: Pin used of key-scan strobe 0 to 7
PB0	1	I/O	Port B0: I/O port
TAOIN		Input	8-bit timer 0 input: Timer 0 input
TXD2		Output	Serial 2 send data: Open-drain output pin by programmable
PB1	1	I/O	Port B1: I/O port
TA1OUT		Output	8-bit timer 1 output: Timer 1 output
RXD2		Input	Serial 2 receive data
PB3	1	I/O	Port B3: I/O port
INT0		Input	Interrupt request pin0: Interrupt request pin with programmable level/rising/falling edge
PB4	1	I/O	Port B4: I/O port
INT1		Input	Interrupt request pin1: Interrupt request pin with programmable rising/falling edge

Table 2.3.3 Pin Names and Functions (3/4)

Pin Name	Number of Pins	I/O	Functions
PB5	1	I/O	Port B5: I/O port
INT2		Input	Interrupt request pin2: Interrupt request pin with programmable rising/falling edge
TA3OUT		Output	8-bit timer 3 output: Timer 3 output
PB6	1	I/O	Port B6: I/O port
INT3		Input	Interrupt request pin3: Interrupt request pin with programmable rising/falling edge
TB0OUT0		Outout	Timer B0 output
PC0	1	I/O	Port C0: I/O port
TXD0		Output	Serial 0 send data: Open-drain output pin by programmable
PC1	1	I/O	Port C1: I/O port
RXD0		Input	Serial 0 receive data
PC2	1	I/O	Port C2: I/O port
SCLK0		I/O	Serial 0 clock I/O
CTS0		Input	Serial 0 data send enable (Clear to send)
PC3	1	I/O	Port C3: I/O port
TXD1		Output	Serial 1 send data
		·	Open-drain output pin by programmable
PC4	1	I/O	Port C4: I/O port
RXD1		Input	Serial 1 receive data
PC5	1	I/O	Port C5: I/O port
SCLK1		I/O	Serial 1 clock I/O
CTS1		Input	Serial 1 data send enable (Clear to send)
PD0	1	Output	Port D0: Output port
D1BSCP		Output	LCD driver output pin
PD1	1	Output	Port D1: Output port
D2BLP		Output	LCD driver output pin
PD2	1	Output	Port D2: Output port
D3BFR		Output	LCD driver output pin
PD3	1	Output	Port D3: Output port
DLEBCD		Output	LCD driver output pin
PD4	1	Output	Port D4: Output port
DOFFB		Output	LCD driver output pin
PD6	1	Output	Port D6: Output port
ALARM		Output	RTC alarm output pin
MLDALM		Output	Melody/alarm output pin (Inverted)
PD7	1	Output	Port D7: Output port
MLDALM		Output	Melody/alarm output pin
PE0 to PE7	8	I/O	Port E0 to E7: I/O port
LD0 to LD7		Output	Data bus for LCD driver
PF0	1	I/O	Port F0: Output port
SDRAS		Output	Row address storobe for SDRAM: Outputs 0 when address is within SDRAM address area
PF1	1	I/O	Port F1: Output port
SDCAS	<u> </u>	Output	Column address storobe for SDRAM: Outputs 0 when address is within SDRAM address area

Table 2.3.4 Pin Names and Functions (4/4)

	1		
Pin Name	Number of Pins	I/O	Functions
PF2	1	Output	Port F2: Output port
SDWE		Output	Write enable for SDRAM
PF3	1	Output	Port F3: Output port
SDLDQM		Output	Lower data enable for SDRAM
PF4	1	Output	Port F4: Output port
SDUDQM		Output	Upper data enable for SDRAM
PF5	1	Output	Port F5: Output port
SDCKE		Output	Clock enable for SDRAM
PF6	1	Output	Port F6: Output port
SDCLK		Output	Clock for SDRAM
PF7	1	Output	Port F7: Output port
PS	1	Input	Power save mode setting terminal
NMI		Input	Non-maskable interrupt request: Interrupt request pin with programmable
(Note)			falling edge level or with both edge levels programmable
AM0 to AM1	2	Input	Operation mode:
			Fixed to AM1 = 1, AM0 = 1 when using internal ROM (when ROM code is 9999, setting is prohibitted).
			Fixed to AM1 = 0, AM0 = 1 when using external ROM by 16-bit external bus, or 8- or 16-bit dynamic sizing.
			Fixed to AM1 = 0, AM0 = 0 when using external ROM by 8-bit external bus.
EMU0	1	Output	Open pin
EMU1	1	Output	Open pin
RESET	1	Input	Reset: Initializes TMP91C820A (with pull-up resistor).
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
X1/X2	2	I/O	High-frequency oscillator connection pins
XT1/XT2	2	I/O	Low-frequency oscillator connection pins
AVCC	1		Power supply pin for AD converter
AVSS	1		GND pin for AD converter (0 V)
DVCC	3		Power supply pins (All VCC pins should be connecyed with the power supply pin).
DVSS	7		GND pins (All pins should be connected with GND (0 V).)

Note: Please input 1 into $\overline{NMI}/\overline{PS}$ pin, because $\overline{NMI}/\overline{PS} = 0$ means power save mode after reset.

3. Operation

This following describes block by block the functions ar Notes and restrictions for eatch book are outlined in 6 "end of this manual.

3.1 CPU

The TMP91C82OA incorporatnese at 16 is ght poemuf (oTrhne 900/L1CP) operation, see the "TLCS-900/L1CPU".

The following describe the unique function of the CPL functions are not covered in the TLCS-900/L1 CPU section

3.1.1 Reset

When resetting the TMP9108,20A smircer obboth through one wer supis within the operating voltage range, and that their stabilized. Threshe in opdithelow level for at lease satt 140 sys MHz).

Thus, when turn on the sewpictworder, stouch ty twoot thage is within voltage range, and that the internal high-frequency of RESET nput to low level at least for 10 system clocks.

Clock gear is initialize ple1r/a1t6 mode by meesetthat the mode of set teff cc//18622).

When the reset is accept, the CPU:

 Sets as follows the program counter (PC) in accord at address FFFFOOH to FFFFO2H:

PC<7: O→ Value at FFFFOOHaddress

PC<15: ⊌ ¥al ue at FFFFO1 Haddress

PC<23: 46/al ue at FFFFO2Haddress

- Sets the stack pointer (XSP) to 100H.
- Sets bits <IFF2: O> of the status register (SR) to register to level 7).
- Sets the <MAX> bit of the status register to 1 (MAX (Note: As this product does not support MI N mode, or
- Clears bits < RFP2: O> of the status register to OOO When reset is released with englo Plustrau of the corescinaccor program counter setting ter CSP to the the notable media bove downenthe reset is released.

When the reset is accepited that CP/LOs eptos ts, and of ollows.

Initializes the internal I/Oregisters.

Sets the port pins, inclsuedaiontgatsnie mpt ennsntahlalt/aO, to ge input or output port mode.

Note: The CPU internal register (except to PC, SR, XSP) and internal RAM data do not change by resetting.

Figure 3. 1. 1 is a reset timing of the TMP 91 C8 20 A - 9

TOSHIBA

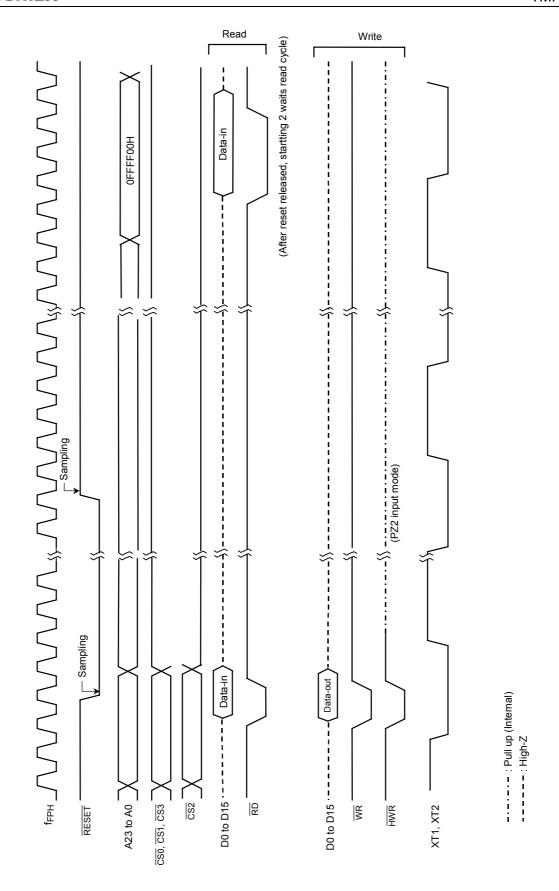


Figure 3.1.1 TMP91C820A-9999 Reset Timing Example (The case of using external ROM)

3.2 Memory Map

Figure 3. 2. 1 is a memory map of the TMP91C82OA.

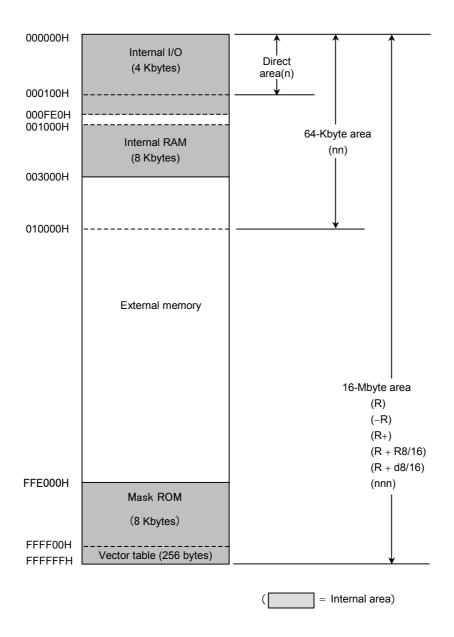
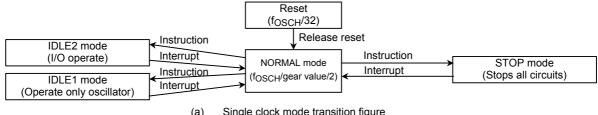


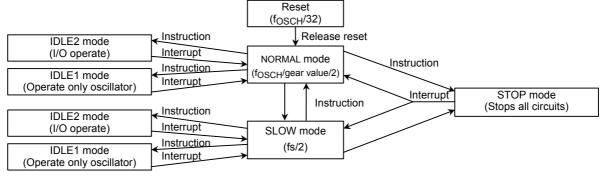
Figure 3.2.1 Memory Map

Note: Address 000FE0H to 000FFFH is assigned for the external memory area of built-in RAM type LCD driver.

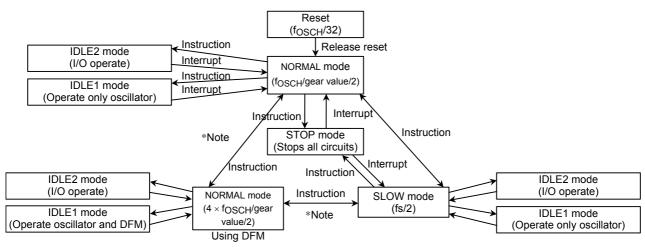
And when ROM code is 9999, internal mask ROM area also defines external memory area.


3.3 Triple Clock Function and Standby Function

TMP91C82OA contains (1) Clock gear, (2) Clock doubler (4) Noise-reducing circuit. It is used for low-power, I This chapter is organized as follows:


- 3. 3. 1 Block Diagram of System Clock
- 3. 3. 2 SFRs
- 3. 3. 3 SystemClock Controller
- 3. 3. 4 Prescaler Clock Controller
- 3. 3. 5 Clock Doubler (DFM)
- 3. 3. 6 Noise Reduction Circuits
- 3. 3. 7 Standby Controller

The clock operating modes are castlo mbd exs(:X(1a)X 2ipnigns on clock mode (X1, X2, XT1 and XT2pi osk mode (C) HerX1, X2, XT1 and DFM).


Figure 3. 3. 1 shows a transition figure.

Single clock mode transition figure

Dual clock mode transition fiigure (b)

- Triple clock mode transition figure
- Note 1: It's prohibited to control DFM in SLOW mode when shifting from SLOW mode to NORMAL mode with use of DFM. (DFM start up/stop/change write to DFMCR0<ACT1:0> register.)
- Note 2: If you shift from NORMAL mode with use of DFM to NORMAL mode, the instruction should be separated into two procedures as below. Change CPU clock → Stop DFM circuit.
- Note 3: It's prohibited to shift from NORMAL mode with use of DFM to STOP mode directly. You should set NORMAL mode once, and then shift to STOP mode. (You should stop high frequency oscillator after you stop DFM.)

Figure 3.3.1 System Clock Block Diagram

The clock frequency inputnfsricosmotable 1261dafrocda Xh2dptihe clock f from the XT1 and XT2 pins is called fs. The clock frequer called the sympthe Timbed so you sk t fearn is is colored fineable avisit the discrepance knowledge of the colored colored the colored colored the colored colored colored the colored colored colored the colored col one cycycycs osfdfefined to as one state.

3.3.1 Block Diagram of System Clock

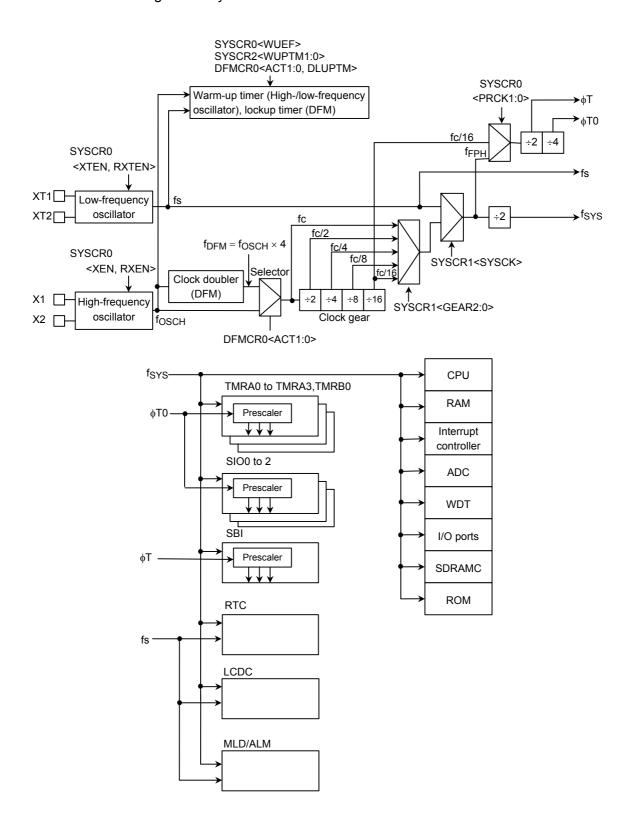


Figure 3.3.2 Block Diagram of System Clock

3.3.2 SFRs

		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
(00E0H)	Read/Write				R/	W			
	After reset	1	1	1	0	0	0	0	0
	Function	0: Stop	Low- frequency oscillator (fs) 0: Stop 1: Oscillation	High- frequency oscillator (fc) after release of STOP mode 0: Stop 1: Oscillation	Low- frequency oscillator (fs) after release of STOP mode 0: Stop 1: Oscillation	Selects clock after release of STOP mode 0: fc 1: fs	Warm-up timer 0: Write don't care 1: Write start timer 0: Read end warm up 1: Read do not end warm up	Select presca 00: f _{FPH} (Not 01: Reserved 10: fc/16 11: Reserved	
		7	6	5	4	3	2	1	0
SYSCR1	Bit symbol					SYSCK	GEAR2	GEAR1	GEAR0
(00E1H)	Read/Write	$\bigg \bigg $				0.00.K		W	02/1110
	After reset					0	1	0	0
	Function					Select system clock 0: fc 1: fs		ed)	quency (fc)
		7	6	5	4	3	2	1	0
SYSCR2	Bit symbol	PSENV		WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE
(00E2H)	Read/Write	R/W		R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0		1	0	1	1	0	0
	Function	1:Disable 0:Power save mode enable (Note 3)		Warm-up time 00: Reserved 01: 2 ⁸ inputted 10:2 ¹⁴ 11:2 ¹⁶		HALT mode 00: Reserved 01: STOP mo 10: IDLE1 mo 11: IDLE2 mo	de	<drve> mode select 1: STOP 0: IDLE1 (Note 4)</drve>	Pin state control in STOP/IDLE1 mode 0: I/O off 1: Remains the state before halt

Note 1: By reset, low-frequency oscillator is enabled.

Note 2: It's prohibit to use to fc/16 prescaler clock when SBI block use. (I²C bus and clock synchronous.)

Note 3: When use $\overline{\text{NMI}}/\overline{\text{PS}}$ pin as $\overline{\text{NMI}}$ function, set <PSENV> to 1.

Note 4: 0 means IDLE1, and 1 means STOP. Please be careful because this setting is sometimes different from others.

Figure 3.3.3 SFR for System Clock

Symbol	Name	Address	7		6	5	4	3	2	1	0
			ACT1		ACT0	DLUPFG	DLUPTM				
			R/W		R/W	R	R/W				
			0		0	0	0				
DFMCR0	DFM control register 0	E8H	00 STOP 01 RUN 10 RUN 11 RUN	STC RUN STC STC	P FOSCH OP FOSCH OP FOSCH OP FOSCH OP FOSCH	Lockup status flag 0: End 1: Not end	Lockup time 0: 2 ¹² /fosch 1: 2 ¹⁰ /fosch				
			D7		fosch D6	D5	D4	D3	D2	D1	D0
	DFM	trol E9H	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
DFMCR1	control		0		0	0	1	0	0	1	1
	register 1			•	Inpu	ıt frequency	DFM re 4 to 9 MHz (a		.6 V): Write (0BH	

Figure 3.3.4 SFR for DFM

Li mi tati on poi nt on the use of DFM

- 1. It's prohi bited to execute DFMenable/disable contr (Write to DFMCR⊖∜AOT): Of soushould control DFM in the N
- 2. If you stop DFM operation during us-i"nlopDFM \(D \) DEMOROU4 \(D \) execute that chaom-gymeolops and obsolved the DFM at the same time the above executions should be separated into two provides the same of the same of the above executions.

LD (DFMCR0), C0H ; Change the clock f_{DFM} to f_{OSCH} .

LD (DFMCR0), 00H ; DFM stop.

3. If you stop high-tforredpureinrogy wossichigh DaM (DFMCRO): A GyTo1u should stop DFM before you stop high-frequency oscill

Pleaserefer to &u &l. & " (CD low) k" for the details

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT	TA3LCDE	AHOLD	TA3MLDE	-	EXTIN	DRVOSCH	DRVOSCL
(00E3H)	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	1	1
	Function	Protect flag	LCDC	Address	Melody/alarm	Always fixed	1: External	fc oscillator	fs oscillator
		0: OFF	Source clock	hold (Note)	source clock	to "0".	clock	driver ability	driver ability
		1: ON	0: 32 kHz 1: TA3OUT	0: Disable 1: Enable	0: 32 kHz 1: TA3OUT			1: Normal	1: Normal
			1: TA3001	1: Enable	1: TA3001			0: Weak	0: Weak
EM0004	Bit symbol								
EMCCR1	Read/Write								
(00E4H)	After reset		Switching	the protect (ON/OFF by v	vrite to follow	ing 1st-KEY,	2nd-KEY	
	Function		ŭ	•	= 5AH, EMC				
EMCCR2	Bit symbol		2nd-KE	Y: EMCCR1	I = A5H, EM	CCR2 = 5AH	in succession	n write	
(00E5H)	Read/Write								
	After reset								
	Function				_	_			
EMCCR3	Bit symbol		ENFROM	ENDROM	ENPROM		FFLAG	DFLAG	PFLAG
(00E6H)	Read/Write		R/W	R/W	R/W		R/W	R/W	R/W
(,	After reset		0	0	0		0	0	0
	Function		CS1A area	CS2B 2G	CS2A area		CS1A write	CS2B 2G	CS2A write
			detect	area detect	detect		operation flag	write operation	operation flag
			control	control	control			flag	9
			0: Disable	0: Disable	0: Disable		When readi	ng	
			1: Enable	1: Enable	1: Enable		0: Not writte	en	
							1: Written		
							When writin	ŭ	
							0: Clear flag	9	

Note: When getting access to the logic address 000000H to 000FDFH, 001000H to 002FFFH and FFE000H to FFFFFFH, A0 to A23 holds the previous address of external access.

Figure 3.3.5 SFR for Noise Reducing

3.3.3 System Clock Controller

The system clock cantesothless yestness of ook sting of the cantesothless yestness of the containts the control of the containts of the control of th

The combination of settkiXntostXDxXESNYSS-QX and < GEARO: 2> 100 will cause thessylvable to be called to the control of the co

For exangly is es, sfet to O. 5 MHz when the 16-MHz oscillato and X2 pins.

(1) Switchingfrom NORMAL mode to SLOW mode

When the resonator is connected to the X1 and X2 pir the warm-up timer can bet be experienced in a configuration as the compensation of the compensation and the compensation of the compensation and the compensation of the comp

The warm-up ti mected beisred &YSCR2<WUPTMO: 1>.

This warm-up timer can be programmed to start and sexamples 1 and 2.

Table 3. 3. 1 shows the warm-uptimes.

Note 1: When using an oscillator (Other than a resonator) with stable oscillation, a warm-up timer is not needed.

Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

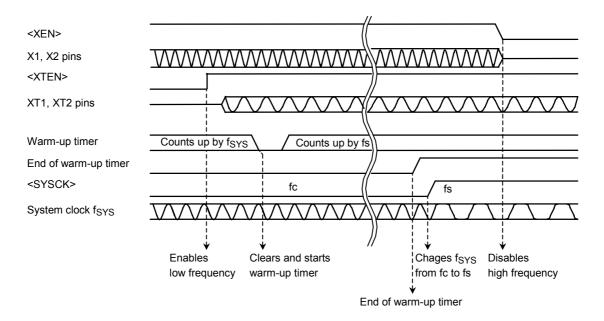
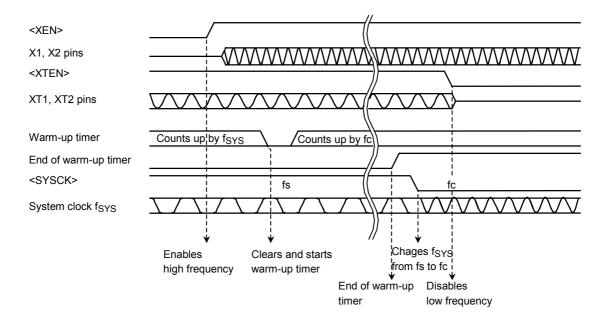

Warm-up Time SYSCR2 <wuptm1:0></wuptm1:0>	Change to NORMAL Mode	Change to SLOW Mode
01 (28/frequency)	16 [μs]	7.8 [ms]
10 (2 ¹⁴ /frequency)	1.024 [ms]	500 [ms]
11 (2 ¹⁶ /frequency)	4.096 [ms]	2000 [ms]

Table 3.3.1 Warm-up Times

at $f_{OSCH} = 16 \text{ MHz}$, $f_{S} = 32.768 \text{ kHz}$


Example 1: Setting the clock Changing from high frequency (fc) to low frequency (fs). SYSCR0 00E0H SYSCR1 00E1H EQU SYSCR2 EQU 00E2H LD (SYSCR2), -X11---B; Sets warm-up time to 2^{16} /fs. SET 6, (SYSCR0) Enables low-frequency oscillation. SET 2, (SYSCR0) Clears and starts warm-up timer. WUP: 2, (SYSCR0) BIT Detects stopping of warm-up timer. JR NZ, WUP SET 3, (SYSCR1) Changes f_{SYS} from fc to fs. RES 7, (SYSCR0) Disables high-frequency oscillation.

X: Don't care, -: No change

Example 2: Setting the clock Changing from low frequency (fs) to high frequency (fc). SYSCR0 EQU 00E0H SYSCR1 00E1H EQU SYSCR2 EQU 00E2H LD (SYSCR2), -X10---B; Sets warm-up time to 2^{14} /fc. SET 7, (SYSCR0) ; Enables high-frequency oscillation. 2, (SYSCR0) Clears and starts warm-up timer. SET WUP: 2, (SYSCR0) BIT Detects stopping of warm-up timer. JR NZ, WUP RES 3, (SYSCR1) Changes f_{SYS} from fs to fc. **RES** 6, (SYSCR0) Disables low-frequency oscillation.

X: Don't care, -: No change

(2) Clock gear controller

When the high-frequency teodoby setsing 50% FR1<SYS is set according to the genitesets of the gics town SYSCR1 either fc, fc/2, fc/4,hec/8ck genitesets of the grand solselle part a lower educes power consumption.

Example 3: Changing to a high-frequency gear

SYSCR1 EQU 00E1H

LD (SYSCR1), XXXX0000B ; Changes f_{SYS} to fc/2. LD (SYSCR1), XXXX0100B ; Changes f_{SYS} to fc/32.

X: Don't care

(High-speed clock gear changing)

To change the clock gear, write the register value to to necessary the warm-upntgiam fet went wirlick hanggtihe register value. There is the possibility xtthatothe ich ock word to change in gexecuted by the clock gear before changing. To execute switching instruction by an to be record, oich kpount at the afortum most in the cycle).

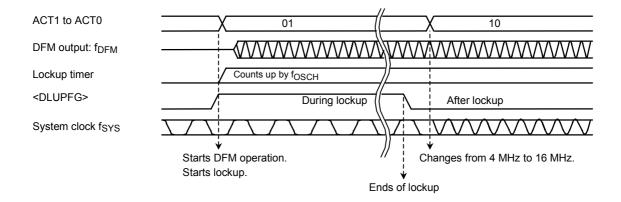
(Example)

SYSCR1 EQU 00E1H

Instruction to be executed after clock gear has changed.

3.3.4 Prescaler Clock Controller

For the internal I/O (TMRAtOol StloOTIMRS/AB23), t5hle@@isaprescandivide the clock.


The Tclock input to the prescape of visces of by 2 to bret to lecond kodi vided by 2. The setting of the SYSCRO < PRCKO: 1 > registion is input. When it's use of interpretable of the Syschology of the Syscholog

3.3.5 Clock Doubler (DFM)

DFM output psychleotik signal, which is foscurittione is usefalse low-frequency oscillator, even though the internal of Areset initializes DFM to stop status, setting to DF Like an oscillator, thitsocsitraduiltize quli hriessitsioneelled to The following example shows how DFM is used.

DFMCR0	EQU	00E8H		
DFMCR1	EQU	00E9H		
	LD	(DFMCR1), 0BH	;	Parameter setting.
	LD	(DFMCR0), 01X0XXXXB	;	Set lockup time to 2 ¹² /4 MHz. Enables DFM operation and starts lockup.
LUP:	BIT	5, (DFMCR0)	;]	Detects end of lockup.
	JR	NZ, LUP	; }	Detects end of lockup.
	LD	(DFMCR0), 10X0XXXXB	;	Changes fc from 4 MHz to 16 MHz.

X: Don't care

Note: Input frequency limitation and correction for DFM.

Recommend to use input frequency (High-speed oscillation) for DFM in the following condition.

f_{OSCH} = 4 MHz to 9 MHz (Vcc = 2.7 V to 3.6 V): Write 0BH to DFMCR1.

Li mi tati on poi nt on the use of DFM

1. It's prohi bited to execute DFMenable/disable contr (Write to DFMCR⊖<AOT): Ø⊗u should control DFMin the N

2. If you stop DFM operation during using Open DF, My DDF MC Ook execute the commands that the time. Therefore the above execution should be separated below.

```
LD (DFMCR0), C0H ; Change the clock f_{DFM} to f_{OSCH}.
```

LD (DFMCR0), 00H ; DFM stop.

 If you stop high-frequency oscillator duft Ohg, uş bag should stop DFM before you stop high-frequency oscill

Examples roofssærtet below.

(1) Start up/change control

(OK) Low-frequency oscillator operation mede (fs High-frequency os-€Hildy hatforresqueent cuyposcillosto) per → DFM star-*tDFM use mood () (f

```
(SYSCR0),\, 11---1-B \qquad ; \qquad \text{High-frequency oscillator start-up/warm-up start}.
WUP:
             BIT
                      2, (SYSCR0)
                                                   Check for the flag of lockup end.
             JR
                      NZ, WUP
                      (SYSCR1), ----0---B ; Change the system clock fs to fosch.
             ΙD
                      (DFMCR0), 01-0---B; DFM start-up/lockup start.
             ΙD
LUP:
             BIT
                      5, (DFMCR0)
                                                  Check for the flag of lockup end.
             JR
                      NZ, LUP
             ΙD
                      (DFMCR0), 10-0---B; Change the system clock.
```

(OK) Low-frequency oscillator operation mode opera+Hei)gh-frequency oscillosto)## DPMsatati-**DFMode (fuse mode) (f

(Error) Low-frequency oscillator operation mode

→ High-frequency os-eDFMastar—stDtFpMtusepmoode) (f

```
ΙD
                       (SYSCR0), 11---1--B; High-frequency oscillator start-up/warm-up start.
WUP:
             BIT
                      2, (SYSCR0)
                                                   Check for the flag of lockup end.
             JR
                      NZ, WUP
             LD
                                                ; DFM start-up/lockup start.
                      (DFMCR0), 01-0---B
LUP:
             BIT
                      5, (DFMCR0)
                                                  Check for the flag of lockup end.
             JR
                      NZ, LUP
             LD
                      (DFMCR0), 10-0---B; Change the internal clock f<sub>OSCH</sub> to f<sub>DFM</sub>.
                      (SYSCR1), ---0--B ; Change the system clock f_S to f_{DFM}.
             LD
```

```
(2) Change/stopcontrol
              (OK) DFM use om row death (figh-frequency oscillosto) and operation
         DFMst-olpow-frequency oscillat-olhiopherfateiopune modyeo & c
         stop
                                                        (DFMCR0), 11----B \, ; Change the system clock fDFM to fOSCH.
                                       LD
                                                        (DFMCR0), 00-----B ; DFM stop.
                                       ΙD
                                       LD
                                                        (SYSCR1), ----1---B ; Change the system clock f<sub>OSCH</sub> to fs.
                                       LD
                                                        (SYSCR0), 0----B; High-frequency oscillator stop.
              (Error) DFM uppen/modew(-ffrequency oscillator oper
         DFMst-⊕pdigh-frequency oscillator stop
                                                        (SYSCR1), ----1---B \;\; ; \;\; Change the system clock f_{\mbox{\scriptsize DFM}} to fs.
                                       LD
                                       LD
                                                        (DFMCR0), 11----B ; Change the internal clock (fc) f_{DFM} to f_{OSCH}.
                                       LD
                                                        (DFMCR0), 00-----B ; DFM stop.
                                                        (SYSCR0), 0----B; High-frequency oscillator stop.
                                       LD
              (OK) DFM use myn)d+eS(eft the STOP) Hologh-frequency osc
         operations model to the state of the state o
                                                        (SYSCR2), ----01--B ; Set the STOP mode.
                                                                                                                (This command can execute before use of DFM.)
                                       ΙD
                                                        (DFMCR0), 11----B ; Change the system clock f<sub>DFM</sub> to f<sub>OSCH</sub>.
                                       LD
                                                        (DFMCR0), 00----B; DFM stop.
                                       HALT
                                                                                                        : Shift to STOP mode.
              (Error) DFM uspen/man Stet (the STOP) it indicated (High-frequence)
         oscillator stop)
                                                        (SYSCR2), ----01--B; Set the STOP mode.
                                                                                                                (This command can execute before use of DFM.)
```

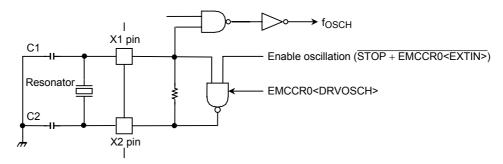
; Shift to STOP mode.

HALT

3.3.6 Noise Reduction Circuits

Noi se reducti on circui ts are builtin, allowing i mpl

- (1) Reduced drigyha-bfirleiotyyefnooryhoiscillator
- (2) Reduced drill over-bifit eighy efroory oscillator
- (3) Singledrive for high-frequency oscillator
- (4) Runaway provision with SFR protection register
- (5) Runaway provision with ROM protection register

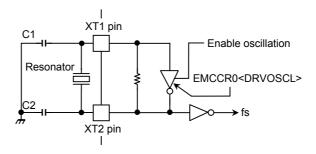

The above functions are performed by making the apprto EMCCR3 registers.

(1) Reduced drhiv@nhoifitetoyufeorcy oscillator

(Purpose)

Reduces noi se and power for oscillator when a reso

(Block diagram)

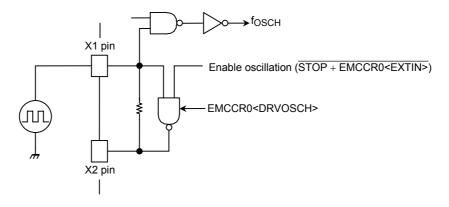

(Settingmethod)

The drivability of the oscillator is reduced by w register. By reset, <DRVOSCH> is initialized to 1 a by normal drivability when the power supply is on.

(2) Reduced drli ov war bif it ė ot pyrefroory oscillator (Purpose)

Reduces noi se and power for oscillator when a reso

(Block diagram)


(Settingmethod)

The drivability of the oscillator is reduced by wriregister. By reset, < DRVOSCL > is initialized to 1.

(3) Singledrive for high-frequency oscillator (Purpose)

Not need twi n-dri ve and protect mi stake operation the external oscillator is used.

(Block diagram)

(Settingmethod)

The oscillator is discaphelreadtiaonnal asstabrutfsfer by wri EMCCRO<EXTIN>regniisstearwaXy2spoiutputted 1.

By reset, <EXTIN>isinitialized to O.

(4) Runaway provi si on wi th SFR protecti on regi ster (Pur pose)

Provision in runaway of program by noise mixing.

Write operation to specified SFR is prohibited so prevents that it is it if net to the strap to swihlb iclhiitsy by sto memory control region terro (ICSe/rWAMMU) is changed.

And error handling imes easy bet to Ointerruption.

Specified SFRIist

- CS/WAIT controller BOCS, B1CS, B2CS, B3CS, BEXCS, MSARO, MSAR1, MSAR2, MSAR3, MAMRO, MAMR1, MAMR2, MAMR3
- 2. MMU LOCALO/1/2/3
- 3. Clock gear SYSCRO, SYSCR1, SYSCR2, EMCCRO, EMCCR3
- 4. DFM
 DFMCRO/1

(Operation explanation)

Execute and release of protection (Write operation by setting up a double key to EMCCR1 and EMCCR2 regist (Double key)

1st-KEY: Succession writes in 5AHat EMCCR1 a 2nd-KEY: Succession writes in A5Hat EMCCR1 a

A state of protection can be confirmed by reading E By reset, protection becomes OFF.

And INTPOinterruption occurs when write operation with protection on state.

(5) Runaway provision with ROM protection register (Purpose)

Provision in runaway of program by noise mixing.

(Operation explanation)

When writes operation was executed for external the program, INTP1 is occurred and detects runaway fund.

Three kinds of ROMishf R \otimes kand (aptficornfphrackgram ROM), deprogram ROM are as follows on the logical address me

- 1. Flash ROWs sA41000000H to 7FFFFFH
- 2. Data ROME: s As dB: dD TO O O O O H to B F F F F F H
- 3. Program ROM: Address COOOOOH to FFFFFFH

For these address, admission/prohibition of determined the two services of the transfer of the services of the

3.3.7 Standby Controller

(1) HALT modes

SBI

When the HALT instruction is executed, the operal DLE1 or STOP mode, depending on the contents of register.

The subsequent actions performed in each mode are

a. IDLE 2: Only the CPU halts.

The internal I/Ois available to select oper setting the following register.

Table 3. 3. 2 shows the registers of setting o

<u> </u>	<u> </u>
Internal I/O	SFR
TMRA01	TA01RUN <i2ta01></i2ta01>
TMRA23	TA23RUN <i2ta23></i2ta23>
TMRB0	TB0RUN <i2tb0></i2tb0>
SIO0	SC0MOD1 <i2s0></i2s0>
SIO1	SC1MOD1 <i2s1></i2s1>
AD converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

b. IDLE1: Only the oscillator and the RTC (Real ti operate.

SBI0BR0<I2SBI0>

c. STOP: All internal circuits stop operating.
The operation of each of the different HALT modes i

	Table 6.6.6 I/O Operation during 11/12.1 Modes								
	HALT Mode	IDLE2	IDLE1	STOP					
SYSCR2 <haltm1:0></haltm1:0>		11	10 01						
	CPU	Stop							
	I/O ports	Keep the state when the HALT instruction was executed.	See Table 3.3.6, T	able 3.3.7					
	TMRA,TMRB0								
	SIO, SBI	Available to select							
Block	AD converter	operation block	Stop						
	WDT								
	LCDC, SDRAMC								
	Interrupt controller	Operate							
	RTC, MLD	Operate	Operational available						

Table 3.3.3 I/O Operation during HALT Modes

(2) How to release the HALT mode

These halt states can be released by resetting or release sources are determined by the combination mask register < I FF 2: O > a Thidet the that LI Tsmfoodrerse I easing tare shown in Table 3. 3. 4.

Released by requesting an interrupt

The operating released from the HALT mode depens tatus. When theinterrupt request level set before exceeds the value of interrupt mask register, the processed after releasing the HALT mode, and instruction that follows Whe hat he instruction is less the register, releasing the halt instruction is less the register, releasing the HALT mode is not executed interrupt processing the HALT mode is not executed interrupt processing steps to a get sheed HAMI all endowers of the value of the mask register). However only for INTATE, INTALMO to INTALMA, nevenuipft request leve executing the halt instruction is less than the value of the the HALT mode is executed. In this of CPU starts executing the instruction next to the interrupt request flag is held at 1.

Note: Usually, interrupts can release all halt status. However, the interrupts ($\overline{\text{NMI}}$, INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to the HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Releasing by resetting

Releasing all halt status is executed by resetting When the stop mode is released by reset, it is not (See Table 3. 3. 5) to set the operation of the osci When releasing the HALT mode by resetting, their state before the HALT instruction is executed. contents are initialized. (Releasing due to into the contents are initialized.)

HALTinstructionis executed.)

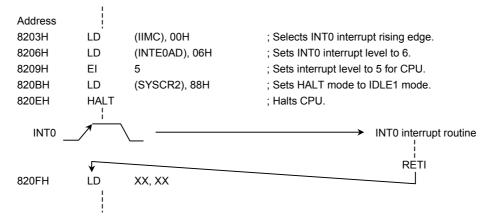

	Stat	us of Received Interrupt	Interrupt Enabled (Interrupt level) ≥ (Interrupt mask)		Interrupt Disabled (Interrupt level) < (Interrupt mask)			
		HALT mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
of halt state clearance		NMI	•	•	♦ *1	-	-	-
	Interrupt	INTWDT	•	×	×	=	-	-
		INT0 to INT3 (Note 1)	•	•	♦ *1	0	0	0*1
		INTALM0 to INTALM4	•	•	×	0	0	×
		INTTA0 to INTTA3, INTTB00 to INTTB01	•	×	×	×	×	×
		INTRX0 to INTRX2, TX0 to TX2	•	×	×	×	×	×
		INTSS0 to INTSS2	•	×	×	×	×	×
of h		INTAD	•	×	×	×	×	×
Source		INTKEY	•	•	♦ *1	0	0	O*1
		INTRTC	•	•	×	0	0	×
		INTSBI	•	×	×	×	×	×
		INTLCD	•	×	×	×	×	×
		RESET	Initialize LSI.					

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- ♦: After clearing the HALT mode, CPU starts interrupt processing.
- o: After clearing the HALT mode, CPU resumes executing starting from instruction following the HALT instruction.
- x: It can not be used to release the HALT mode .
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- *1: Releasing the HALT mode is executed after passing the warm-up time.

Note: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

(Example releasing IDLE 1 mode)
An INTOinterrupt cleavhent the endle trisct at its in IDLE 1 mode.

(3) Operation

a. IDLE2mode

In IDLE2 mode only specific internal I/O operal DLE2 setting register, can take place. Instruct Figure 3. 3. 6 illustrates an example of the timi mode halt state by an interrupt.

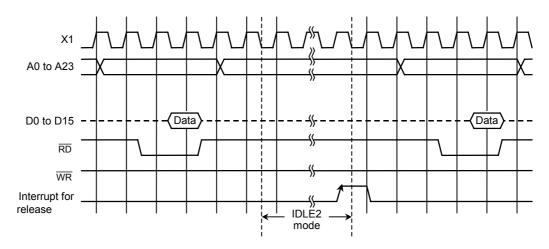


Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

b. I DLE1 mode

synchronous withit.

In IDLE1 mode, only the internal oscillator an operate. The system clock in the MCU stops. The pidepended on setting the register SYSCR2<SELDRV, 3. 3. 7 summarizes the state of these pins in the IDL In the halt state, the interrupt request is same

system clock; however, clearance of the halt sta

Figure 3. 3. 7ill ustrates the timing for clear an aninterrupt.

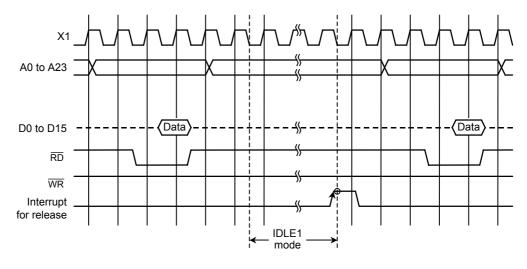


Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

c. STOP mode

When STOP mode is selected, all internal circuioscillator pin status in STOP mode depends of SYSCR2<SELDRV, DRVE>reagi6stTeambl Tea3bl3e 37. summarizof these pins in STOP mode.

After STOP mode has been cleared system clock warm-up time has elapseody, ois no iolr identito an atlo stabili mode has been cleared, either NORMAL mode or SLC using the SYSCRO<RSYSCK> register. Therefore, <RXTEN> must be set sweærtmheuspatmipmlees in Table 3.3.5.

Figure 3. 3. 8ill ustrates the timing for clear ar an interrupt.

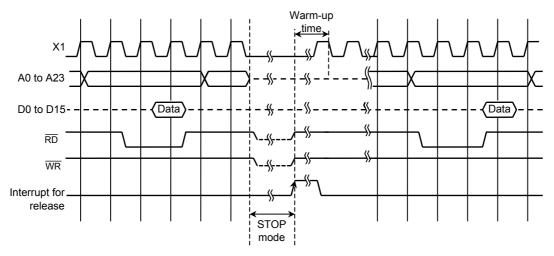
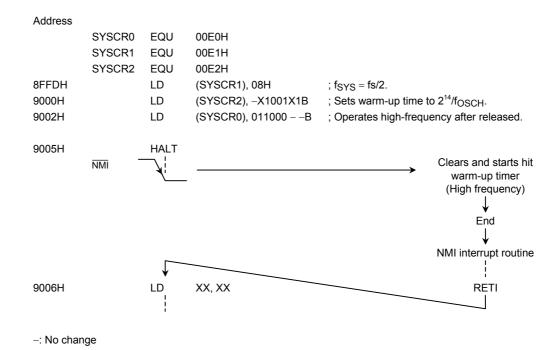


Figure 3.3.8 Timing Chart for STOP Mode Halt State Cleared by Interrupt


Table 3.3.5 Sample Warm-up Times after Clearance of STOP Mode

at $f_{OSCH} = 16$ MHz, $f_{S} = 32.768$ kHz

SYSCR0	SYSCR2 <wuptm1:0></wuptm1:0>				
<rsysck></rsysck>	01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)		
0 (fc)	16 μs	1.024 ms	4.096 ms		
1 (fs)	7.8 ms	500 ms	2000 ms		

(Settingexample)

The STOP mode is entered when the low frequency operat after releasing due to NMI.

Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of halt instruction (during 6 state). In the system which accepts the interrupts during execution HALT instruction, set the same operation mode before and after the STOP mode.

Table 3.3.6 Input buffer state table

					Input build	nput Buffer St				
			When the		In HALT mod			n HALT mode(IDLE1/STO	P)
Port	Input		opera			ue (IDLEZ)	Conditio	n A (Note)	Condition	n B (Note)
Name	Function Name	During Reset	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port
P00-07	D0-7	OFF		ON upon port read		OFF	OFF	OFF	OFF	OFF
P10-17	D8-15	8bit start: OFF 16bit start: ON Built-in ROM start: ON	ON upon external read	ON	ON upon external read of LCDC	OFF	OFF	OFF	OFF	OFF
P20-27 P30-37		8bit start: OFF								
P40-47	_	16bit start: OFF Built-in ROM start: ON	_	ON	_	OFF	-	OFF	-	OFF
PZ2 (*1)	_	ON	_	ON	_	OFF	_	OFF	1	OFF
PZ3 (*1)	— WAIT	ON ON	ON	ON ON	ON	OFF ON	OFF	OFF OFF	ON	OFF
P56 (*1) P70	SCK,	ON	ON	ON	ON	ON	OFF	OFF	ON	ON ON
P71	OPTRX0 SDA	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P72	SI, SCL	ON	ON	ON	ON	ON	ON	OFF	ON	ON
P73	-	ON	_	ON	_	ON	_	OFF	_	ON
P74	_	ON	_	ON	_	ON	_	OFF	-	ON
P75	-	ON		ON		ON		OFF		ON
P76 P77	MSK —	ON ON	ON —	ON ON	ON —	ON ON	OFF —	OFF OFF	ON —	ON ON
P80 (*2)		OFF	_	ON	_	OFF		OFF	_	OFF
P81 (*2)	_	OFF	_	1	_	OFF	_	OFF	_	OFF
P82 (*2)	_	OFF	_]	_	OFF	_	OFF	_	OFF
P83 (*2)	ADTRG	OFF	ON	ON upon	ON	OFF	ON	OFF	ON	OFF
P84 (*2)	_	OFF OFF		port read		OFF OFF		OFF OFF	_	OFF OFF
P85 (*2) P86 (*2)	_	OFF	_	-	_	OFF		OFF	_	OFF
P87 (*2)	_	OFF	_	1		OFF		OFF	_	OFF
P90 (*1)	KI0	ON	ON	ON	ON	ON	ON	ON	ON	ON
P91 (*1)	KI1	ON	ON	ON	ON	ON	ON	ON	ON	ON
P92 (*1)	KI2	ON	ON	ON	ON	ON	ON	ON	ON	ON
P93 (*1)	KI3	ON	ON	ON	ON	ON	ON	ON	ON	ON
P94 (*1) P95 (*1)	KI4 KI5	ON ON	ON ON	ON ON	ON ON	ON ON	ON ON	ON ON	ON ON	ON ON
P96 (*1)	KI6	ON	ON	ON	ON	ON	ON	ON	ON	ON
P97 (*1)	KI7	ON	ON	ON	ON	ON	ON	ON	ON	ON
PB0	TA0IN	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PB1	RXD2	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PB3 PB4	INT0	ON ON	ON ON	ON	ON ON	ON OFF	ON	ON OFF	ON	ON OFF
PB4 PB5	INT1 INT2	ON	ON	ON ON	ON	OFF	ON ON	OFF	ON ON	OFF
PB6	INT3	ON	ON	ON	ON	OFF	ON	OFF	ON	OFF
PC0	_	ON	_	ON	_	ON	_	OFF		ON
PC1	RXD0	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
	SCLK0, CTS0	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PC3 PC4	- RXD1	ON ON	ON	ON ON	ON	ON ON	OFF	OFF OFF	ON	ON ON
	SCLK1, CTS1	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PE0-7	<u> </u>	ON	-	ON	-	OFF	-	OFF	-	OFF
NMI/PS		ON	ON	_	ON	_	ON	_	ON	_
RESET (*1)	_	ON	ON	_	ON	_	ON	_	ON	_
			<u> </u>					<u> </u>		
AM0, 1 X1, XT1		ON ON	ON ON	_	ON ON	_	ON	IDLE1: ON, S	ON	_

ON:The buffer is always turned on.A current flows the input buffer if the input pin is not driven.

OFF:The buffer is always turned off.

*2:AIN input does not cause a current to floes.

⁽Note) Condition A/B are as follows.

(SYSCR2)	register setting	HALT	mode
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP
0	0	Condition A	Condition A
0	1		Condition A
1	0	Condition B	Condition B
1	1		Condition B

^{*2:}AIN input does not cause a current to flow through the buffer.

Table 3.3.7 Output buffer state table

			10010	J.G., Garpe	Outpu	ut Buffer State				
			When the CI	Ollia aparatina			In	HALT mode	(IDLE1/STOP)	
Port	Output Function		when the Ci	PU is operating	In HALT mod	e (IDLE2)	Condition		Condition	B (Note)
Name	Name	During Reset	When Used as function Pin	When Used as Output Port	When Used as function Pin	When Used as Output Port	When Used as function Pin	When Used as Output Port	When Used as function Pin	When Used as Output Port
P00-07	D0-7	OFF	ON upon	ON	OFF	ON	OFF	OFF	OFF	ON
P10-17	D8-15	OFF	external read	ON	OFF	ON	OFF	OFF	OFF	ON
P20-27	A16-23	8bit start: ON	reau							
P30-37 P40-47	A8-15 A0-7	16bit start: ON Built-in ROM	ON	ON	ON	ON	OFF	OFF	ON	ON
PZ0	RD	start: OFF								
PZ1 PZ2	WR HWR	ON OFF (#4)	ON	ON	ON	ON	OFF	OFF	ON	ON
PZ3	R/W, SRWE	OFF (*1)								
P56 P60	CS0	OFF (*1) ON	ON	ON ON	ON	ON ON	OFF	OFF OFF	ON	ON ON
P60 P61	CS0 CS1, SDCS	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P62	CS2, CS2A	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P63	CS3	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P64	EA24, CS2B	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P65	EA25, CS2C	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
P66 P67	CS2D, SRLB CS2E, SRUB	ON ON	ON ON	ON ON	ON ON	ON ON	OFF OFF	OFF OFF	ON ON	ON ON
P67 P70	SCK	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P71	SO, SDA, OPTTX0	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P72	SCL	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P73	CS2F	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P74	CS2G	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P75	CSEXA	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
P76 P77	VEECLK	OFF OFF	ON	ON ON	ON	ON ON	OFF	OFF OFF	ON	ON ON
PA0	KO0	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PA1	KO1	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PA2	KO2	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PA3	KO3	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PA4	KO4	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PA5 PA6	KO5 KO6	OFF OFF	ON ON	ON ON	ON ON	ON ON	OFF OFF	OFF OFF	ON ON	ON ON
PA7	KO7	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PB0	TXD2	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PB1	TA1OUT	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PB3	_	OFF	_	ON	_	ON	_	OFF	_	ON
PB4		OFF	_	ON	_	ON	_	OFF	-	ON
PB5	TA3OUT	OFF	ON	ON	ON	ON ON	OFF	OFF	ON	ON ON
PB6 PC0	TB0OUT0 TXD0	OFF OFF	ON ON	ON ON	ON ON	ON	OFF OFF	OFF OFF	ON ON	ON
PC1	-	OFF	-	ON	-	ON	-	OFF	-	ON
PC2	SCLK0	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PC3	TXD1	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON
PC4	-	OFF	_ ON	ON	_ ON	ON	_ OFF	OFF	_ ON!	ON
PC5 PD0	SCLK1 D1BSCP	OFF ON	ON ON	ON ON	ON ON	ON ON	OFF OFF	OFF OFF	ON ON	ON ON
PD0 PD1	D1BSCP D2BLP	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PD2	D3BFR	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PD3	DLEBCD	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PD4	DOFFB	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PD6	ALARM, MLDALM	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PD7	MLDALM	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PE0-7 PF0	LD0-7 SDRAS	OFF ON	ON ON	ON ON	ON ON	ON ON	OFF OFF	OFF OFF	ON ON	ON ON
PF1	SDRAS	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PF2	SDWE	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PF3	SDLDQM	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PF4	SDUDQM	ON	ON	ON	ON	ON	OFF	OFF	ON	ON
PF5	SDCKE	ON	ON	ON	ON	ON	ON in self refresh cycle	OFF	ON	ON
PF6 X2, XT2	SDCLK	ON ON	ON ON	ON —	ON ON	ON _	OFF	OFF	ON D: output "H" le	ON
72, AIZ	ON: The buffer is a			-		 a pull-up/pull-do		1. OIN, 3 I UF	. Julpul II le	vCI

ON: The buffer is always turned on.
OFF: The buffer is always turned off.

—: No applicable

(Note) Condition A/B are as follows.

(SYSCR2)	register setting	HALT	mode
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP
0	0	Condition A	Condition A
0	1		Condition A
1	0	Condition B	Condition B
1	1		Condition D

^{*1:}Port having a pull-up/pull-down resistor.
*2:AIN input does not cause a current to flow through the buffer.

3.4 Interrupts

Interrupts are controllemals by the giCsPtJeirnStRe≮lrFuFp2t: O> and binterrupt controller.

The TMP 91 C820 A has a totsablioufi 4d Seid nithetron tulp pet following 5 t

- Interruptskogye 6 Pbat9esoburces (Softwareinterrupts, illegalinstructioninterru
- Internal interrupts: 28 sources
- । Interrupts on e kuktleamodall NpTiOntso (INT3, INTKEY): 6 source

A (Fixed) individual interrupt vector number is assigned One of seven (Variable) priority levels can be assigned. The priority level of non-maskable interrupts is fixed. When an interrupt is generatived, lethes ender the exption or ity of the CPU. If multiple interrupts are generated simultane interrupt with the highest prigorest you to on the top Polos (slihod eist non-masik matheterupts.)

The CPU compares the priority level of the interrupt w mask register <IFF2: O>. If the priority level of the interrupt mask CPelgiastepts the interrupt.

However, software interrupts and illegal instruction processed without comparison with the < IFF2: O> value.

The interrupt mask register < IFF2: O> value can be up

instruction (Executing EofnulmFSFe2t: 50thteoroumt) en Ftor examp El 3 en abl es the acceptance of maskable interrupts whose controller is 3 or higher, and en abl es the acceptance of or El Ois specified, maskable interrupts with a prioritinterrupts are accepted (Operationally identical to "E Operationally, the DI instruction (<IFF2: O> is 7) is it the priority level of maskable interrupts is Oto 6, the DI instruction is vailed immediately aft El instruction is vailed immediately aft In addition to the general-purpose interrupt processi

interrupts have a micro DMA processing mode as well.

Figure 3. 4. 1 shows the overall interrupt processing fl

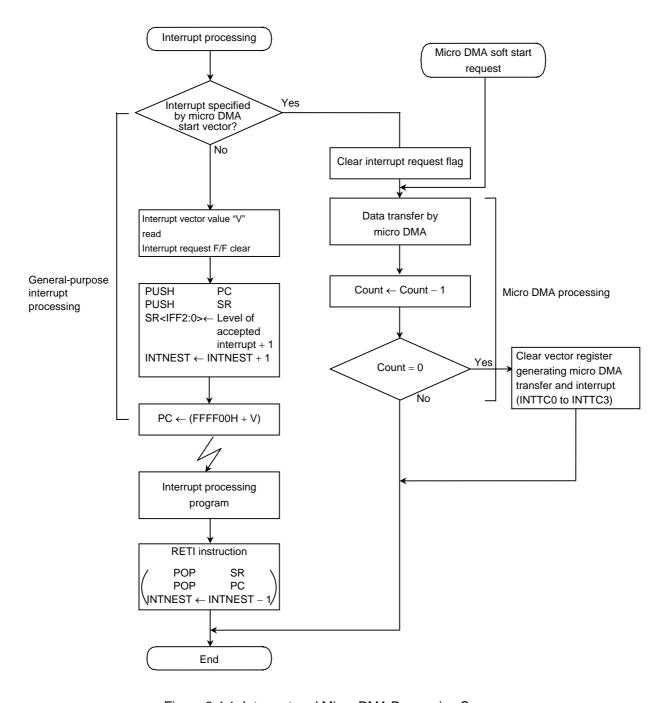


Figure 3.4.1 Interrupt and Micro DMA Processing Sequence

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performerations. However, in the case of software interrugenerated by the CPU, the CPU skips steps a and c and ex

- If there are simul taneous interrupts set to same generates an interrupt vector in accordance wit the interrupt request.

 (The default prioritry escan ir metaelry rfuip xted Throe small
 - (The default prioritry escanline ta edryrfui pxted Tfhoe small value, the higher the priority level.)

The CPU reads the interrupt vector from the inte

- The CPU pushes the program counter (PC) and stat the stack (Pointed to by XSP).
- c. The CPU sets the value of the CPU's interrupt m priority level for theuasc1c.ephbevelvient,eif utphtepphrior the accepted interrupt is 7, the register's value
- d. The CPU increments the interrupt nesting counter
- e. The CPU jumps to the address indicated by the o interrupt vector, and starts the interrupt proce

When the CPU completed theinterrupt processing, use the main routine. RETI restores the contents of the register from the stack and decrements theinterrupt. Non-maskable interrupts cannot be disabled by a use however, can be enabled **proligisants!** Apply grussmet an set the for each interrupt source. (A priority level settin request.)

If an interrupt requestrir surpet oveit whead of noir cernitry theevel eq than the value set in the CPU interrupt mask register interrupt. The CPU interrupt mask register < IFF 2: O > i level for the accepted interrupt plus 1.

If, during interrupt prosegnessience, tend winterrupt begin currendtury processiences, kend ief interrupt non-maskable interrupt request is generated from an currently processing robustience and deac appts hae, after processing the later interrupt, the CPU returns to the and resumes processing.

If the CPU receives a request for another interrupt voe, the second interruped by sast temple code countries of the firits interrupt processing routine. Specifying DI as to interrupt nesting. (Notes almplt hegators pend for the start instruction.)

A reset i ni ti al i zes the i nterrupt mask register < I F i nterrupts.

Table 3. 4. 1 shows the TMP91C82OA interrupt vectors FFFFOOH to FFFFFH (256 beyottaess) the sidnetseing muapt vector are

Table 3.4.1 TMP91C820A Interrupt Vectors and Micro DMA Start Vectors

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value (V)	Vector Reference Address	Micro DMA Start Vector
1		"Reset" or "SWI0" instruction	0000H	FFFF00H	-
2		"SWI1" instruction	0004H	FFFF04H	-
3	1	INTUNDEF: Illegal instruction or "SWI2" instruction	0008H	FFFF08H	_
4		"SWI3" instruction	000CH	FFFF0CH	-
5	Non-	"SWI4" instruction	0010H	FFFF10H	-
6	maskable	"SWI5" instruction	0014H	FFFF14H	_
7		"SWI6" instruction	0018H	FFFF18H	-
8		"SWI7" instruction	001CH	FFFF1CH	_
9		NMI pin	0020H	FFFF20H	_
10		INTWD: Watchdog timer	0024H	FFFF24H	_
_		(Micro DMA)	-	_	_
11		INT0 pin	0028H	FFFF28H	0AH
12		INT1 pin	002CH	FFFF2CH	0BH
13	1	INT2 pin	0030H	FFFF30H	0CH
14	1	INT3 pin	0034H	FFFF34H	0DH
15		INTALMO: ALMO (8 kHz)	0038H	FFFF38H	0EH
16		INTALM1: ALM1 (512 Hz)	003CH	FFFF3CH	0FH
17		INTALM2: ALM2 (64 Hz)	0040H	FFFF40H	10H
18		INTALM3: ALM3 (2 Hz)	0044H	FFFF44H	11H
19		INTALM4: ALM4 (1 Hz)	0048H	FFFF48H	12H
20		INTTA0: 8-bit timer 0	004CH	FFFF4CH	13H
21		INTTA1: 8-bit timer 1	0050H	FFFF50H	14H
22		INTTA2: 8-bit timer 2	0054H	FFFF54H	15H
23		INTTA3: 8-bit timer 3	0058H	FFFF58H	16H
24		INTRX0: Serial receives (Channel 0)	005CH	FFFF5CH	17H
25	1	INTTX0: Serial transmission (Channel 0)	0060H	FFFF60H	18H
26	1	INTRX1: Serial receives (Channel 1)	0064H	FFFF64H	19H
27	1	INTTX1: Serial transmission (Channel 1)	0068H	FFFF68H	1AH
28	1	INTAD: AD conversion end	006CH	FFFF6CH	1BH
29	Maskable	INTKEY: Key-on wakeup	0070H	FFFF70H	1CH
30	1	INTRTC: RTC (Alarm interrupt)	0074H	FFFF74H	1DH
31		INTSBI: SBI interrupt	0078H	FFFF78H	1EH
32		INTLCD: LCDC/LP pin	007CH	FFFF7CH	1FH
33		INTP0: Protect 0 (WR to special SFR)	0080H	FFFF80H	20H
34		INTP1: Protect 1 (WR to ROM)	0084H	FFFF84H	21H
35		INTTC0: Micro DMA end (Channel 0)	0088H	FFFF88H	_
36		INTTC1: Micro DMA end (Channel 1)	008CH	FFFF8CH	_
37		INTTC2: Micro DMA end (Channel 2)	0090H	FFFF90H	_
38		INTTC3: Micro DMA end (Channel 3)	0094H	FFFF94H	_
39		Reserved	-	-	_
40		Reserved	-	_	_
41		Reserved	-	_	_
42		INTRX2: Serial receive (Channel 2)	00A4H	FFFFA4H	29H
43		INTTX2: Serial transmission (Channel 2)	00A8H	FFFFA8H	2AH
44		INTTB00: 16-bit timer 0 (TB0RG0)	00ACH	FFFFACH	2BH
45		INTTB01: 16-bit timer 1 (TB0RG1)	00B0H	FFFFB0H	2CH
		(Reserved)	00B4H	FFFFB4H	_
		to	to	to	to
		(Reserved)	00FCH	FFFFFCH	-

3.4.2 Micro DMA Processing

In addition to general - purpose interrupt processind DMA function. Interrupt requests set by micro DMA perthighest priority level for maskable interrupts (Level the particular interrupt source.

Because the micro DMA function has been implemented of CPU, when CPU is a state of standby by HALT instruction. DMA will be ignored (Pending).

(1) Micro DMA operation

When an interrupt request is generated by an interr DMA start vector registion get resemble to DDMA at mequest to interrupt priority less is to grant the trænques pit of he four channels allow mic mop DoMA peset of sosiup to four types of one time.

When micro DMA is accepted, the interrupt requestion of the control of the data are automatically transdress to the tartinos field directs is set in the control region of the counter is decremented by 1. If the decremented coprocessing ends with no change in the value of the mitthe decremented readion of the micropolar of the control of the control

If a micro DMA request is not see that the set that the probased on the interrupt priority level but on the c channel number the higher the ps (Chaints) (Chaints) (Chaints)

If an interrupt request is triggered for the interrupt ween the clearing of the micro DMA start vec general - purpose interrupt processing executes at only using the interrumpito for DMA a (nNtoitnugstilmeg the integeneral - purpose sith sentrul pet) in the rrupts level to O (disabled).

If using micro DMA and general-purpose interrupt first set the level of **she**rithmecrapDMAsperobcessing lothe other interrupt levels. In this case, the cause edge interrupt.

As with other maskablerindreirtryup fst, hehmei cro DMA trinterrupts is determined by the interrupt level and

While the register forscoutrtaien/gtthestfenstelletienses 32-bit control registen, ythifsercetgiveetleyrocustrput 24-Accordingly, micro DMA can access 16 Mbytes (The upvalid).

Three micro DMA transfere modes by tesupporter, 2-by transfer, and 4-byte transfer. After a transfe source/destination addresses are incremented, dec

This simplifies the transfer of data from I/O to m from I/O to I/O. For details of the transfer modes, so the transfer mode register. As the transfer count processing can be setmed processing count is maxis frieze to when the it is an I value in the intermediate.

Mi cro DMA processi ng can be started by the 31 i nter start vectors of Table 3. 4. 1 and by the mi cro DMA s i nterrupts.

Figure 3. 4. 2 shows the two rDtMA reayned feer rmit ransfer address INC mode (exmocrote, foline soulmeters for other mode

(The conditiones afroer btansies docynclan-ebxittebrunsa, IOI Waits, to source/transfer diesestibroatthieovneand-ohruemberd values).

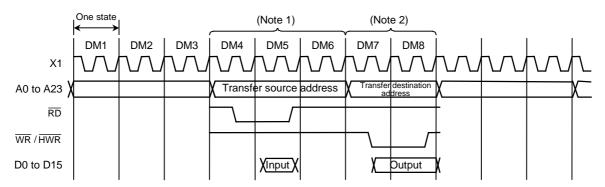


Figure 3.4.2 Timing for Micro DMA Cycle

States 1 to 3: Instruction fetch cycle (Gets next address code).

If three or more instruction codes are inserted in the instruction queue buffer, this cycle becomes a dummy cycle.

States 4 to 5: Micro DMA read cycle.

State 6: Dummy cycle (The address bus remains unchanged from state 5).

States 7 to 8: Micro DMA write cycle.

Note 1: If the source address area is an 8-bit bus, it is incremented by two states.

If the source address area is a 16-bit bus and the address starts from an odd number, it is incremented by two states.

Note 2: If the destination address area is an 8-bit bus, it is incremented by two states.

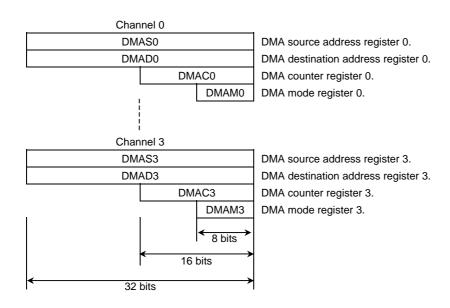
If the destination address area is a 16-bit bus and the address starts from an odd number, it is incremented by two states.

(2) Soft start function

I naddi ti on to starti ng the mi cro DMA functi on by i i a mi cro DMA software stæmtt 6 umi octrico Di MtAhoant tshte genera write cycle to the DMAR register.

Writing 1 to each bit of DMAR register causes mic transfer, the bit of the DMAR register which supautomatically cleared to O.

Only one channel can be set for DMA request at once. one bit.)


When writing again 1 to the DMAR register, check writing 1.

When a burst is specified by DMAB register, data is the value in the micro DMA transfer counter is Oafte

Symbol	Name	Address	7	6	5	4	3	2	1	0
								DMA r	equest	
DMAR	DMA	89H					DMAR3	DMAR2	DMAR1	DMAR0
DIVIAR	request register							R/	W	
							0	0	0	0

(3) Transfer control registers

The transfer source adsdifteens sole as ntdi that it or na naddress a following registers. Ammi 'nls DOC occtiro'n coefntbnee of soved to registers.

(4) Detailed description of the transfer mode regist

DMAM0 to 0 0 0 Mode DMAM3

Note: When setting a value in this register, write 0 to the upper three bits.

						-
			Number of Transfer Bytes	Mode Description	Number of Execution States (*)	Minimum Execution Time at fc = 16 MHz
000 (Fixed)	000	00	Byte transfer	Transfer destination address INC modeI/O to memory $(DMADn+) \leftarrow (DMASn)$	8 states	1000 ns
		01	Word transfer	DMACn ← DMACn – 1		
		10	4-byte transfer	If DMACn = 0, then INTTCn is generated.	12 sates	1500 ns
	001	00	Byte transfer	Transfer destination address DEC mode	8 states	1000 ns
		01	Word transfer	(DMADn–) ← (DMASn) DMACn ← DMACn – 1 If DMACn = 0, then INTTCn is generated.	12 sates	1500 ns
	010	00	4-byte transfer Byte transfer	Transfer source address INC modeMemory to I/O	8 states	1000 ns
		01	Word transfer	(DMADn) ← (DMASn+) DMACn ← DMACn − 1	12 sates	1500 ns
		10	4-byte transfer	If DMACn = 0, then INTTCn is generated.	1 0 0 1100	
	011	00	Byte transfer	Transfer source address DEC modeMemory to I/O (DMADn) ← (DMASn–)	8 states	1000 ns
		01 10	Word transfer 4-byte transfer	DMACn ← DMACn − 1 If DMACn = 0, then INTTCn is generated.	12 sates	1500 ns
	100	00	Byte transfer	Fixed address mode	8 states	1000 ns
		01	Word transfer	(DMADn) ← (DMASn–) DMACn ← DMACn − 1 If DMACn = 0, then INTTCn is generated.	12 sates	1500 ns
1	104	10	4-byte transfer Counter mode	I Divinon – 0, then har roll is generated.		
	101	00		ounting number of times interrupt is generated. + 1	5 sates	625 ns
			$DMACn \leftarrow DMACn$ If $DMACn = 0$, then	1INTTCn is generated.		

(*) For external 16-bit bus, 0 waits, word/4-byte transfer mode, transfer source/transfer destination addresses both have even-numbered values.

Note: n: Corresponding micro DMA channels 0 to 3.

DMADn+/DMASn+: Post increment (Increments register value after transfer).

DMADn-/DMASn-: Post decrement (Decrements register value after transfer).

The I/Os in the table mean fixed address; memory means increment and decrement addresses.

Do not use undefined code, that is, codes other than those listed above for the transfer mode register.

3.4.3 Interrupt Controller Operation

The block diagram in Figutrær3.u4b.t3csihrocwusithse ii he left-diagram shows the intercuipt commet moilghetr- beand side shinterrupt requests ignal circuit and the halt release For each of the 36 interrupt channels there is an interflip-flop), an isnetetriruugut epogii sotte MtAgast dærnti væræt or regis interrupt request flag laftræbnætshien berir pulpet mælæsue interrupt it has recei ved vevshemmit be © PMA teequest (Whe is set), when the micro DMA burst transfer is termina clears the interrupt for that channel is executed (kinterrupt priority setting register).

An interrupt priority caynflower searth in indexper motheprits our cells priority to the interrupt propriet propriet. The condition of the con

The 3rd and 7th bits of the interrupt priority setti interrupt request flag and thus whether an interrup occurred.

The interrupt controllee os we must with the hind pest prios in mulateous interrupts and its vector address to the value < IFF2: O> et in the status register by the intervalue set; if the latter is higher, the interrupt is act than the priority value by 1 in the CPUSR < IFF2: O>. Into value equals or is higher than the set value are accepted ous interrupt routine.

When interrupt processing is completed (after exect CPU restores the priority and when the ither rupt was the CPU SR<IFF2: O>. The interrupt controller also have in the corresponding processing (See Table 3. 4. 1), enables the corresponding the controller also have processing. The validates in the corresponding and DMAD) prior to the micro DMA processing.

Figure 3.4.3 Block Diagram of Interrupt Controller

(1) Interrupt level setting registers

Symbol	Name	Address	7	6	5	4		3	2	1	0		
				l	INTAD	l.			INT0				
	INT0 and		IADC	IADM	12 IADM	11 IADI	M0	I0C	I0M2	I0M1	I0M0		
INTE0AD	INTAD enable	90H	R		R/W	<u> </u>		R		R/W	l		
	enable		0	0	0	0		0	0	0	0		
				l .	INT2				IN ⁻	T1			
	INT1 and		I2C	12M2	2 I2M	1 I2M	10	I1C	I1M2	I1M1	I1M0		
INTE12	INT2 enable	91H	R		R/W	<i>-</i>		R		R/W	I.		
	enable		0	0	0	0		0	0	0	0		
				ı	NTALM4				IN.	T3	l		
INTE3	INT3 and	0011	IA4C	IA4M	2 IA4N	11 IA4N	И0	I3C	I3M2	I3M1	I3M0		
ALM4	INTALM4 enable	92H	R		R/W	,		R		R/W			
	enable		0	0	0	0		0	0	0	0		
	INTALM0				NTALM1				INTA	LM0			
INTEALM	and		IA1C	IA1M	2 IA1N	11 IA1N	/ 10	IA0C	IA0M2	IA0M1	IA0M0		
01	INTALM1	93H	R		R/W	1		R		R/W			
	enable		0	0	0	0		0	0	0	0		
	INTALM2				NTALM3	I			INTA	LM2			
INTEALM	and		IA3C	IA3M	2 IA3N	I1 IA3N	ЛО	IA2C	IA2M2	IA2M1	IA2M0		
23	INTALM3	94H	R		R/W	1		R		R/W	l		
	enable		0	0	0	0		0	0	0	0		
	INTTA0			INTT	A1 (TMRA1)			INTTA0 ((TMRA0)			
INTETA	and		ITA10		<u> </u>		M0	ITA0C	ITA0M2	ITA0M1	ITA0M0		
01	INTTA1	95H	R		R/W	1		R		R/W	I		
	enable		0	0	0	0		0	0	0	0		
	INTTA2			INTT	A3 (TMRA3	3)			INTTA2 ((TMRA2)			
INTETA	and		ITA30		- i		M0	ITA2C	ITA2M2	ITA2M1	ITA2M0		
23	INTTA3	96H	R		R/W	1		R		R/W	l		
	enable		0	0	0	0		0	0	0	0		
	INTRTC				INTKEY	I			INT	RTC	l		
INTERTC	and		IKC	IKM2	2 IKM	1 IKN	10	IRC	IRM2	IRM1	IRM0		
KEY	INTKEY	97H	R		R/W	1		R		R/W	l		
	enable		0	0	0	0		0	0	0	0		
					INTTX0	<u>I</u>			INTI	RX0			
	Interrupt		ITX00	1	1	/11 ITX0	M0	IRX0C	IRX0M2	IRX0M1	IRX0M0		
INTES0	enable	98H	R		R/W			R		R/W			
	serial 0		0	0	0	0		0	0	0	0		
	l .	ı			<u> </u>	· ·							
1								_					
interr	upt request t	nag			•								
				lxxM2	lxxM1	lxxM0		Fι	ınction (W	rite)			
				0	0	0	Dis	sables interr	upt requests				
				0	0	1			priority level				
				0	1	0			priority level				
				0	1	1			priority level				
				1	0	0			priority level				
				1	0	1			priority level				
				1	1	0			priority level				
				1	1	1	Dis	sables interr	upt requests				

Symbol	Name	Address	7		6	5		4		3	2	1	0	
	INTRX1			INTTX1						INTRX1				
INTES1	and	99H	ITXT1	C I	TX1M2	ITX1	M1	ITX1N	/ 0	IRX1C	IRX1M2	IRX1M1	IRX1M0	
INTEST	INTTX1	3311	R			R/V	V			R		R/W		
	enable		0		0	0		0		0	0	0	0	
	INTSBI				IN	TLCD					INT	SBI		
INTES2	and	9AH	ILCD1	C IL	_CDM2	ILCDI	M1	ILCDI	M0	ISBIC	ISBIM2	ISBIM1	ISBIM0	
LCD	INTLCD	3/11	R			R/V	V			R		R/W		
	enable		0		0	0		0		0	0	0	0	
	INTTC0				IN	TTC1					INT	TC0	.	
INTET	and	9BH	ITC10	רו כ	TC1M2	ITC1I	M1	ITC1N	1 0	ITC0C	ITC0M2	ITC0M1	ITC0M0	
C01	INTTC1	JBIT	R			R/V	/			R		R/W		
	enable		0		0	0		0		0	0	0	0	
	INTTC2				IN	TTC3					INT	TC2		
INTET	and	9CH	ITC30	C 17	TC3M2	ITC3I	M1	ITC3N	0N	ITC2C	ITC2M2	ITC2M1	ITC2M0	
C23	INTTC3	901	R			R/V	V			R		R/W		
	enable		0		0	0		0		0	0	0	0	
	INTP0				IN	ITP1					IN	ΓP0		
INTE	and	ODLI	IP1C IP1M:		IP1M2	IP1M	11	IP1N	10	IP0C	IP0M2	IP0M1	IP0M0	
P01	INTP1	9DH	R			R/V	V			R		R/W	_	
	enable		0		0	0		0		0	0	0	0	
	INTRX2			INTT							INT	RX2	•	
INITEOO	and	4011	ITX20		TX2M2	ITX2	M1	ITX2N	1 0	IRX2C	IRX2M2	IRX2M1	IRX2M0	
INTES3	INTTX2	A0H	R			R/V	/			R		R/W		
	enable		0		0	0		0		0	0	0	0	
	INTTB00			·	INT	TB01					INT	ГВ00	l .	
IN ITETO	and		ITB10) I	TB1M2	ITB1I	V11	ITB1N	ΛO	ITB0C	ITB0M2	ITB0M1	ITB0M0	
INTETB0	INTTB01	A1H	R			R/V	/			R		R/W	•	
	enable		0		0	0		0		0	0	0	0	
		•												
Interr	upt request	nag				—								
						\downarrow								
				lxxl\	/12 I	xxM1	lx	xM0		Fu	nction (W	rite)		
				0		0		0	Dis		upt requests	-		
				0		0		1			oriority level			
				0		1		0			oriority level			
				0		1		1	Se	ts interrupt p	oriority level	to 3		
				1		0		0	Se	ts interrupt p	oriority level	to 4		
				1		0		1			oriority level			
				1		1		0			oriority level			
				1		1		1	Dis	sables interr	upt requests			

(2)	External	i	nterrupt	control
· — /	_ / (0	•		

Symbol	Name	Address	7	6	5	4	3	2	1	0
			_	-	I3EDGE	12EDGE	I1EDGE	10EDGE	IOLE	NMIREE
						V	V			
		8CH	0	0	0	0	0	0	0	0
	Interrupt input mode		Write "0".	Write "0".	INT3EDGE	INT2EDGE	INT1EDGE	INT0EDGE	0: INT0	1: Operates
_	control				0: Rising	0: Rising	0: Rising	0: Rising	edge	even on
		(No RMW)			1: Falling	1: Falling	1: Falling	1: Falling	mode	rising/ falling
									1: INT0 level	edge of
									mode	NMI

INT0 leve	el enable	←

0	edge detect INT
1	H level INT

NMI rising edge enable <

0	INT request generation at falling edge
1	INT request generation at rising/falling edge

(3) Interrupt request flag clear register

The interrupt requestwfl aignigs tchlee apped dopyriate mic vector, as given in Table 3. 4. 1 to the register INTC For example, to clear the interrupt flag INTO, properation after execution of the DI instruction.

INTCLEROAH: ClearsinterruptrequestflagINTO.

Symbol	Name	Address	7	6	5	4	3	2	1	0
					CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	Interrupt clear	88H					V	V		_
INTOLIX	control				0	0	0	0	0	0
		(No RMW)					Interrup	t vector		

(4) Micro DMA start vector registers

This register all MA points craises riong to an interrupt sour source with a micro DMA stacktes to the overthat rate in this assigned as the micro DMA start source. When the micro caches zero, the micro DMA transfer end interrupt sent to the interrupt control ler, the micro DMA start source fee the net bits, cto continuous processing, set the micro DMA start vector register micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vec channel; the channel with the lowest number has a hi

Accordingly, if the stahmeen wieccrtood DNAss steatrith vector reg channels, the interrupt generated in the channel w until microdMA transfemiics codd MDA settaer. the fetchteor for the not set again, the next of for of DNAs has rishtealr tweth the hig (MicrodMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					DMA0 start vector					
DMAOV	DMA0	0011			DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	start vector	80H					R/	W	•	
					0	0	0	0	0	0
	DMA1						DMA1 st	art vector		
DMA1V			81H			DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1
DIVIATV	start vector	ОІП			R/W					
					0	0	0	0	0	0
							DMA2 sta	art vector		_
DMA2V	DMA2 start 82H vector	0211			DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DIVIAZV		_			R/W					
					0	0	0	0	0	0
	DMA3 1A3V start vector						DMA3 sta	art vector	_	_
DMA3V		83H			DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DIVIASV							R/	W		
					0	0	0	0	0	0

(5) Micro DMA burst specification

Specifying the micro DMA burst continues the micro counter register reach Asszer o.a Seet imin og a do DM which the micro DMA channel of the DMAB registers mention

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	DMA						DMAR3	DMAR2	DMAR1	DMAR0	
DMAR	software	89H					R/W	R/W	R/W	R/W	
DIVIAR	request						0	0	0	0	
	register		_					1: DMA soft	ware reques	t	
							DMAB3	DMAB2	DMAB1	DMAB0	
DMAR	DMA burst 8AF register	0.411						R	W		
DIVIAD			оАП					0	0	0	0
		- Spistor						1: DMA bu	rst request		

(6) Notes

The instruction execution unit and the bus interindependently. Therefore, immediately before an ifetches an instruction etshpactnoclienagrishtheer copt reques may execute the instruction berthaptor equesting the interrupt vector. In this case, the and reads the interrupt vector address FFFFO8H.

To avoid the above probil coms, to the above probil coms, and the contraction after the exposition to the confiction of the conficti

In the case of changing the value of the interrupt execution of POP SR insatm wintle or m,upot soay b D le instruction.

In addition, take care as the following 2 circuits attention.

;INT0 level mode	In level mode INT0 is not an edge-triggered interrupt. Hence, in level mode the interrupt request flip-flop for INT0 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically.
	If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to level mode so as to release a halt state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the halt state has been released.) When the mode changes from level mode to edge mode, interrupt request flags which were set in level mode will not be cleared. Interrupt request flags must be cleared using the following sequence.
	LD (IIMC), 00H ; Switches interrupt input mode from level mode to edge mode.
	LD (INTCLR), 0AH; Clears interrupt request flag.
	NOP ; Wait EI instruction
	EI
INTRX	The interrupt request flip-flop can only be cleared by a reset or by reading the serial channel receive buffer. It cannot be cleared by an instruction.

Note: The following instructions or pin input state changes are equivalent to instructions that clear the interrupt request flag.

INTO: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from high to low after an interrupt request has been generated in level mode. (H \rightarrow L)

INTRX: Instructions which read the receive buffer.

3.5 Port Functions

The TMP91C82OA features 126-bit settings which relate As well as general r-tp fun posie on a Opi otayl, s to the poent / poi frush ction relate to the built-in CP Leas n 3d i 5n tlearn ota 3.15/. Ozsl. i Tsatbthe function. Tables 3n d. 33,53.55.i 4stl/Oregisters and their speci

Table 3.5.1 Port Functions (1/2)

(R: PU = with programmable pull-up resistor)(U = with pull-up resistor)

Port Name	Pin Name	Number of Pins	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port 0	P00 to P07	8	I/O	-	Bit	D0 to D7
Port 1	P10 to P17	8	I/O	-	Bit	D8 to D15
Port 2	P20 to P27	8	I/O	-	Bit	A16 to A23
Port 3	P30 to P37	8	I/O	-	Bit	A8 to A15
Port 4	P40 to P47	8	I/O	_	Bit	A0 to A7
Port Z	PZ0	1	Output	1	Bit	RD
	PZ1	1	Output	-	Bit	WR
	PZ2	1	I/O	PU	Bit	HWR
	PZ3	1	I/O	PU	Bit	R/\overline{W} , \overline{SRWE}
Port 5	P56	1	I/O	PU	Bit	WAIT
Port 6	P60	1	Output	-	(Fixed)	CS0
	P61	1	Output	-	(Fixed)	CS1, SDCS
	P62	1	Output	-	(Fixed)	CS2, CS2A
	P63	1	Output	-	(Fixed)	CS3
	P64	1	Output	-	(Fixed)	EA24, CS2B
	P65	1	Output	-	(Fixed)	EA25, CS2C
	P66	1	Output	-	(Fixed)	CS2C, SRLB
	P67	1	Output	_	(Fixed)	CS2E, SRUB
Port 7	P70	1	I/O	-	Bit	SCK, OPTRX0
	P71	1	I/O	-	Bit	SO, SDA, OPTTX0
	P72	1	I/O	-	Bit	SI/SCL
	P73	1	I/O	-	Bit	CS2F
	P74	1	I/O	-	Bit	CS2G
	P75	1	I/O	-	Bit	CSEXA
	P76	1	I/O	-	Bit	MSK
	P77	1	I/O	_	Bit	VEECLK
Port 8	P80 to P87	8	Input	-	(Fixed)	AN0 to AN7, ADTRG (P83)
Port 9	P90 to P97	8	Input	U	(Fixed)	KI0 to KI7
Port A	PA0 to PA7	8	Output	_	(Fixed)	KO0 to KO7
Port B	PB0	1	I/O	_	Bit	TA0IN, TXD2
	PB1	1	I/O	-	Bit	TA1OUT, RXD2
	PB3	1	I/O	-	Bit	INT0
	PB4	1	I/O	-	Bit	INT1
	PB5	1	I/O	-	Bit	INT2, TA3OUT
	PB6	1	I/O	=	Bit	INT3, TB0OUT0
Port C	PC0	1	I/O	-	Bit	TXD0
	PC1	1	I/O	-	Bit	RXD0
	PC2	1	I/O	-	Bit	SCLK0, CTSO
	PC3	1	I/O	-	Bit	TXD1
	PC4	1	I/O	-	Bit	RXD1
	PC5	1	I/O	-	Bit	SCLK1, CTS1

Table 3.5.2 Port Functions (2/2)

(R: PU = with programmable pull-up resistor) (U = with pull-up resistor)

Port Name	Pin Name	Number of Pins	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port D	PD0	1	Output	-	(Fixed)	D1BSCP
	PD1	1	Output	-	(Fixed)	D2BLP
	PD2	1	Output	-	(Fixed)	D3BFR
	PD3	1	Output	-	(Fixed)	DLEBCD
	PD4	1	Output	-	(Fixed)	DOFFB
	PD6	1	Output	-	(Fixed)	ALARM, MLDALM
	PD7	1	Output	-	(Fixed)	MLDALM
Port E	PD0 to PD7	8	I/O	-	Bit	LD0 to LD7
Port F	PF0	1	Output	-	(Fixed)	SDRAS
	PF1	1	Output	-	(Fixed)	SDCAS
	PF2	1	Output	-	(Fixed)	SDWE
	PF3	1	Output	-	(Fixed)	SDLDQM
	PF4	1	Output	-	(Fixed)	SDUDQM
	PF5	1	Output	-	(Fixed)	SDCKE
	PF6	1	Output	-	(Fixed)	SDCLK
	PF7	1	Output	-	(Fixed)	

Table 3.5.3 I/O Registers and Specifications (1/3)

Port	Din Nomo	Specification		I/O Re	gister	
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2
Port 0	P00 to P07	Input port	Х	0		
		Output port	Х	1	None	None
		D0 to D7 bus	Х	Х		
Port 1	P10 to P17	Input port	Х	0	0	
		Output port	Х	1	0	None
		D8 to D15 bus	Х	0	1	
Port 2	P20 to P27	Input port	Х	0	Х	
		Output port	Х	1	0	None
		A16 to A23 output	Х	1	1	
Port 3	P30 to P47	Input port	Х	0	Х	
		Output port	Х	1	0	None
		A8 to A15 output	Х	1	1	
Port 4	P30 to P47	Input port	Х	0	Х	
		Output port	Х	1	0	None
		A0 to A7 output	Х	1	1	
Port Z	PZ0	Output port	Х		0	
		RD output	Х	None	1	
	PZ1	Output port	Х	None	0	
PZ2, PZ3		WR output	Х		1	
	PZ2, PZ3	Input port (without PU)	0	0	0	
	Input port (with PU)	1	0	0		
		Output port	Х	1	0	
	PZ2	HWR output	Х	1	1 None	
	PZ3	R/W output	Х	0	1	
		SRWE output	Х	1	1	
Port 5	P56	Input port (without PU)	0	0		
		Input port (with PU)	1	0		
		Output port	X	1	None	
		WAIT input (without PU)	0	0		
		WAIT input (with PU)	1	0		
Port 6	P60 to P67	Output port	X		0	0
	P60	CS0 output	Х	_	1	0
	P61	CS1 output	Х	_	1	0
		SDCS output	Х	_	Х	1
	P62	CS2 output	Х	_	1	0
		CS2A output	X		X	1
	P63	CS3 output	Х	_	1	0
	P64	EA24 output	Х	None	1	0
		CS2B output	Х	_	X	1
	P65	EA25 output	Х	_	1	0
		CS2C output	Х	_	Х	1
	P66	SRLB output	Х	_	1	0
		CS2D output	Х		X	1
	P67	SRUB output	Х		1	0
		CS2E output	Х		Х	1

X: Don't care

Table 3.5.4 I/O Registers and Specifications (2/3)

Dowt	Din Name	Charification		I/O Reg	gister	
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2
Port 7	P70 to P77	Input port	Х	0	0	0
		Output port	Х	1	0	0
	P70	SCK input	Х	0	0	0
		SCK output	Х	1	1	0
		OPTRX0 input (Note 1)	1	0	X	1
	P71	SDA input	Х	0	0	0
		SDA output (Note 2)	Х	1	1	0
		SO output	Х	1	1	0
		OPTTX0 output (Note 1)	1	1	Х	1
	P72	SI input	Х	0	0	
		SCL input	Х	0	0	None
		SCL output (Note 2)	Х	1	1	
	P73	CS2F output	Х	1	Х	1
	P74	CS2G output	X	1	Х	1
	P75	CSEXA output	X	1	Х	1
	P76	MSK input (Note 3)	X	0	0	0
	P77	VEECLK output	X	1	1	0
Port 8	P80 to P87	Input port	Х			
		AN0 to AN7 input (Note 4)	Х	None		
	P83	ADTRG input (Note 5)	Х			
Port 9	P90 to P97	Input port	X	None	0	None
		KI0 to KI7 input	Х	None	1	None
Port A	PA0 to PA7	Output port	Х		0	
		KO0 to KO7 output (CMOS)	Х	None	0	
		KO0 to KO7 output (Open drain)	Х		1	
Port B	PB0 to PB6	Input port	Х	0	0	
		Output port	Х	1	0	
	PB0	TA0IN input	Х	0	0	
		TXD2 output (Note 1)	Х	1	1	
	PB1	TA1OUT output	Х	1	1	
		RXD2 input (Note 1)	Х	0	0	1
	PB3	INT0 input	Х	0	1	None
	PB4	INT1 input	Х	0	1	1
	PB5	INT2 input	0	0	1	1
		TA3OUT	1	1	1	1
	PB6	INT3 input	0	0	1	1
	1.20	TB0OUT0	1	1	1	1
		1500010		ı	'	

X: Don't care

Table 3.5.5 I/O Registers and Specifications (3/3)

Dowt	Din Name	Cnaa	iti a a ti a a		I/O Reg	gister	
Port	Pin Name	Spec	ification	Pn	PnCR	PnFC	PnFC2
Port C	PC0 to PC5	Input port		X	0	0	
		Output port		Х	1	0	
	PC0	TXD0 output	(Note 1)	1	1	1	
	PC1	RXD0 input	(Note 1, 6)	1	0	None	
	PC2	SCLK0 input	(Note 1)	1	0	0	
		SCLK0 output	(Note 1)	1	1	1	
		CTS0 input	(Note 1)	1	0	0	
	PC3	TXD1 output	(Note 1)	1	1	1	
	PC4	RXD1 input	(Note 1)	1	0	None	
	PC5	SCLK1 input	(Note 1)	1	0	0	
		SCLK1 output	(Note 1)	1	1	1	
		CTS1 input	(Note 1)	1	0	0	
Port D	PD0 to PD7	Output port		Х		0	
	PD0	D1BSCP output		Х		1	
	PD1	D2BLP output		Х		1	
	PD2	D3BFR output		Х		1	None
	PD3	DLEBCD output		Х	None	1	None
	PD4	DOFFB output		Х		1	
	PD6	ALARM output		1		1	
		MLDALM output		0		1	
	PD7	MLDALM output		Х		1	
Port E	PE0 to PE7	Input port		Х	0	0	
		Output port		Х	1	0	
		LD0 to LD7 output		Х	1	1	
Port F	PF0 to PF7	Output port		Х		0	
	PF0	SDRAS output		Х		1	
	PF1	SDCAS output		Х		1	
	PF2	SDWE output		Х	None	1	1
	PF3	SDLDQM output		Х	INOTIE	1	
	PF4	SDUDQM output		Х		1	
	PF5	SDCKE output		Х		1	
	PF6	SDCLK output		Х		1	

X: Don't care

- Note 1: As for input ports of SIO1 to SIO3: (OPTTX0, OPTRX0, TXD0, RXD0, SCLK0, $\overline{\text{CTS0}}$, TXD1, RXD1, SCLK1, $\overline{\text{CTS1}}$, TXD2, RXD2), logical selection for output data or input data is determined by the output latch register Pn of each port.
- Note 2: When P71/P72 are used as SDA/SCL open-drain outputs, P70DE<ODEP72:71> is used to set the open-drain output mode.
- Note 3: In case using P76 for MSK port, set to P7FC<P76F>.
- Note 4: When P80 to P87 are used as AD converter input channels, ADMOD1<ADCH2:0> is used to select the channel.
- Note 5: When P83 is used as ADTRGE input, ADMOD1<ADTRGE> is used to enable external-trigger input.
- Note 6: In case using PC1 for RXD0 port, set "0" to P7FC2<P70F2>.

3.5.1 Port 0 (P00 to P07)

Port Ois an 8-bit general hybuirt poome ble/ Septor hodievaidual loutput using the control regeneral settem and Clari. the osfet hieroutput control register POCR to O and sets port O to input mode general - purpose I / Opfoumtc, tip on ta 6 a and alt so do us (DO to D7) When external memory is a automate id, cat he yp four to tions as to D7) and all bits of POCR are cleared to O.

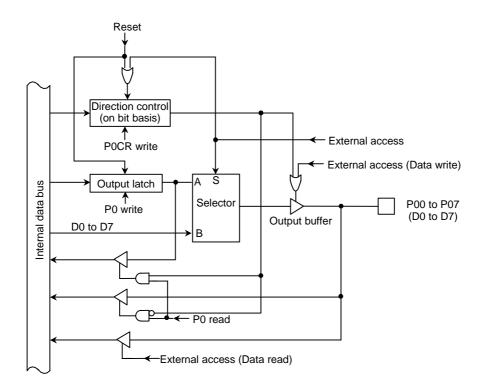


Figure 3.5.1 Port 0

Port 0 Register 7 5 4 6 3 2 1 n P0 P07 P06 P04 P01 P05 P03 P02 P00 Bit symbol (0000H)Read/Write R/W After reset Data from external port (Output latch register is cleared to 0.) Port 0 Control Register

7 6 5 4 3 2 1 0 P07C P06C P05C P04C P03C P₀₂C P01C P₀0C P0CR Bit symbol (0002H)Read/Write W 0 After reset 0 0 0 0 0 Port 0 input/output settings **Function** 0: Input 1:Output

Note 1: Read-modify-write is prohibited for P0CR.

Note 2: When functioning as a data bus (D0 to D7), P0CR is cleared to 0.

Figure 3.5.2 Register for Port 0

TOSHIBA

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit generalch powint poces neble/ Septor nt di Evai dual out put us ing the control frengicts it cent red GiRsatnecht Phile FC. Rese bits of the output latch P1, the control register P1CF and sets port 1 to input mode.

In addition to functionienly /a Ospacog et η eproard to β us rapposed so functionienly /a Ospacog et η eproard to β us (D8 to D15).

AM1	AM0	P1xF	Function Setting after Reset is Released
0	0	0	Input port
0	1	1	Data bus (D8 to D15)
1	0	-	Don't use this setting
1	1	0	Input port

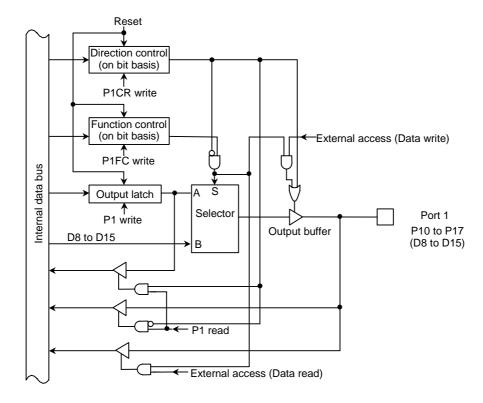


Figure 3.5.3 Port 1

Port 1 Register

7 5 4 2 1 0 6 3 P1 P17 P16 P15 P14 P13 P12 P11 P10 Bit symbol (0001H) Read/Write R/W After reset Data from external port (Output latch register is cleared to 0.) Port 1 Control Register 7 5 4 3 2 0 6 1 P1CR P17C P16C P15C P14C P13C P12C P11C P10C Bit symbol (0004H) Read/Write After reset 0 0 0 0 0 0 0 0 Function Port 1 function settings Port 1 Function Register 7 6 5 4 3 2 1 0 P1FC P17F P16F P15F P14F P13F P12F P11F P10F Bit symbol (0005H) Read/Write W 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 After reset **Function** Port 1 function settings → Port 1 function settings Note 1: Read-modify-write is prohibited for P1CR P1FC<P1xF> and P1FC. Note 2: <P1xF> is bit x in register P1FC; <P1xC>, 1 in register P1CR. P1CR<P1xC> Data bus 0 Input port (D15 to D8) Output port Don't set 1

Figure 3.5.4 Register for Port 1

3.5.3 Port 2 (P20 to P27)

Port 2 is an 8-bit generalch powint poces neble/ Soepto into lievai dual output using the control register P2CR and the funct functioning as a general 2 pocus mpaols seolf/w0 npoctrito, npaos ratn addrto A23).

Setting the AM1 and AMO pians dans essheotwith long Itohwe device in to the following function pins.

AM1	AM0	P2xC	P2xF	Function Setting after Reset is Released	
0	0	1	1	Address bus (A16 to A23)	
0	1	1	1	Address bus (A16 to A23)	
1	0	_	_	Don't use this setting	
1	1	0	0	Input port	

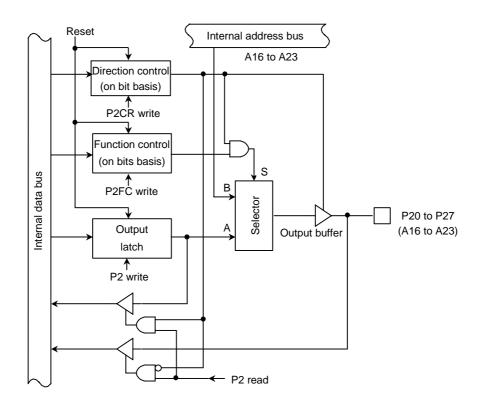


Figure 3.5.5 Port 2

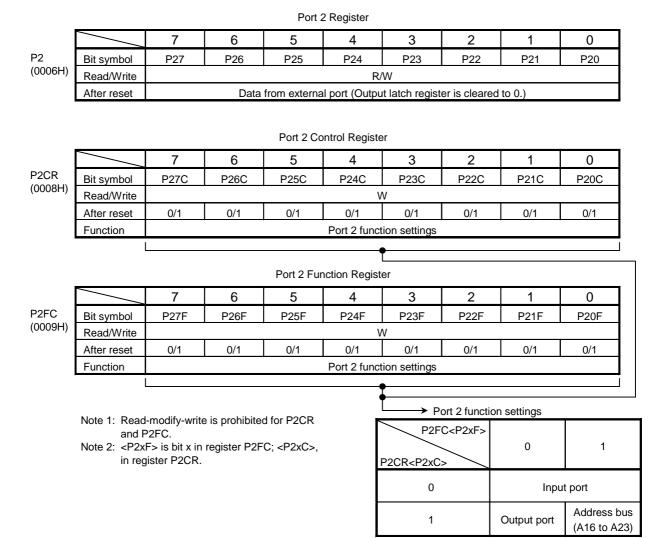


Figure 3.5.6 Register for Port 2

3.5.4 Port 3 (P30 to P37)

Port 3 is an 8-bit general hybuirt poose be septor indieval dual output using the control register P3CR and the funct functioning as a general - purpose I/Oport, port 3 can A15).

Setting the AM1 and AMO pians dans essheotwith long Itohwe device in to the following function pins.

AM1	AM0	P3xC	P3xF	Function Setting after Reset is Released	
0	0	1	1	Address bus (A8 to A15)	
0	0	1	1	Address bus (A8 to A15)	
1	0	-	-	Don't use this setting	
1	1	0	0	Input port	

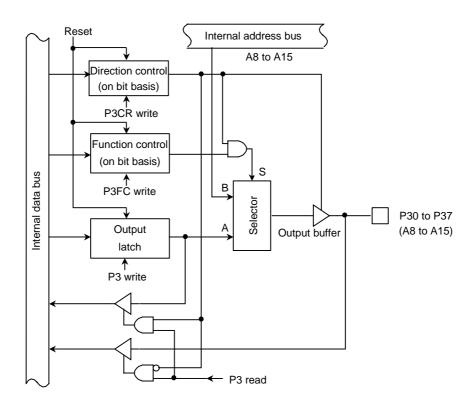


Figure 3.5.7 Port 3

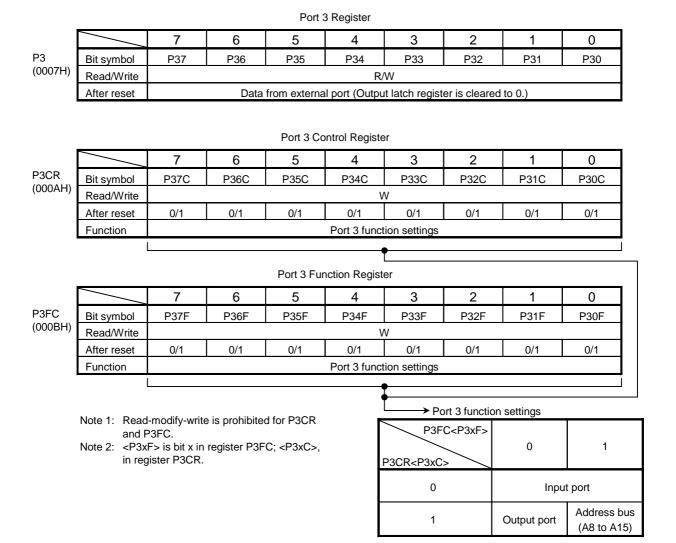


Figure 3.5.8 Register for Port 3

TOSHIBA

3.5.5 Port 4 (P40 to P47)

Port 4 is an 8-bit general hybourt poose be septor indieval dual output using the control register P4CR and the funct functioning as a general - purpose I/Oport, port 4 can A7).

Setting the AM1 and AMO pians dans essheotwith long Itohwe device in to the following function pins.

AM1	AM0	P4xC	P4xF	Function Setting after Reset is Released	
0	0	1	1	Address bus (A0 to A7)	
0	1	1	1	Address bus (A0 to A7)	
1	0	_	_	Don't use this setting	
1	1	0	0	Input port	

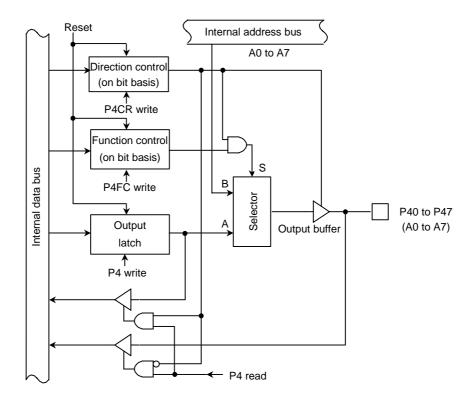


Figure 3.5.9 Port 4

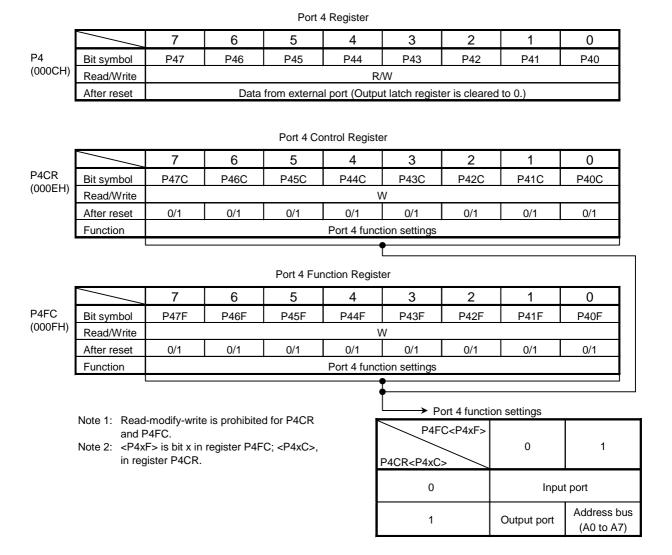


Figure 3.5.10 Register for Port 4

3.5.6 Port Z (PZ0 to PZ3)

Port Zisan 4-bit generæ O-apnuar P5\$ eart é O ped f o Pout put set using control register Pg C ea ed P IFC.b R es en ftt he ou to 1.

In addition to functionienlg/a@spacogeneproarlt-parposfunct the CPU's control/status signal.

When PZOpinis @ PStroebleasignal output1) model (aPZO) toutput latchregister < PZO) trooble (ubspecult foothere peused from the PZOpin even where streed in the romal doubt opinit latch remains PD stthreebe signal is out to entry awheed to entry awheed tress are in Resetting initializes PZ2 and PZ3 pins to input mode Setting the AM1 and AMO pins as shown below and reset and PZ1 pins to wheel founction pins.

AM1	AM0	PZ0F	Function Setting after Reset is Released		
,		PZ1F	PZ0 function	PZ1 function	
0	0	1	RD pin	WR pin	
0	1	1	RD pin	WR pin	
1	0	_	Don't use this setting	Don't use this setting	
1	1	0	Output port	Output port	

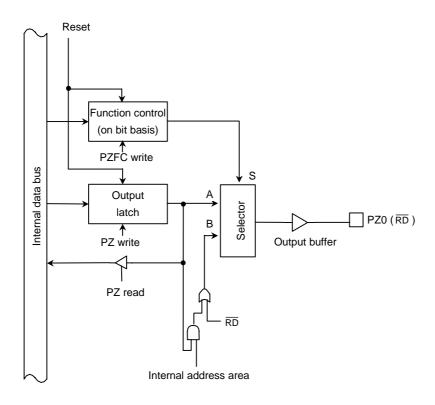


Figure 3.5.11 Port Z (PZ0)

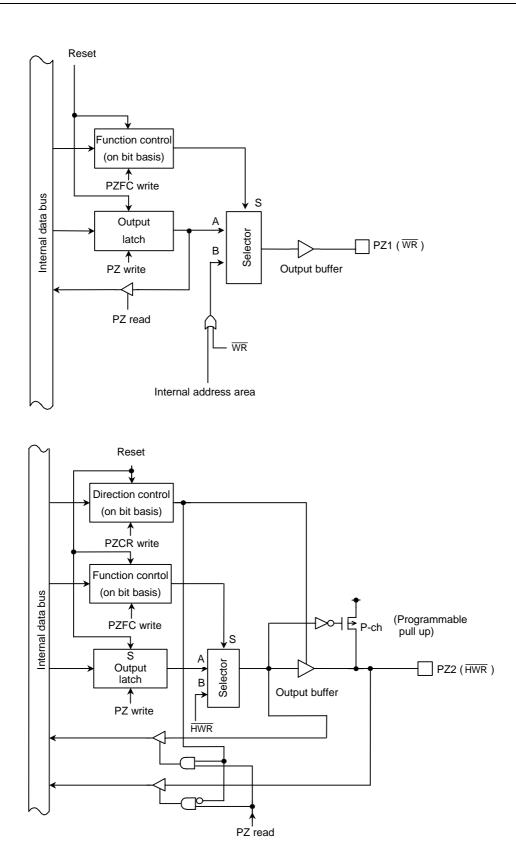


Figure 3.5.12 Port Z (PZ1, PZ2)

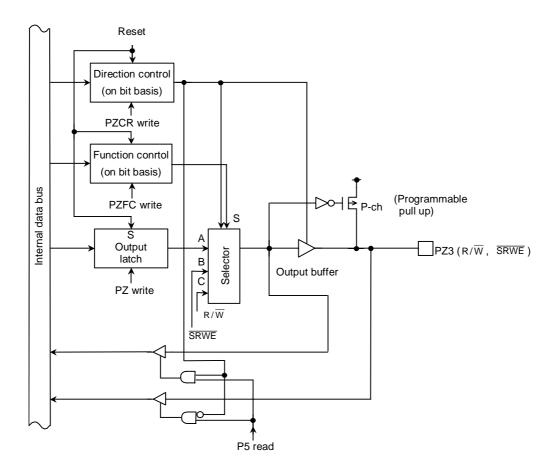


Figure 3.5.13 Port Z (PZ3)

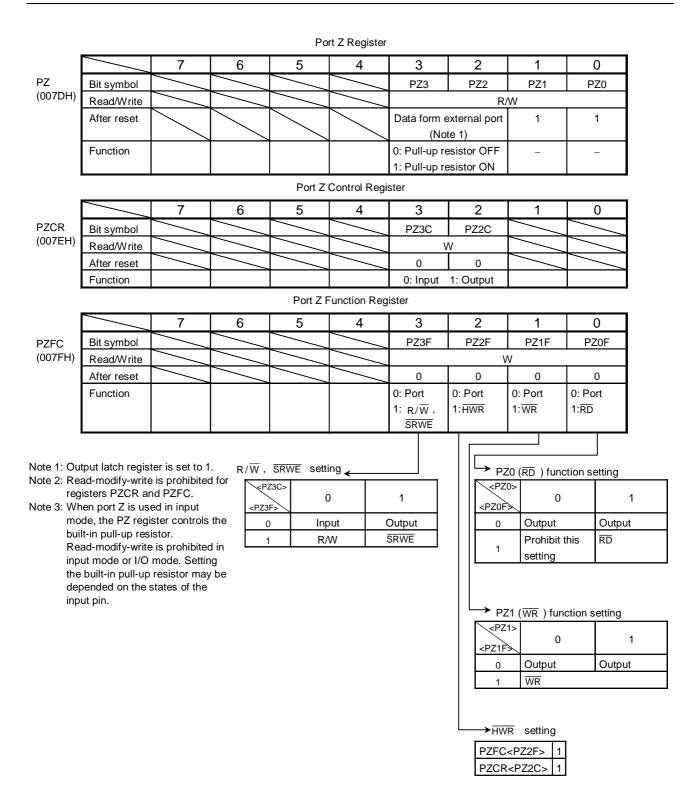


Figure 3.5.14 Register for Port Z

3.5.7 Port 5 (P56)

Port 5 is an 1-bit generall/-Opius psoesteuls/Ongocrotntrol reg P5FC. Resetting or festeteso all plottatch P5 to P1.

In addition to functionienlg/a@spacegetneproarlt-policy sontrol/status signal.

Resettinginitializes P56 pins toinput mode with pu

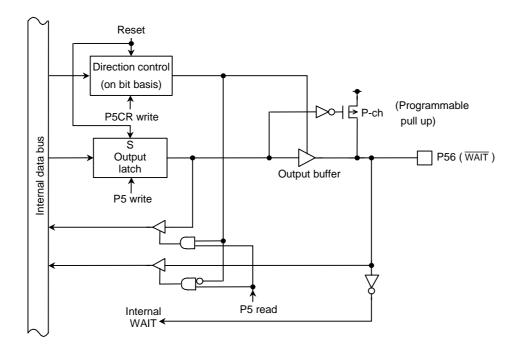
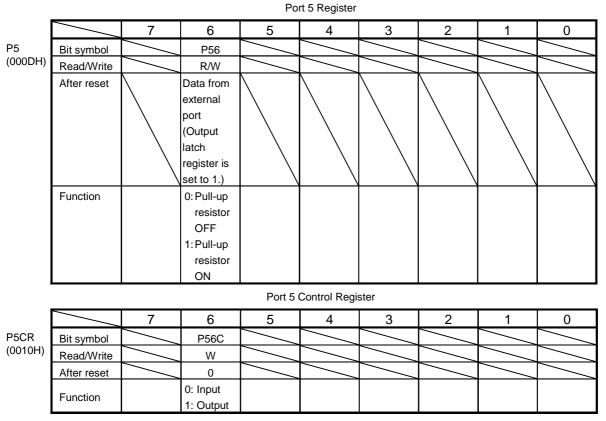



Figure 3.5.15 Port 5 (P56)

Note: When the P53/WAIT pin is to be use as the WAIT pin, P5CR<P53C> must be set to 0 and <BnW2:0> in the chip select/wait control register must be set 010.

Figure 3.5.16 Register for Port 5

3.5.8 Port 6 (P60 to P67)

Port 60 to 67 are 8- bit output ports. Resetting sets latches of P60 to P61 and P63 to P67 are set to 1.

Port 6 also function as costotions se lex de modula poluit és sout pu EA25), extend chi posse enceze so so politica de la politica del politica del politica de la politica del politica del politica de la politica del politica d

Writing 1 in the corresponding bit of P6FC, P6FC2 ena Resetting reset the P6FC and P6FC2 to O, and sets all I

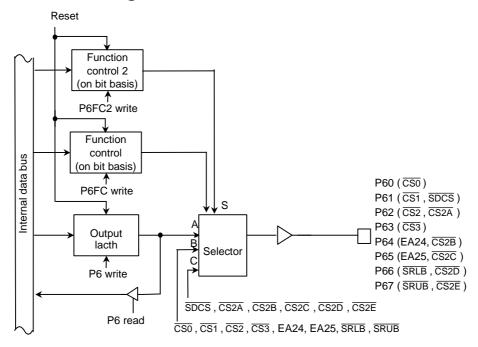


Figure 3.5.17 Port 6

Port 6 Register

		7	6	5	4	3	2	1	0				
P6	Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60				
(0012H)	Read/Write				R	W	•	•					
	After reset	1	1	1	1	1	0	1	1				
				Port 6 Fund	ction Registe	r							
		7	6	5	4	3	2	1	0				
P6FC	Bit symbol	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F				
(0015H)	Read/Write		W										
	After reset		0										
	Function	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port				
		1: SRUB	1: SRLB	1: EA25	1: EA24	1: CS3	1: CS2	1: CS1	1: CS0				
				Port 6 Func	tion Register	2							
		7	6	5	4	3	2	1	0				
P6FC2	Bit symbol	P67F2	P66F2	P65F2	P64F2	=	P62F2	P61F2	=				
(001BH)	Read/Write				V	V							
	After reset				()							
	Function	0: <p67f></p67f>	0: <p66f></p66f>	0: <p65f></p65f>		Always	0: <p62f></p62f>	0: <p61f></p61f>	Always				
		1: CS2E	1: CS2D	1: CS2C	1: CS2B	fixed to "0".	1: CS2A	1: SDCS	fixed to "0".				

Note: Read-modify-write is prohibited for P6FC and P6FC2.

Figure 3.5.18 Register for Port 6

TOSHIBA

3.5.9 Port 7 (P70 to P77)

Port 7 is an 8-bit generla / Opanphoresselt/Onphort basis usi register. Resetting sets port 7 to input port and all blanddition to functioning as a general-purpose I/O

- I. Input/outputfobrousstiinotnefrofraser(iSaOK, SO/SDA, SI/S
- 2. Input/output function for IrDA (OPTRXO, OPTTXC
- 3. Extend chi p \$\overline{\sigma} \overline{\pi}, \overline{\sigma} \overline{\pi} \overline{
- 4. Clock control function for voltage booster of ex

Writing 1 in the corresponding bit of P7FC, P7FC2 ena Resetting resets the P7FC, P7FC2 to O, and sets all bi

(1) Port 70 (SCK, OPTRXO)

Port 70 is a gene Oaplo-pturlptoise as GKO (uGleodcaks ignal fomode) and OPTRXO (Receive input for Ir DA mode of SIO Used as OPTRXO, it is possible to logical invert by For port C1, RXDO or OPTRXO is used P7FC2 < P7OF2 >.

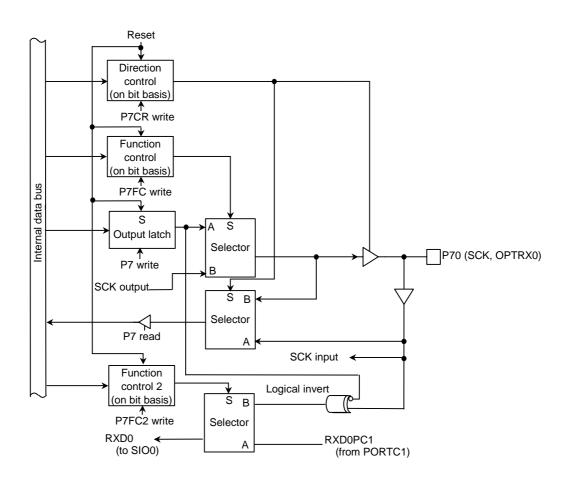


Figure 3.5.19 Port 70

(2) Port 71 (SO/SDA/OPTTXO)

Port 71 is a general - purpose I / Oport. It 3 C buss so us mode), SO (Data output for SI Omode) for serial busi output for Ir DA mode of SI OO).

Used as OPTTXO, it is possible to logical invert by

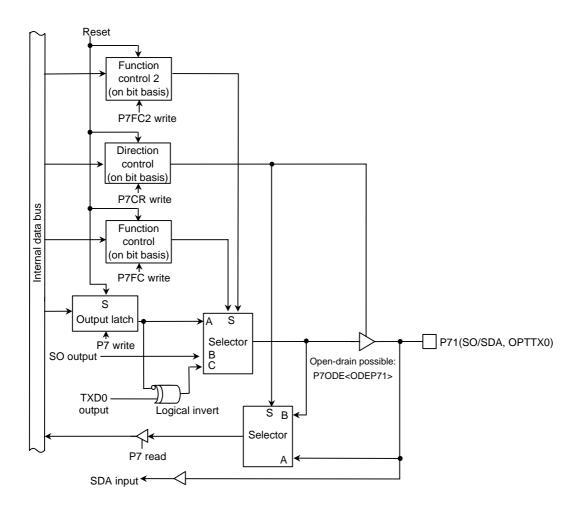


Figure 3.5.20 Port 71

(3) Port 72(SI/SCL)

Port 72 is a general - purpose I / Oport. It is also us SCL (Clock inputC/kouust pood of confider) can flow ussein iterface.

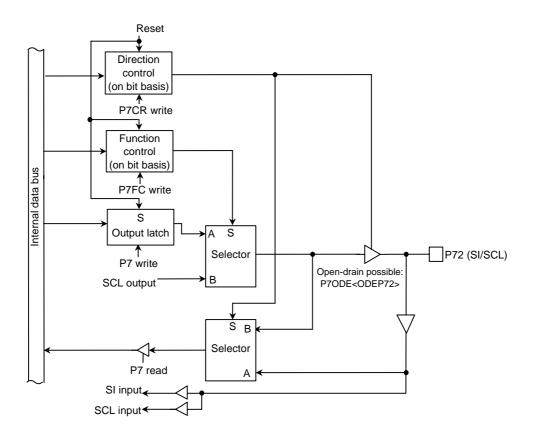


Figure 3.5.21 Port 72

(4) Por (52)3 (725 £X)A

Port 73 to 75 are general - purpose I / Oports. These sequential mask ROM and extend chi p-select output.

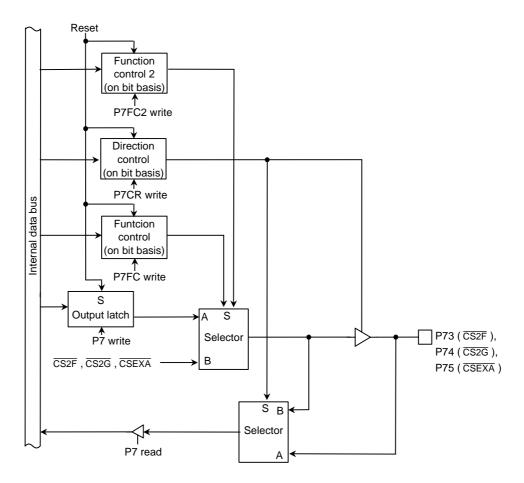


Figure 3.5.22 Port 73, 74, 75

(5Port 76 (MSK), 77 (VEECLK)

Port 76 and 77 are generall here paorsee all/scopus metos as clofunction for voltage booster of external LCD driver MSK pin (P76) is an inpat piCD fir o mex, terpock output fpinis controlled by screft of stpinips mc.ob ogolled wit VEECLK pin outputs clock to afgê 20 koko streom ovo Olevel a request from MSK pin. VEECLK output is controlled with

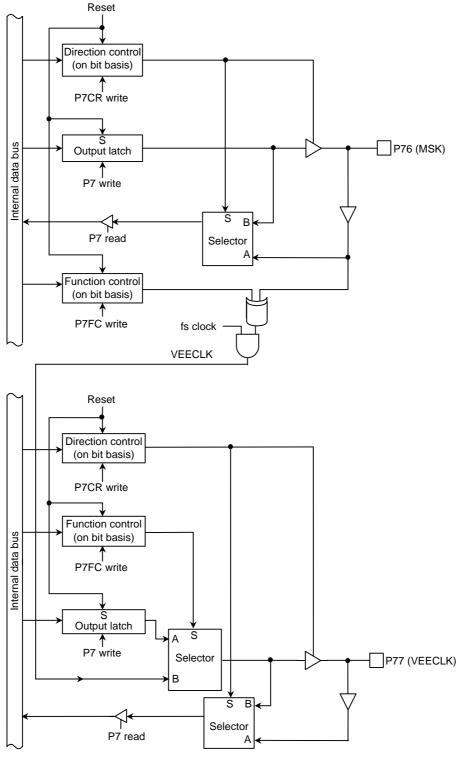


Figure 3.5.23 Port 76, 77

	Port 7 Register											
		7	6	5	4	3	2	1	0			
P7	Bit symbol	P77	P76	P75	P74	P73	P72	P71	P70			
(0013H)	Read/Write				R	W						
	After reset		Da	ta from exte	rnal port (Out	tput latch reg	ister is set to	1.)				
				Port 7	Control Regi	ster						
		7	6	5	4	3	2	1	0			
P7CR	Bit symbol	P77C	P76C	P75C	P74C	P73C	P72C	P71C	P70C			
(0016H)	Read/Write				١	N						
	After reset	0	0	0	0	0	0	0	0			
	Function			0: I	nput	1: 0	utput					
				Port 7	Function Reg	ister						
		7	6	5	4	3	2	1	0			
P7FC	Bit symbol	P77F	P76F	P75F	P74F	P73F	P72F	P71F	P70F			
(0017H)	Read/Write	W										
	After reset	0										
	Function	0:Port 1:VEECLK	MSK select 0: Enable 1: Enable	0: Port	0: Port	0: Port	0: Port 1: SCL/SI	0: Port 1: SDA/SO	0: Port 1: SCK			
•		•		Port 7 F	unction Regi	ster 2	•					
		7	6	5	4	3	2	1	0			
P7FC2	Bit symbol	=	=	P75F2	P74F2	P73F2	_	P71F2	P70F2			
(001CH)	Read/Write				V	V	•					
	After reset				()						
	Function	Always fixed to "0".	Always fixed to "0".	0: <p75f> 1: CSEXA</p75f>	0: <p74f> 1: CS2G</p74f>	0: <p73f> 1: CS2F</p73f>	Always write "0".	0: <p71f> 1: OPTTX0</p71f>	SIO0/RXD0 Pin select 0: RXD0(PC1) 1: OPTRX0 (P70)			
				Port	7 ODE Regis	ter						
		7	6	5	4	3	2	1	0			
P7ODE	Bit symbol	_	_				ODEP72	ODEP71				
(001FH)	Read/Write	V	V				V	V				
()	After reset	0	0				0	0				
	Function	Always fixed	to "0".				0: 3 states					

Note: Read-modify-write is prohibited for P7CR, P7FC, P7FC2 and P7ODE.

Figure 3.5.24 Register for Port 7

1: Open drain

3.5.10 Port 8 (P80 to P87)

Port 8 is an 8-bit inputupsoerdtæsntdhæatannæd Isoogbien put pins f AD converter. P83 cæsn AaD TSRXOpeiumsfeodr the AD converter.

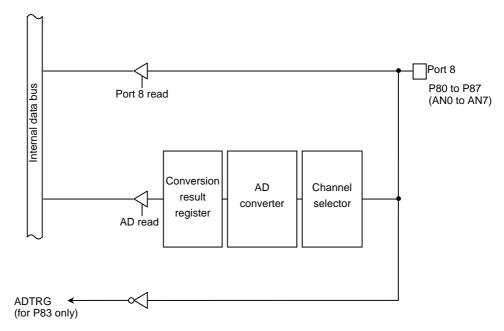


Figure 3.5.25 Port 8

Port 8 Register

P8 (0018H)

		7	6	5	4	3	2	1	0			
I	Bit symbol	P87	P86	P85	P84	P83	P82	P81	P80			
) [Read/Write		R									
	After reset				Data from e	xternal port						

Note: The input channel selection of AD converter and the permission of ADTRG input are set by AD converter mode register ADMOD1.

Figure 3.5.26 Register for Port 8

3.5.11 Port 9 (P90 to P97)

Port 90 to 97 are 8-bit i-nupput epsoirstsowni. thnpaudidition to general-purpose I/O port, port 90 to 97 can also key interface. The various functions can each be enabled to the port 9 function register (P9FC).

Resetting resets all bits of fathbles etegiastepri Phos FtCobe in p

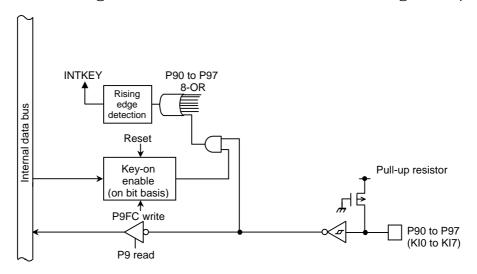


Figure 3.5.27 Port 9

When P9F1C, if either of input of KIO to KI7 pins falls generated. INTKEY i unsteed to prote to east be all HALT mode.

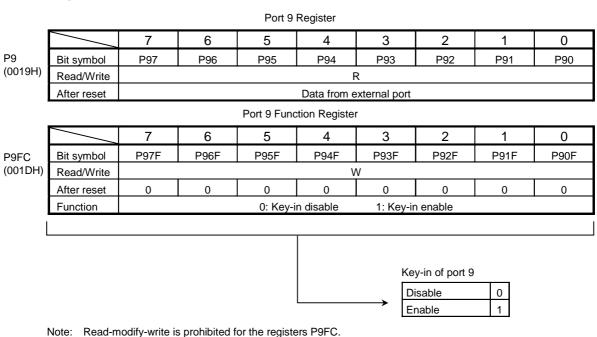


Figure 3.5.28 Register for Port 9

3.5.12 Port A (PA0 to PA7)

Port PAOto PA7 are 8-bit output ports, and also used k which can set open-drain output buffer.

Writing 1 in the corresponding bit of the port A fun open-drain output.

Resettingreset bits of the registers PA to 1 and PAFC

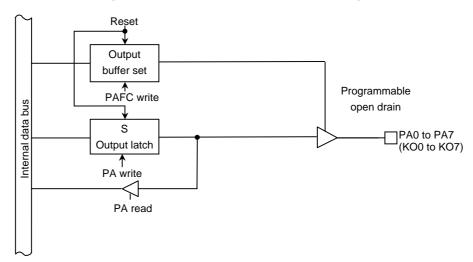


Figure 3.5.29 Port A

Port A Register

		7	6	5	4	3	2	1	0				
PA	Bit symbol	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0				
(001EH)	Read/Write		R/W										
	After reset				,	1							
·				Port A Fund	ction Registe	r							

7 6 5 4 3 2 1 0 **PAFC** PA7F PA4F PA6F PA5F PA3F PA2F PA1F PA0F Bit symbol (0021H)Read/Write After reset 0 0 0 0 0 0 0 Function 0: CMOS output 1: Open drain

Note: Read-modify-write is prohibited for PAFC.

Figure 3.5.30 Register for Port A

3.5.13 Port B (PB0 to PB6)

Port Bis a 6-bit general chobit pocsaen lb/eOspectrith dEavidual loutput. Resetting sets port B to be an input port.

In addition to functionienlg/a@spacogetneproarlt-Borapoad so furpin for timers (TAOIN, TA1LOTLOT), TiAnspollut pit Boror external (INTO to INT3), and I/O to (rT X 102), aRX 102) in Madosve setting function register PBF Cand PBF C2. Edge select of exter IIM Cregister, which there is in interruption control

(1) PBO (TAOIN, TXD2)

As well as functioningrats BO/ Caproarlt spoi finus n, cotoi on as set TXD output pins. In case of use TXD2, it is possible register PB < PBO >.

And port BO has a prograimmathe to poem white h can be cregister PBODE < ODE PBO >.

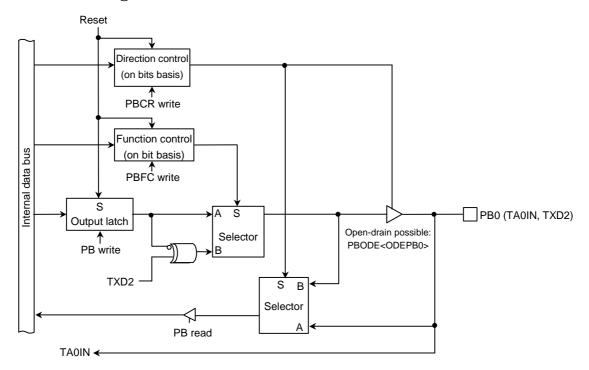


Figure 3.5.31 Port B0

(2) PB1 (TA1OUT, RXD2)

Port B1 is I/Oport piumsseachadscRaXhDailmspouits for the seria case of use RXD2, it is possible to logical invert by

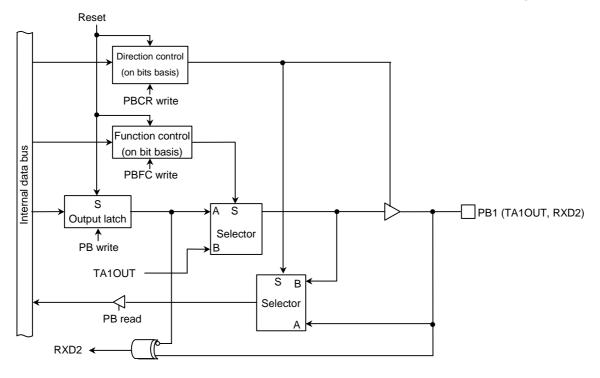


Figure 3.5.32 Port B1

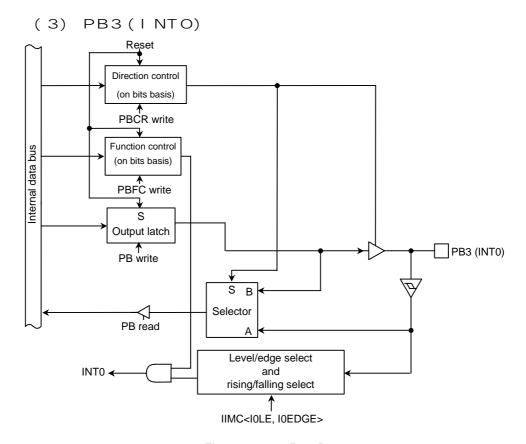
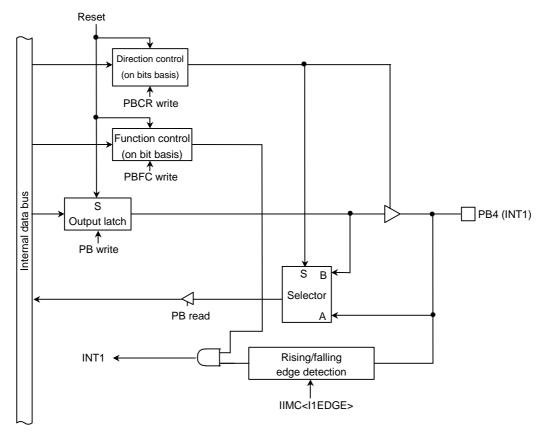



Figure 3.5.33 Port B3

(4) PB4(INT1), PB5(INT2, TA3OUT), PB6(INT3, TBOOUT

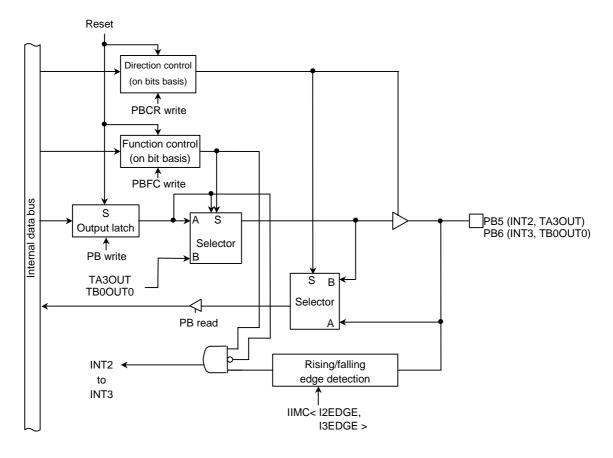
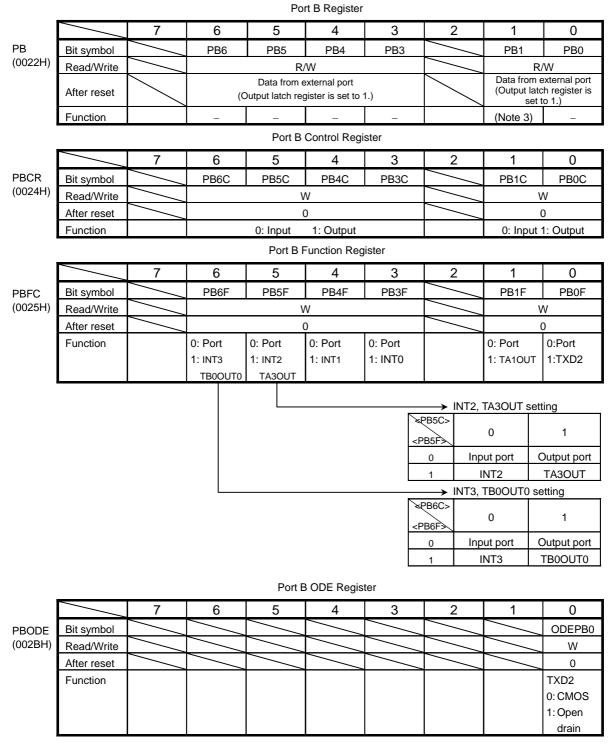



Figure 3.5.34 PB4 to PB6

Note 1: Read-modify-write is prohibited for the registers PBCR, PBFC and PBODE.

Note 2: PB0/TA0IN pin does not have a register changing PORT/FUNCTION.

For example, when it is used as an input port, the input signal is inputted to 8-bit timer.

Note 3: PB1/RXD1 pin does not have a register changing PORT/FUNCTION.

For example, when it is used as an input port, the input signal is inputted to SIO as the serial receive data.

Figure 3.5.35 Register for Port B

3.5.14 Port C (PC0 to PC5)

Port CO to C5 are 6-bit greenets. Lepuchphoisteda/nObe set in input or output. ResettingreinpuPtCpotrotBC5 ttoableso sets output latchregister to 1.

In addition to functioning as general-purpose I/Opoas the I/Ofor serial channels O and 1. A pin can be enacorresponding Ciftuo tihenpoetister (PCFC).

Resetting resets all bitænodfP101FeCiteogOlasnide setPsCERI pinsports.

(1) Port CO, C3 (TXDO/TXD1)

As well as functioningrats O O O pob C 3 p an sa, so function channel TXD output pins. In case of use TXDO/TXD1, is setting the register PC<PCO, 3>.

And ports CO to C3 have a programmable open-drainf the register PCODE < ODE PCO, 3>.

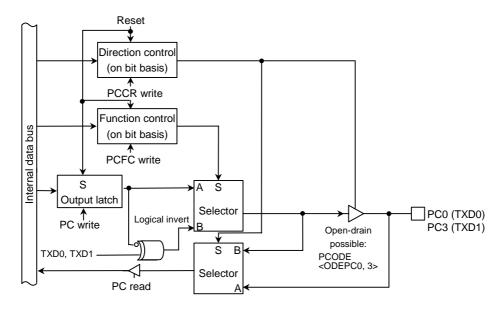


Figure 3.5.36 Port C0 and Port C3

(2) Port C1, C4 (RXDO, 1)

Port C1 and C4 are I / Oport pins and can also be used channels. In case of use RXDO/RXD1, it is possible register PC<PC1, 4>.

And input data of SIOOmcRXD/ePsCellpeicnt of rr OPTRXO/P70 bthe register PCFC2<P70F2>.

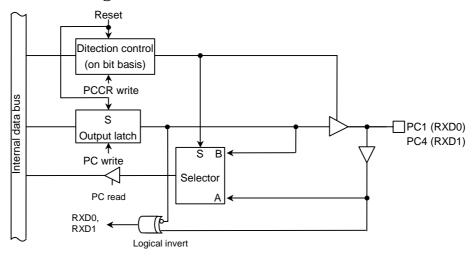


Figure 3.5.37 Port C1 and Port C4

(3) Porats, 2 \$ CLKO) \(\bar{C} \bar{G} \bar{S} \bar{C} \LK1 \)

Port C2 and C4 are I/O port pins a condictation to so Skotk kus input/output for the seria CT shachk! issts in the pesteo dogistinvert by setting the register PC < PC2, 5>.

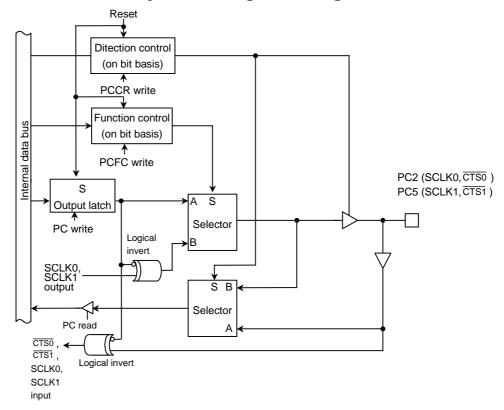


Figure 3.5.38 Port C2 and Port C5

	Port C Register										
		7	6	5	4	3	2	1	0		
PC	Bit symbol			PC5	PC4	PC3	PC2	PC1	PC0		
(0023H)	Read/Write					R/	W	•			
	After reset			Da	ta from exter	rnal port (Out	put latch reg	ister is set to	1.)		
				Port C	Control Regi	ister					
		7	6	5	4	3	2	1	0		
PCCR	Bit symbol	/		PC5C	PC4C	PC3C	PC2C	PC1C	PC0C		
(0026H)	Read/Write					V	V				
	After reset			0	0	0	0	0	0		
	Function					0: Input	1: Output				
				Port C I	Functon Reg	ister					
		7	6	5	4	3	2	1	0		
PCFC	Bit symbol	/		PC5F		PC3F	PC2F		PC0F		
(0027H)	Read/Write			W		W	W		W		
	After reset			0		0	0		0		
	Function			0: Port		0: Port	0: Port		0: Port		
				1: SCLK1		1: TXD1	1: SCLK0		1: TXD0		
				output			output				
				Port C	ODE Regis	ter					
		7	6	5	4	3	2	1	0		
PCODE	Bit symbol					ODEPC3			ODEPC0		
(0028H)	Read/Write					W			W		
	After reset					0			0		
	Function					TXD1			TXD0		
						0: CMOS			0: CMOS		
						1: Open			1: Open		
						drain			drain		

Note 1: Read-modify-write is prohibited for the registers PCCR, PCFC and PCODE.

Note 2: PC1/RXD0, PC4/RXD1 pins do not have a register changing PORT/FUNCTION. For example, when it is used as an input port, the input signal is inputted to SIO as the serial receive data.

Figure 3.5.39 Register for Port C

3.5.15 Port D (PD0 to PD7)

Port Disan 8-bit outputtphoenctut Robust eltationing PSDeto 1, and pinoutput 1.

In addition to functioning as output port, port Dalcontroller (DIBSCP, D2BDPand3BDPT,BDLEdButput pin for (ALAR)) and output pin for melody/alaMmDaje)nerAebtoome (Netting is used the function register PDFC.

Only PD6 has two output fain and mode with are selection used PD<PD6>. Resetting resets the function registe output ports.

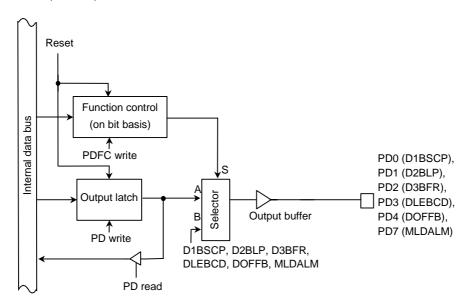


Figure 3.5.40 Port D0 to D4, D7

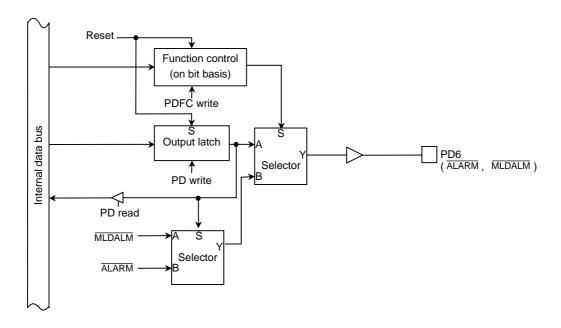


Figure 3.5.41 Port D6

Port D Register

		7	6	5	4	3	2	1	0
PD	Bit symbol	PD7	PD6	/	PD4	PD3	PD2	PD1	PD0
(0029H)	Read/Write	R/	W				R/W		
	After reset	1	1		1	1	1	1	1
				Port D Fund	tion Registe	r			
		7	6	5	4	3	2	1	0
PDFC	Bit symbol	PD7F	PD6F	/	PD4F	PD3F	PD2F	PD1F	PD0F
(002AH)	Read/Write	V	V				W		
	After reset	()				0		
	Function		0: Port 1: ALARM		0: Port	0: Port	0: Port	0: Port	0: Port
		1: MLDALM	at <pd6> = 1 1: MLDALM</pd6>		1: DOFFB	1: DLEBCD	1: D3BFR	1: D2BLP	1: D1BSCP

Note: Read-modify-write is prohibited for the registers PDFC.

Figure 3.5.42 Register for Port D

3.5.16 Port E (PE0 to PE7)

Port Eisan 8-bit gener Æla-c/phubriptoosæn hoféOsphæath itl sydfior inpu output using the control register PECR. Resetting, the Port Etoinput porthsi. thstoafitshoesoeutspaulthatchregistert In addition to functionienlg/aOspacogret, peproarlt-pour a procession of u data bus for LCD controller (LDO to LD7). Above sett PEFC.

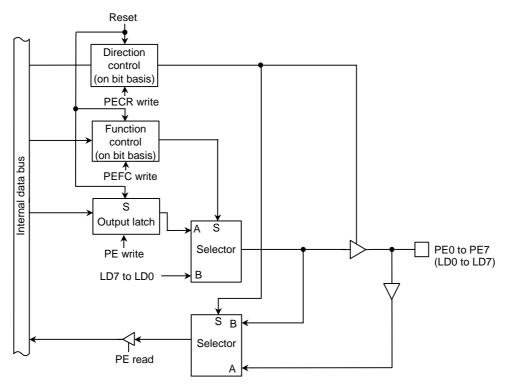


Figure 3.5.43 Port E

Port E Register

		7	6	5	4	3	2	1	0
PE	Bit symbol	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
(002CH)	Read/Write				R/	W			
	After reset		Da	ta from exter	nal port (Out	put latch reg	ister is set to	1.)	
				Port E Con	trol Register				·
		7	6	5	4	3	2	1	0
PECR	Bit symbol	PE7C	PE6C	PE5C	PE4C	PE3C	PE2C	PE1C	PE0C
(002DH)	Read/Write				V	V			
	After reset	0	0	0	0	0	0	0	0
	Function				0: Input	1: Output			
				Port E Fund	ction Registe	r			
		7	6	5	4	3	2	1	0
PEFC	Bit symbol	PE7F	PE6F	PE5F	PE4F	PE3F	PE2F	PE1F	PE0F

Note: Read-modify-write is prohibited for PECR and PEFC.

0

0

Read/Write

After reset

Function

(002EH)

Figure 3.5.44 Register for Port E

W

1: Data bus for LCDC (LD7 to LD0)

0

3.5.17 Port F (PF0 to PF7)

Port Fis an 8-bit out pu**t þe**rotut **Resetat**ichhgPsFettos1, and Pl out put 1.

In addition to functioning as output port, port Falscontroller (CSLDIC, K.ES, DLSDDOM, SDSDDOM), and output pin for (SSCLK). Abories suesteto in the function register PFFC.

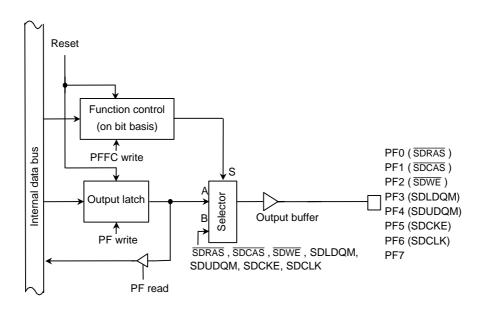


Figure 3.5.45 Port F

				Port F	Register							
		7	6	5	4	3	2	1	0			
PF	Bit symbol	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0			
(0030H)	Read/Write				R/	W						
	After reset	1	1	1	1	1	1	1	1			
				Port F Fund	tion Register	r						
		7	6	5	4	3	2	1	0			
PFFC	Bit symbol	-	PF6F	PF5F	PF4F	PF3F	PF2F	PF1F	PF0F			
(0032H)	Read/Write				V	٧						
	After reset 0 1 0 0 0 0 0 0											
	Function	Always fixed	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port			
		to "0".	1: SDCLK	1: SDCKE	1: SDUDQM	1: SDLDQM	1: SDWE	1: SDCAS	1: SDRAS			

Note: Read-modify-write is prohibited for the registers PFFC.

Figure 3.5.46 Register for Port F

3.6 Chip Select/Wait Controller

On the TMP91C82OA, specuir fuisæbol e accs dom ces special re bos set. The d bus width and the number of waits can be set i coss de possos dentland others).

The pices ocs (which can also funionts 1060atop1063) are the routput pins for the areas CSO to CS3. When the CPU specifithe corres conditions are the capital point of the corresponditions of the capital point of the cap

CS2At CCS2an CCSEXACS pine CCSCDe CDS3 are made by MMU.

These pi $\overline{\text{CS}}$ spiirs that area and BANK value is fixed without CS/WAIT controller.

The areas CSO to CS3 are defined by the values in the mMSARO to MSAR3 and the sne mmans by a reduction sters MAMRO to MAMR3.

The chi psel ect/wai t control registers BOCS to B3CS and master enable/disable status the data bus width and the Theinput pincontrolling these stawke \$ is the bus waitr

3.6.1 Specifying an Address Area

The CSO to CS3 address ausing the spear fine duress regis MSAR3) and memory add gestemas (MAMRO to MAMR3).

At each bus cycle, a compare operation is performed to specified a location in the CSO to lot CSB to line at other indicates an access to the correspons of the chip select signal aneostime about cook of a here point to the set select/wait control register BOCS to B3CS. (See 3. 6. 2)

→ Sets start addresses for areas CS0 to CS3.

(1) Memory start address registers

Figure 3. 6. 1 shows the ensemble grisst tarrets a didne memory so registers MSARO to MSAR3 essets the stance Casocotro CS3 are upper eight bits (A23 tood At ea)s of hts 28:1 a 6 a. The lower start address (A15 to AO) to are preconcernote into ly set the star only be set in 64-Kbyte increments, starting from relationship between the start address and the star

		7	6	5	4	3	2	1	0
MSAR0 /MSAR1	Bit symbol	S23	S22	S21	S20	S19	S18	S17	S16
(00C8H)/ (00CAH)	Read/Write				R/	W			
MSAR2 /MSAR3	After reset	1	1	1	1	1	1	1	1
(00CCH)/ (00CEH)	Function			Determ	nes A23 to A	A16 of start a	ddress.		
					•				

Memory Start Address Registers (for areas CS0 to CS3)

Figure 3.6.1 Memory Start Address Register

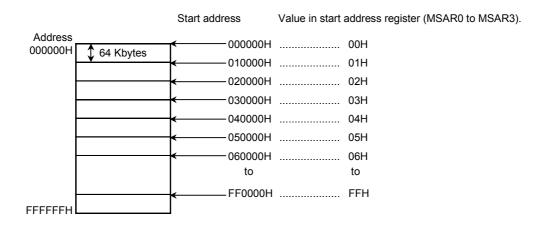


Figure 3.6.2 Relationship between Start Address and Start Address Register Value

(2) Memory address mask registers

Figure 3. 6. 3 shorwys atchder ensemonask Megnios tyearddress mare registers MAMRO to MAMRB at he sised to 6 state CSO to CS3 specifying a mask for aeratchaddirtes 6 nsobenety is shormer taddress registers MAMRO to MAMR3. The compare operation use is in the CSO to CS3 areas is only performed for bus a set to O in these registers. Also, the address bits MAMR3 differ between CSO tion QS Syartenæssi Axcectohradt can be different.

Memory Address Mask Register (for CS0 area)

		7	6	5	4	3	2	1	0
MAMR0	Bit symbol	V20	V19	V18	V17	V16	V15	V14 to V9	V8
(00C9H) Read/Write R/W									
	After reset	1	1	1	1	1	1	1	1
	Function		Se	ts size of CS	0 area	: Used for ad	Idress compa	are	

Range of possible settings for CS0 area size: 256 bytes to 2 Mbytes

Memory Address Mask Register (CS1)

		7	6	5	4	3	2	1	0				
MAMR1	Bit symbol	V21	V20	V19	V18	V17	V16	V15 to V9	V8				
(00CBH)	Read/Write		R/W										
	After reset	1	1	1	1	1	1	1	1				
	Function		Se	ets size of C	S1 area 0:	Used for add	dress compa	re					

Range of possible settings for CS1 area size: 256 bytes to 4 Mbytes.

Memory Address Mask Register (CS2, CS3)

			7	6	5	4	3	2	1	0
,	MAMR3	D. (0)	V22	V21	V20	V19	V18	V17	V16	V15
(00CDH)/ (CDH)/ (00CFH) Read/Write R/W									
		After reset	1	1	1	1	1	1	1	1
		Function		Sets s	size of CS2 o	r CS3 area	0: Used for	address cor	npare	

Range of possible settings for CS2 and CS3 area sizes: 32 Kbytes to 8 Mbytes.

Figure 3.6.3 Memory Address Mask Registers

(3) Setting mendorneys sea natholoaddress areas

Figure 3. 6. 4 shows an exaa to politise pædodinfeysisnagre a sta 010000 Husing the CSO areas.

Set O1Hin memory start address register MSARO<S2 upper 8 bits of the start address). Next, calculat address and the anticipFaFtFeGH) rhochasced of cornests h(eOsize of the Bits 20 to 8 of the result correspond to the mask vasetting this value in memoging the domain was the Setting this value in memoging the domain was the Setting this example sets ODTOHs pneWAMTRy a 64K-byte area.

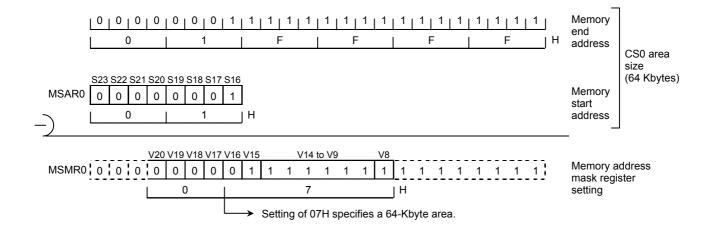


Figure 3.6.4 Example Showing How to Set the CS0 Area

After a reset, MSAROdtMAMBARDRO30aMAMR3 are set to BOCS<BOE>, B1CS<B1E> and B3CS<B3E> are reset to O. Tand CS3 areas. However, @siB2CB3CB2CB2CB2CB2CB2CD01, CS2 is from OOOFEOH to OOOFFFHFaFrFcFGGG3D0rOFMtPo91C82OA. Also width and number of waBEXCSpecce fuiseed if from accessing outside the specified CSG12 CSBiapr Seal.net CSte/EWReigtister

(4) Addreszseasrpæacisification

Table 3. 6. 1 shows the relationship betiwed in Casters are as that cannot be sed doryenses moor gyids diagets as a modes k regis combinations. When setting an area size \u00fcus is neglet be m start address mask register in the desired steps start for the CS2 area is set to 16 Mby tes or if two or more area number has the higher priority.

Example: To set the area size for CSO to 128 Kbytes:

a. Validstart addresses

b. Invalidstart addresses

000000H)	64 Kbytes	
010000H	5	128 Kbytes	This is not an integer multiple of the desired area size setting.
030000H	5	128 Kbytes	Hence, none of these addresses can be set as the start address.
050000H	¥	· .	,

Table 3.6.1 Valid Area Sizes for Each CS Area

Size (bytes) CS area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	0	0	0	Δ	Δ	Δ	Δ	Δ		
CS1	0	0		0	Δ	Δ	Δ	Δ	Δ	Δ	
CS2			0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ
CS3			0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ

Note: "Δ" indicates areas that cannot be set by memory start address register and address mask register combinations.

3.6.2 Chip Select/Wait Control Registers

Fi gure 3. 6. 5 lists the chi pselect/wait control regi The master enable/disable, chi pselect output wavef wait states for each address area (CSO to CS3 and othe select/wait control registers, BOCS to B3CS and BEXCS

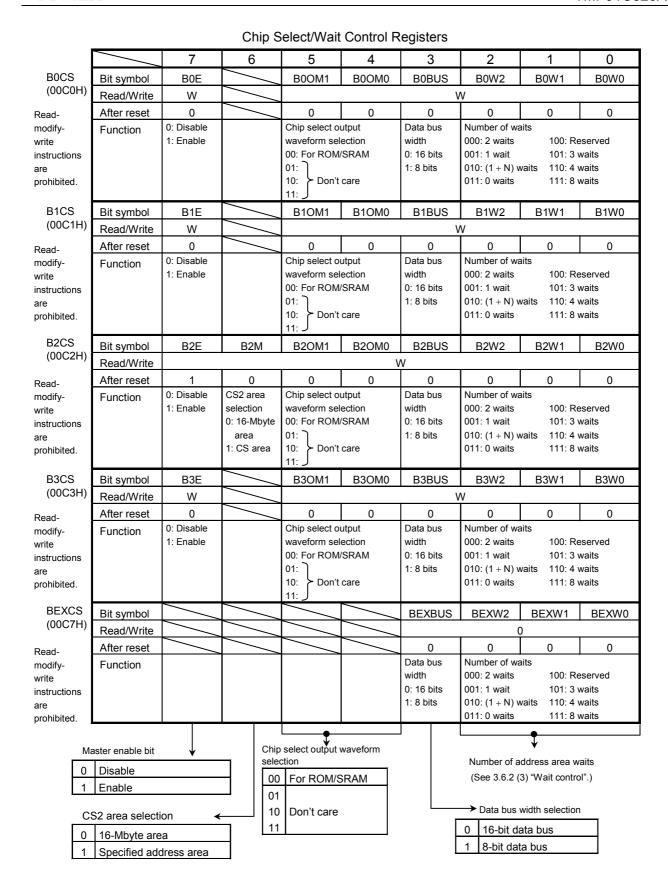


Figure 3.6.5 Chip Select/Wait Control Registers

(1) Master enable bits

Bit 7 (<BOE>, <B1E>, <B2E> or <B3E>) of a chi p selection master bit, which is used to enable or disable setting area. Writing 1 to this bit enables the settings. I <B1E> and <B3E>, and enabled (Sets to 1) <B2E>. This

(2) Databus width selection

Bit 3 (<BOBUS>, <B1BUS>B3BUBS2BUbSr>,<BEXBUS>) of a select/waitcontrolesetonieswtiechtsnpoefcthe databus. Thi Owhen memory is to be accessed using a 16-bit datab bus is to be used.

This process of changid thou at the contraction loguts ow tihe address lisk nown as dynamic bus sizing. For details of this b

Table 3.6.2 Dynamic Bus Sizing

_		Table 3.6.2 Dynamic Bus Sizing														
	SRWR		_													
cle	SRUB		E	Н	_	н	٦	Н	٦	I	I	٦	н	7	_	Н
Control for WRITE Cycle	SRLB	-	_	Γ	I	٦	Γ	Γ	Н	Γ	Γ	Γ		Н	_	Γ
for WR	HWR	-	I.	Н	7	Н	Г	Н	L	Н	I	٦	т	Γ	Г	Н
ontrol	WR	т				Γ	٦	٦	н	Γ	7	٦		н	_	٦
0	R	±														
	RW								_							
	SRWR								I							
/cle	SRUB	=	<u> </u>	I	_	I	٦	н	٦	ェ	I	٦	Ι	٦	_	ェ
Contorol for READ Cycle	SRLB	-	_	Γ	I	Γ	Γ	Γ	Н	Γ	٦	Γ		Н	_	٦
l for RE	HWR								I							
ontoro	WR								I							
O	RD								_							
	R/W								I							
Data	D7 to D0	b7 to b0	b7 to b0	b7 to b0	×	b7 to b0 b15 to b8	b7 to b0	b7 to b0 b15 to b8	XXXX	b15 to b8	b7 to b0 b15 to b8 b23 to b16 b31 to b24	b7 to b0 b23 to b16	b7 to b0 b15 to b8 b23 to b16 b31 to b24	XXXX	b15 to b8	b31 to b24
CPU Data	D15 to D8	XXXX	XXX	XXXX	b7 to b0	XXXX	b15 to b8	XXXX	b7 to b0	XXXX	×××× ×××××	b15 to b8 b31 to b24	× × × × × × × × × × × × × × × × × × ×	b7 to b0	b23 to b16	XXXX
CPU	Address	2n + 0	2n + 0	2n + 1	2n + 1	2n + 0 2n + 1	2n + 0	2n + 1 2n + 2	2n + 1	2n + 2	2n + 0 2n + 1 2n + 2 2n + 3	2n + 0 2n + 2	2n + 1 2n + 2 2n + 3 2n + 4	2n + 1	2n + 2	2n + 4
Memory		8 bits	16 bits	8 bits	16 bits	8 bits	16 bits	8 bits	7.5 bits	SIIG OI	8 bits	16 bits	8 bits	16 bits		
Operand	Address	2n + 0 (Even number) 2n + 1 (Odd number)			2n + 0 (Even	2n + 0 (Even number) 2n + 1 (Odd number) 2n + 0 (Even number)						2n + 1 (Odd	number)			
Operand Data	Bus Width	8 bits 16 bits 32 bits														

xxxx: Indicates that the input data from these bits are ignored during a read. During a write, indicates that the bus for these bits goes to high impedance; also, that the write strobe signal for the bus remains inactive.

(3) Wait control

BitsOto2(<BOWO: 2>, <2B1,W@B2WO:<2B2,W@BEXWO: 2>) of select/wait control register specify the number of corresponding memory area is accessed.

The following types of wait operation can be speci other than those listed in the table should not be ma

<bxw2:0></bxw2:0>	Number of Waits	Wait Operation
000	2 waits	Inserts a wait of 2 states, irrespective of the WAIT pin state.
001	1 wait	Inserts a wait of 1 state, irrespective of the WAIT pin state.
010	(1 + N) waits	Samples the state of the $\overline{\text{WAIT}}$ pin after inserting a wait of one state. If the $\overline{\text{WAIT}}$ pin is low, the waits continue and the bus cycle is extended until the pin goes high.
011	0 waits	Ends the bus cycle without a wait, regardless of the WAIT pin state.
100	Reserved	Invalid setting
101	3 waits	Inserts a wait of 3 states, irrespective of the WAIT pin state.
110	4 waits	Inserts a wait of 4 states, irrespective of the WAIT pin state.
111	8 waits	Inserts a wait of 8 states, irrespective of the WAIT pin state.

Table 3.6.3 Wait Operation Settings

Areset sets these bits to OOO (2 waits).

- (4) Bus width and wait control for an area other than C The chipselect/wait x6stroomltregstherbus width an waits when memory locations, which are not in one of areas (CSOtoCS3), are accessed. The BEXCS registe areas other than CSOtoCS3.
- (5) Selecting 16-Mbyte area/specified address area Setting B2CS<B2M> (Bit6 of the chip select/wait designates there & (MDxOyOTFEEOH to OOOFFFH, OO3OOOH to FCS2 area. Setting B2CS<B2M> to 1 designates the add address register MSAR2mans & the egiasd to be re & MAR2 as CS2 B2CS<B2MI> CS2 is specified in the same manner as CSC Areset clears this bit to O, specifying CS2 as 16-M
- (6) Procedure hop settect ywait control

When using the chip select/wait control function order:

- a. Set the memoreys sstrærgti as dider s MSARO to MSAR3. Set the start addresses for CSO to CS3.
- b. Set the memorys kaddengėsstenas MAMRO to MAMR3. Set the sizes of CSO to CS3.

The CSO to S3 pins can also function as pins P6O to signal using one of these pins, set the corresporegister (P6FC) to 1.

If a CSO to S3 address is specified which is actuarea address, the CPU accesses the internal address output on a soutput o

Example:

In this example CSO is seath to a load to be completed by the FFH. The busto 16 bits and the number of waits is set to 0.

MSAR 4001 H..... Start address: 010000 H
MAMR 4007 H.... Address area: 64 Kbytes
BOC 583 H.... ROM/ SMRAN, 16 Skojatre at the sattest of the

3.6.3 Connecting External Memory

Figure 3. 6. 6 shows an exmampt exoferrowat omeomory to the T In this example the ROM is connected using a 16-bit connected using an 8-bit bus.

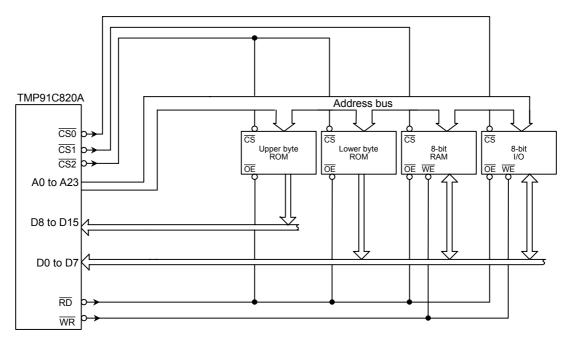


Figure 3.6.6 Example of External Memory Connection (ROM uses 16-bit bus; RAM and I/O use 8-bit bus.)

Are set clears all bits opifst theorp (of Pr & CoR): commod to the report 6 fu (P6FC) to O and disables output of the CS signal. To ou bit must be set to 1.

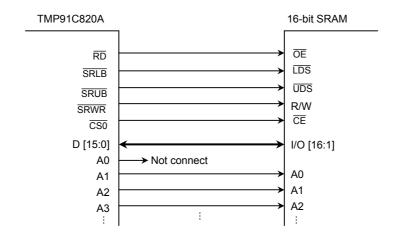


Figure 3.6.7 How to Connect to 16-Bit SRAM for TMP91C820A

3.7 8-Bit Timers (TMRA)

The TMP91C82OA features 4 built-in 8-bittimers.

These timers are paired into four modules: TMRAO1 and I two channels and can operate in any of the following four

- 8-bitinterval timer mode
- 16-bitinterval timer mode
- 8-bit programmable squarte owna voeu to poults en og de en é P&P G: Var cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Var period)

Figure 3. 7. 1 and 18.d7.a2gs a to 18.d7 and TMRA23.

Each channel consists of & Bibic to unpacroautnotre and ann 8-bit Inaddition, a timer flriprélporposand each pair of cha The operation mode and time rédib profil voeposoanter cobsits registers).

Each of the two modules (TMRAO1 and TMRA23) can be opera operate in the same manner; hence only the operation of The contents of this chapter are as follows.

- 3.7.1 Block Diagrams
- 3.7.2 Operation of Each Circuit
- 3. 7. 3 SFRs
- 3.7.4 Operationin Each Mode
 - (1) 8-bittimer mode
 - (2) 16-bittimer mode
 - (3) 8-bit PPG (Programmable pulse generation) ou
 - (4) 8-bit PWM (Pulse width modulation) output mo-
 - (5) Settings for each mode
 - (6) LCDC and MELODY/ALARM circuit supply mode

Table 3.7.1 Registers and Pins for Each Module

	Module	TMRA01	TMRA23		
External	Input pin for external clock	TA0IN (Shared with PB0)	No		
pin	Output pin for timer flip-flop	TA1OUT (Shared with PB1)	TA3OUT (Shared with PB5)		
	Timer run register	TA01RUN (0100H)	TA23RUN (0108H)		
SFR (Address)	Timer register	TA0REG (0102H) TA1REG (0103H)	TA2REG (010AH) TA3REG (010BH)		
	Timer mode register	TA01MOD (0104H)	TA23MOD (010CH)		
	Timer flip-flop control register	TA1FFCR (0105H)	TA3FFCR (010DH)		

3.7.1 Block Diagrams

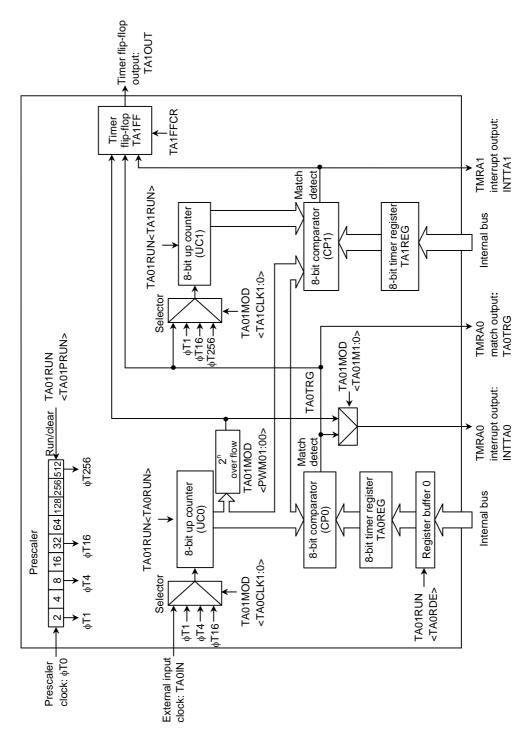


Figure 3.7.1 TMRA01 Block Diagram



Figure 3.7.2 TMRA23 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescaler

A 9-bit prescaltene genpentactlessck to TMRAO1.

The clooks divided by 4 and in population to the biese of properties of and is selected using the prescaler clock selected.

The prescal er operation can be control led using TA control register. Setting <TAOPRUN> to 1 starts the clears the prescal er to O and stops operation. Tabloutput clock resolutions.

Table 3.7.2 Prescaler Output Clock Resolution

at fc = 16 MHz, fs = 32.768 kHz

System	Prescaler Clock		Prescaler Output Clock Resolution									
Clock Selection <sysck></sysck>	Selection <prck1:0></prck1:0>	Gear Value <gear2:0></gear2:0>	φΤ1	φΤ4	φT16	φТ256						
1 (fs)		XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 μs)	fs/2 ¹¹ (62.5 μs)						
		000 (fc)	$fc/2^3$ (0.5 µs)	$fc/2^5$ (2.0 µs)	fc/2 ⁷ (8.0 μs)	fc/2 ¹¹ (128 μs)						
	00	001 (fc/2)	$fc/2^4$ (1.0 µs)	$fc/2^6$ (4.0 µs)	fc/2 ⁸ (16 μs)	fc/2 ¹² (256 μs)						
	(f _{FPH})	010 (fc/4)	$fc/2^5$ (2.0 µs)	$fc/2^7$ (8.0 µs)	fc/2 ⁹ (32 μs)	fc/2 ¹³ (512 μs)						
0 (fc)		011 (fc/8)	$fc/2^6$ (4.0 µs)	fc/2 ⁸ (16 μs)	fc/2 ¹⁰ (64 μs)	fc/2 ¹⁴ (1024 μs)						
		100 (fc/16)	$fc/2^7$ (8.0 µs)	fc/2 ⁹ (32 μs)	fc/2 ¹¹ (128 μs)	fc/2 ¹⁵ (2048 μs)						
	10 (fc/16 CLOCK)	xxx	fc/2 ⁷ (8.0 μs)	fc/2 ⁹ (32 μs)	fc/2 ¹¹ (128 μs)	fc/2 ¹⁵ (2048 μs)						

xxx: Don't care

(2) Upcounters (UCO and UC1)

These are 8-bit binary counters which count up the specified by TAO1MOD.

The input clock for UCO in so seeliet on tear by the earn with cear nal clothe TAOIN pinor one of the off high teach in the clook set to specified by the value set in TAO1MOD<TAO1CLK1: O>.

The input clock for UC1 depends on the operation moverflow output from UCO is used as the input clock timer mode, the input clock is selectable and can elept ϕ T1 ϕ T16 ϕ F256, or the comparheet matoculat pleate (cTtion sign TMRAO.

For each interval timentitohne ctoinmiterrolopreergister bi <TAORUN> and TAO1RUN<TA1RUN> can be used to stop an and to control their clood that up A croeus nettecrise, as to opping the

(3) Timerregisters (TAOREGand TA1REG)

These are 8-bit registers, which can be used to set set in the timer register TAOREG or TA1REG matches t up counter, the comparat gioens to chi dive e of singer values e register is OOH, the signal goes active when the up of the TAOREG are double buffer structure.

The TAOREG are double buffer structure, each of wh buffer.

The setting of the bit TAO1RUN<TAORDE> determines buffer structure is enabled or disa±00 end details locidsian <TAORDE1>

When the double buffer is enabled, data is transfer timer registment when aw 20 ccurs in PWM mode, or at the s in PPG mode. Hence the double buffer cannot be used in

A reset initializes <TAORDE> to O, disabling the obuffer, write data to tthe TtAORED Exetopi 1s, team, d sweite the data to the register buffer. Figure 3. 7. 3 shows the

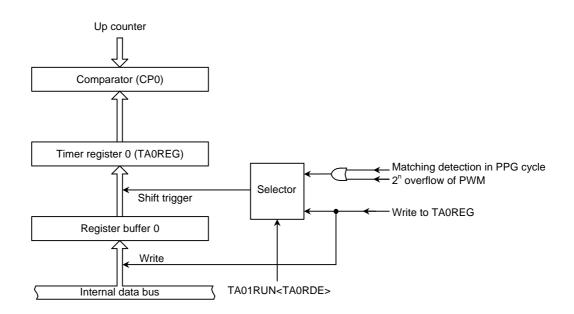


Figure 3.7.3 Configuration of TA0REG

Note: The same memory address is allocated to the timer register and the register buffer. When <TA0RDE> = 0, the same value is written to the register buffer and the timer register; when <TA0RDE> = 1, only the register buffer is written to.

The address of each timer register is as follows.

TAOREG: 000102H TA1REG: 000103H TA2REG: 00010AH TA3REG: 00010BH

All these registers are write only and cannot be re

(4) Comparator (CPO)

The comparator compares the value in an up counter register. If they matched the dup oc O and earnish terrupts or INTTA1) is generated. If timer flip-flop inversinverted at the same time.

(5) Timerflip-flop(TA1FF)


The timer flip-flop (TA1FF) is a flip-flop inverte comparator output) of each interval timer.

Whether inversion is enabled or disabled is determA1FFCR<TA1FFIE> in the timer flip-flops control rTA1FF to O. Writing O1 or 11DFtCo1TAODFSFECTR<TA1FF to Oor OO to these bits inverts the value of TA1FF. (This is

The TA1FF signal is output via the TA1OUT pin. When output, the timer flip-rfelhoapnsolhuosuil rodgiotechseeptokretfBofunc PBCR, PBFC.

3.7.3 SFRs

TMRA01 Run Register

I2TA01: Operation in IDLE2 mode

TA01PRUN: Run prescaler TA1RUN: Run timer 1 TA0RUN: Run timer 0

Note: The values of bits 4 to 6 of TA01RUN are undefined when read.

TMRA23 Run Register

		7	6	5	4	3	2	1	0
TA23RUN	Bit symbol	TA2RDE				I2TA23	TA23PRUN	TA3RUN	TA2RUN
(0108H)	Read/Write	R/W				R/W			
	After reset	0				0	0	0	0
	Function	Double				IDLE2	8-bit timer r	un/stop con	trol
		buffer				0: Stop	0: Stop and	clear	
		0: Disable				1: Operate	1: Run (Cou	ınt up)	
		1: Enable							
		↓ TA2REG do	uble buffer co	ontrol				→ Timer ru	n/stop control
		0 Disa	able					0	Stop and clear
		1 Ena	ble					1	Run (Count up)

I2TA23: Operation in IDLE2 mode

TA23PRUN: Run prescaler
TA3RUN: Run timer 3
TA2RUN: Run timer 2

Note: The values of bits 4 to 6 of TA23RUN are undefined when read.

Figure 3.7.4 Register for TMRA

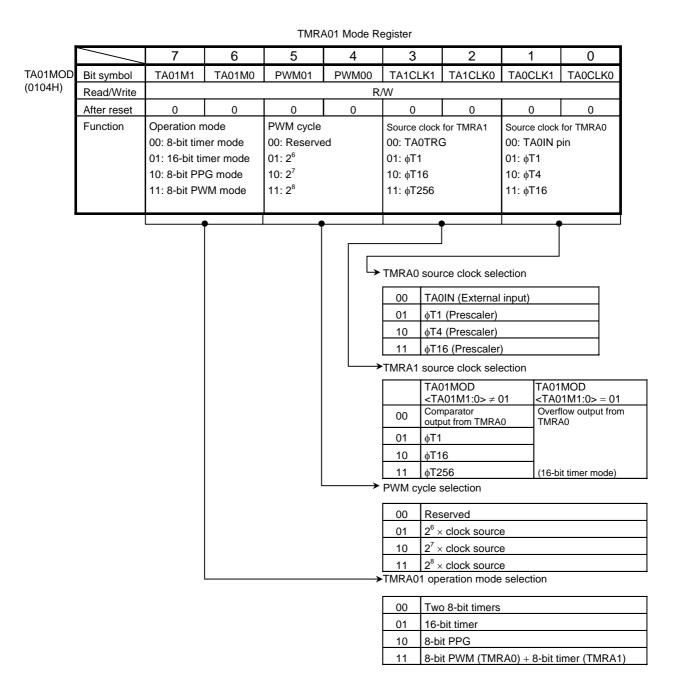


Figure 3.7.5 Register for TMRA



Figure 3.7.6 Register for TMRA

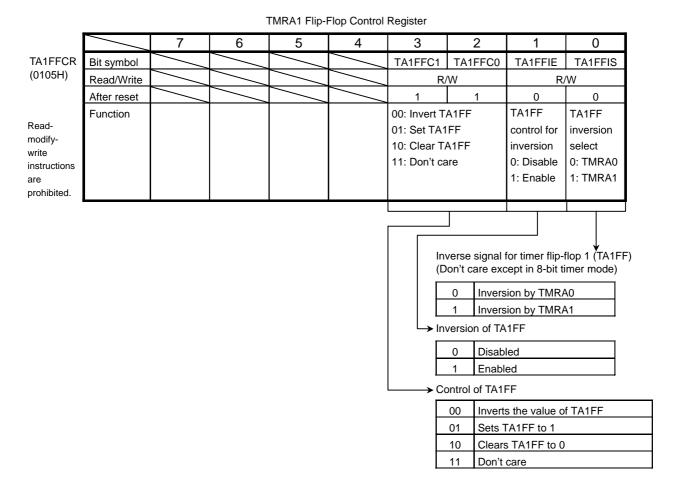


Figure 3.7.7 Register for TMRA

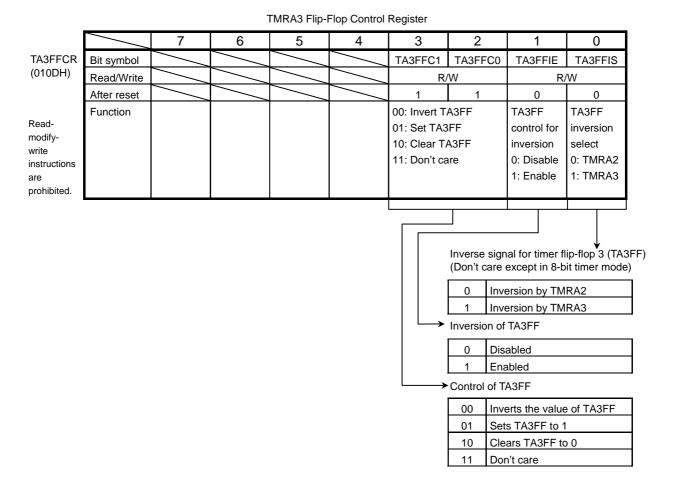


Figure 3.7.8 Register for TMRA

3.7.4 Operation in Each Mode

(1) 8-bittimer mode

Both TMRAO and TMRA1 can be used independently as 8

a. Generating interrupts at a fixed interval (Using Togenerate interval) (Using

Example: To generate an INTTA1 interrupt every 20 μs at fc = 16 MHz, set each register as follows:

* Clock state

System clock: High frequency (fc)

Prescaler clock:f_{FPH}

	MSB					LSI	3		
_	7	6	5	4	3	2	1	0	
TA01RUN	← -	_	Χ	Χ	_	-	0	-	Stop TMRA1 and clear it to 0.
TA01MOD	← 0	0	Χ	Χ	1	0	-	-	Select 8-bit timer mode and select $\phi T1$ (0.5 μs at fc = 16 MHz) as the input clock.
TA1REG	← 0	0	1	0	1	0	0	0	Set TA1REG to 20 μ s ÷ ϕ T1 = 40 = 28H.
INTETA01		1	0	1	-	-	-	-	Enable INTTA1 and set it to level 5.
TA01RUN	← -	Χ	Χ	Χ	-	1	1	-	Start TMRA1 counting.

X: Don't care, -: No change

Select the input clock using Table 3.7.2.

Note: The input clocks for TMRA0 and TMRA1 are different from as follows.

TMRA0: TA0IN input, ϕ T1, ϕ T4 or ϕ T16.

TMRA1: Match output of TMRA0, ϕ T1, ϕ T16, ϕ T256.

b. Generating a 50% duty ratio square wave pulse The state of the timer flip-flop (TA1FF) is investatus output via the timer output pin (TA1OUT).

Example: To output a $3.0 \mu s$ square wave pulse from the TA1OUT pin at fc = $16 \mu s$, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

* Clock state System clock: High frequency (fc) 1 (fc) Clock gear: Prescaler clock: fFPH TA01RUN Stop TMRA1 and clear it to 0. TA01MOD Select 8-bit timer mode and select $\phi T1$ (0.5 μs at fc = 16 MHz) as the input clock. TA1REG 0 0 0 Set the timer register to 3.0 μ s ÷ ϕ T1 ÷ 2 = 3. TA1FFCR Clear TA1FF to 0 and set it to invert on the match detects signal from TMRA1. **PBCR** Set PB1 to function as the TA1OUT pin. **PBFC** TA01RUN Start TMRA1 counting. X X

X: Don't care, -: No change

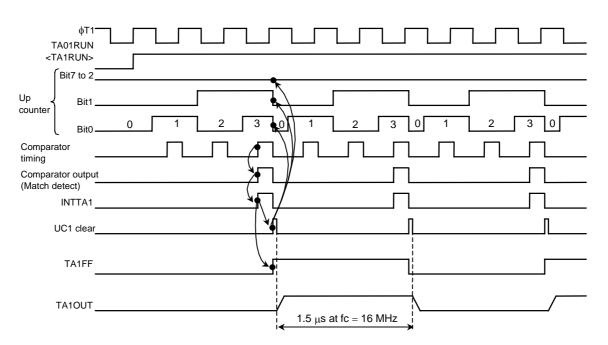


Figure 3.7.9 Square Wave Output Timing Chart (50% duty)

c. Making TMRA1 count up on the match signal from the Select 8-bit to the sert in the decomparator output from Tinput clock to TMRA1.

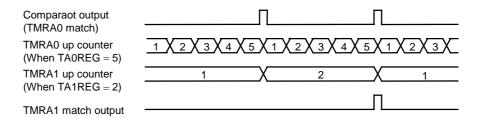


Figure 3.7.10 TMRA1 Count Up on Signal from TMRA0

(2) 16-bittimer mode

Pairing the two 8-bit timers TMRAO and TMRA1 configurations and 16-bit interval timer in which TMRAO and The set TAO1 MOD < TAO1 M1: O > to O1.

In 16-bit timer mode, the overflow output from TMR/ TMRA1, regardless of the value set in TAO1MOD<TAO1 the relationship between the timer (Interrupt) cyc

Setting example: To generate an INTTA1 interrupt every 0.5 s at fc = 16 MHz, set the timer registers TA0REG and TA1REG as follows:

* Clock state System clock: High frequency (fc)

Clock gear: 1 (fc)
Prescaler clock: f_{FPH}

I fT 16 (µ8s. 40t 16 MHz) is used as the input clock for coval ue in the regi8s µ50e r652:5 ©10 \$4524H; e.g. set TA1REG to ITAOREG to 24H.

The comparator match si gnal is output from TMRAO e matches TAOREG, though the up counter UCO is not be constant.

In the case of the TMRA1 comparator, the match det comparator pulse on which the values in the up cour When the match detect signal is output simul taneo TMRAO and TMRA1, the up counters UCO and UC1 are clear NTTA1 is generated. Also, if inversion is enabled TA1FF is inverted.

Example: When=TO441-RaErGdTA @ 8006

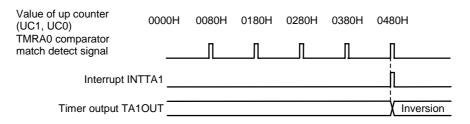


Figure 3.7.11 Timer Output by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable pulse generation) output Square wave pulses campby generately and duty ration. The output pulses may be active-low or active-high used.

TMRAO out puts pulses on the TA10UT pin.

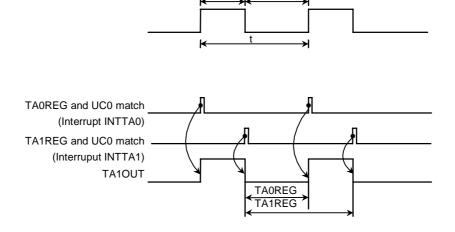


Figure 3.7.12 8-Bit PPG Output Waveforms

In this mode a programmable square wave is general output each time the 8-bit up counter (UCO) matche registers TAOREG or TA1REG.

The value set in TAOREG must be smaller than the valual though the up counter C1f) or sTMRA: 1 u set in this TAO1RUN < TA1RUN > should be set to 1 so that UC1 is set Figure 3. 7. 13 shows a block diagram representing to

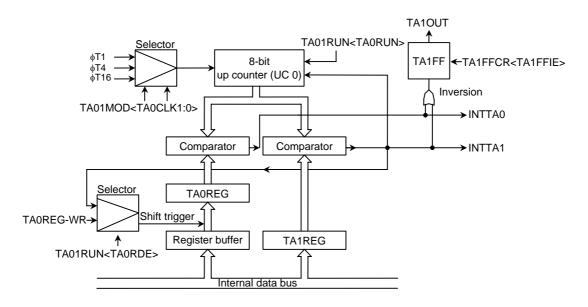


Figure 3.7.13 Block Diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode will be shifted into TAOREG each time TA1REG matches Use of the double buffer facilitates the handling varied).

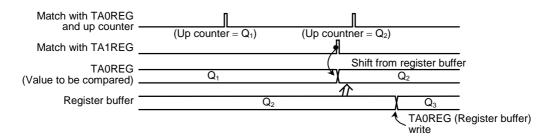


Figure 3.7.14 Operation of Register Buffer

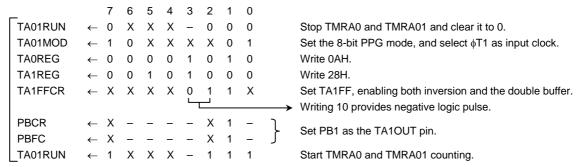
Example: To generate 1/4 duty 50 kHz pulses (at fc = 16 MHz):

* Clock state

System clock: High frequency (fc)

Clock gear: 1 (fc)
Prescaler clock: f_{FPH}

Cal cul ate the value, which should be set in the time To obtain a frequency of 50 kHz, t+11e/p5のks型物sycletshopT+0. 原 (at 16 MHz);


2Qs÷ O. μ**5**= 40

Therefore set TA1REG to 40 (28H)

The duty is to be \$ 16-42 10, 6 x 11 // 415 μ\$

5μs÷ Ο. μ**s**= 1 Ο

Therefore, se1t⊕TOAAOHREG

X: Don't care, -: No change

(4) 8-bit PWM (Pulse width modulation) output mode
This mode is only valid for TMRAO. In this mode, a P
resolution of 8 bits can be output.

When TMRAOis used the PWM pulse is output on the TA1 be used as an 8-bit timer.

The timer output is inverted when the upcounter (United timer register TAORECOnctrewhoene2f + 6,000 occurs sesson). The upcountercolocon test concerned occurs.

The following conditions must be satisfied before

Value set in TAOREG < "Value se to ver f2 ow

Value set in #TDAOREG

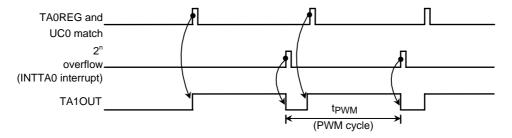


Figure 3.7.15 8-Bit PWM Waveforms

Figure 3. 7. 16 shows a block diagram representing t

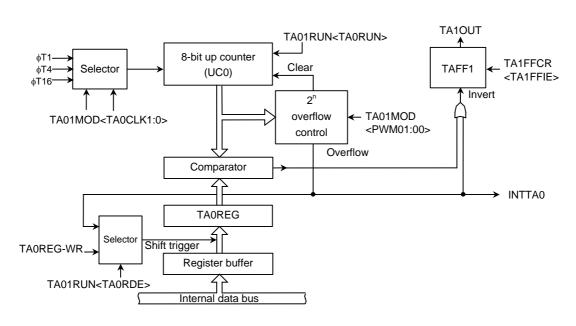


Figure 3.7.16 Block Diagram of 8-Bit PWM Mode

In this mode the value of the register buffer will overflow is detected when the TAOREG double buffer Use of the double buffer idacing iotal to was a tunt year in was a solution of the double buffer in the contraction of the double buffer in the contraction of the double buffer in the contraction of the contraction

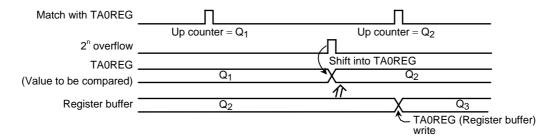


Figure 3.7.17 Register Buffer Operation

Example: To output the following PWM waves on the TA1OUT pin at fc = 16 MHz:

```
* Clock state

System clock: High frequency (fc)
Clock gear: 1 (fc)
Prescaler clock: f<sub>FPH</sub>
```

To a chi e v pesa P 6 M 4 M cO y cl e b y T slettot p 13 n (5 a \ 1 f 6 c M H z) :

64.µ\$ 0. µ\$=1282

Therefore n should be set to 7.

Since the low-leves | wpheer Ti = 000 | iss 37. O set the following value for TAOREG:

37.μ\$ O. μ\$ = 744AH

```
MSB
                        5
                    6
                               3
                                   2
TA01RUN
                        Х
                                                     Stop TMRA0 and clear it to 0.
TA01MOD
                                                     Select 8-bit PWM mode (cycle: 2<sup>7</sup>) and select φT1 as the
                                                     input clock.
TA0REG
                   1
                       0 0 1 0 1 0
                                                     Write 4AH.
TA1FFCR
                                                     Clear TA1FF to 0; enable the inversion and double buffer.
PBCR
                                                     Set PB1 and the TA1OUT pin.
PBFC
TA01RUN
             \leftarrow 1 X X X -
                                                     Start TMRA0 counting.
```

X: Don't care, -: No change

Table 3.7.3 PWM Cycle

at fc = 16 MHz, fs = 32.768 kHz

Select System	Select			PWM cycle									
Clock	Prescaler	Gear Value <gear2:0></gear2:0>		2^6		2 ⁷			2 ⁸				
<sysck></sysck>	Clock <prck1:0></prck1:0>	<gear2:0></gear2:0>	φT1	φT4	φT16	φT1	φT4	φT16	φT1	φT4	φT16		
1 (fs)		XXX	15.6 ms	62.5 ms	250 ms	31.3 ms	125 ms	500 ms	62.5 ms	250 ms	1000 ms		
		000 (fc)	32.0 μs	128 μs	512 μs	64.0 μs	256 μs	1024 μs	128 μs	512 μs	2048 μs		
	00	001 (fc/2)	64.0 μs	256 μs	1024 μs	128 μs	512 μs	2048 μs	256 μs	1024 μs	4096 μs		
	(f _{FPH})	010 (fc/4)	128 μs	512 μs	2048 μs	256 μs	1024 μs	4096 μs	512 μs	2048 μs	8192 μs		
0 (fc)		011 (fc/8)	256 μs	1024 μs	4096 μs	512 μs	2048 μs	8192 μs	1024 μs	4096 μs	16.384 ms		
		100 (fc/16)	512 μs	2048 μs	8192 μs	1024 μs	4096 μs	16.384 ms	2048 μs	8192 μs	32.768 ms		
	10 (fc/16 clock)	xxx	512 μs	2048 μs	8192 μs	1024 μs	4096 μs	16.384 ms	2048 μs	8192 μs	32.768 ms		

XXX: Don't care

(5) Settings for each mode

Table 3. 7. 4 shows he SFR settings for each mode.

Table 3.7.4 Timer Mode Setting Registers

Register Name		TA01	MOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	TA1FFIS
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00	-	Lower timer match \$\phi\$T1, \$\phi\$T16, \$\phi\$T256 (00, 01, 10, 11)	External clock φT1, φT4, φT16 (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01	-	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit PPG × 1 channel	10	-	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit timer × 1 channel	11	-	φT1, φT16, φT256 (01, 10, 11)	-	Output disabled

^{-:} Don't care

(6) LCDC and MELODY/ALARM circuit supply mode This function can operate only TMRA3. It can use source clock TA3 clock generated by TMRA3. And keep

OPERATE

- 1. Clock genelate by timer 3
- 2. Clock supply sta=1to(r<√TAASLMEDDE»
- 3. Needsetuptime
- 4. LCDC or MELODY/ALARM start to operate

STOP

- 1. LCDC or MELODY/ALARMstop to operate
- 2. Clock supply cut ⊕ for for (< TA3M € O)E >

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT	TA3LCDE	AHOLD	TA3MLDE	HRESENA	EXTIN	DRVOSCH	DRVOSCL
(00E3H)	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	1	1
	Function	Protect flag	LCDC	Address	Melody/alarm	HRESET	1: External	fc oscillator	fs oscillator
		0: OFF	source clock	hold	source clock	0: Disable	clock	driver ability	driver ability
		1: ON	0: 32 kHz	0: Normal	0: 32 kHz	1: Enable		1: Normal	1: Normal
			1: TA3OUT	1. Enable	1: TA3OUT			0: Weak	0. Weak

3.8 External Memory Extension Function (MMU)

This is MMU function which can expand program/data are area.

Address pins to external nothecom/ adylaerses 20 eux tpeins (EA24, Eextended chip (SSE) Ateo (ES) (Ateo (ES) (EX) Ain addition to 24 address b A23) which are common specification of TLC (SS) (B) (CO) (B) amily output from CS/WAIT controller.

The feature and the recommendation setting method of the land of t

Purpose	Item	For Many Kinds Class Extended Memory		
	Maximum memory size	2 Mbytes: COMMON2 + 14 Mbytes: BANK (16 Mbytes × 1 pcs)		
Program ROM	Used local area, BANK number	LOCAL2 (AH = C0 – DF: 2 Mbytes × 7 BANK)		
Piograffi ROW	Setting CS/WAIT	Setup AH = 80 – FF to CS2		
	Used $\overline{\text{CS}}$ pin	CS2A		
	Maximum memory size	96 Mbytes (16 Mbytes × 6 pcs)		
Data ROM	Used local area, BANK number	LOCAL3 (AH = 80 – BF: 4 Mbytes × 24 BANK)		
Data KOW	Setting CS/WAIT	Setup AH = 80 – FF to CS2		
	Used CS pins	$\overline{\text{CS2B}}$, $\overline{\text{CS2C}}$, $\overline{\text{CS2D}}$, $\overline{\text{CS2E}}$, $\overline{\text{CS2F}}$, $\overline{\text{CS2G}}$		
	Maximum memory size	2 Mbytes: COMMON1 + 14 Mbytes: BANK (16 Mbytes × 1 pcs)		
Data SDRAM*	Used local area, BANK number	LOCAL1 (AH = $40 - 5F$: 2 Mbytes × 7 BANK)		
Dala SDRAINI*	Setting CS/WAIT	Setup AH = 40 – 7F to CS1		
	Used CS pin	CS 1		
	Maximum memory size	1 Mbyte: COMMON0 + 7 Mbytes: BANK (8 Mbytes × 1pcs)		
Data RAM	Used local area, BANK number	LOCAL0 (AH = 10 – 1F: 1 Mbyte × 7 BANK)		
Dala KAM	Setting CS/WAIT	Setup AH = 00 – 1F to CS3		
	Used CS pin	CS3		
	Maximum memory size	1 Mbyte (1 Mbyte × 1 pcs)		
Extended memory 1	Used local area, BANK number	None		
Extended memory 1	Setting CS/WAIT	Setup AH = 20 – 2F to CS0		
	Used CS pin	CS0		
	Maximum memory size	256 Kbytes (256 Kbytes × 1 pcs)		
Extended memory 2	Used local area, BANK number	None		
Extended memory 2	Setting CS/WAIT	Setup AH = $30 - 3F$ to \overline{CSEX}		
	Used $\overline{\text{CS}}$ pin	CSEXA		
	Maximum memory size	256 Kbytes (64 Kbytes × 4 pcs)		
Extended memory 3	Used local area, BANK number	None		
(Direct address assigned built-in type LCD driver)	Setting CS/WAIT	Setup AH = 30 – 3F to CSEX		
	Used CS pin	D1BSCP, D2BLP, D3BFR, DLEBCD		
	Maximum memory size	512 Kbytes		
Extended manage 4	Used local area, BANK number	None		
Extended memory 4	Setting CS/WAIT	Setup AH = 30 − 3F to CSEX		
	Used CS pin	None		

Note: SDRAM must be mapped in LOCAL1 area. It can't use other area.

3.8.1 Recommendable Memory Map

The recommendation logicaddress memory map at the ticorrespondence is shown a plfy sgiuce 13. asddn.e. As sdn,ap is shown 3.8.2.

However, when memory area is less than 16 Mbytes and is section of CS/WAIT contreoglilsetre. r Stent Mill Muhigs not necessar Since it is being for ead, ot hat addees annot be changed. When SDRAM is used, must locate to LOCAL 1 area.

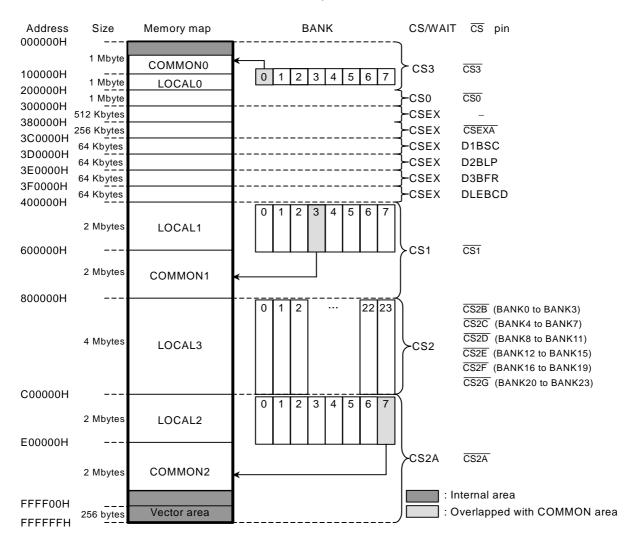


Figure 3.8.1 Logical Address Map

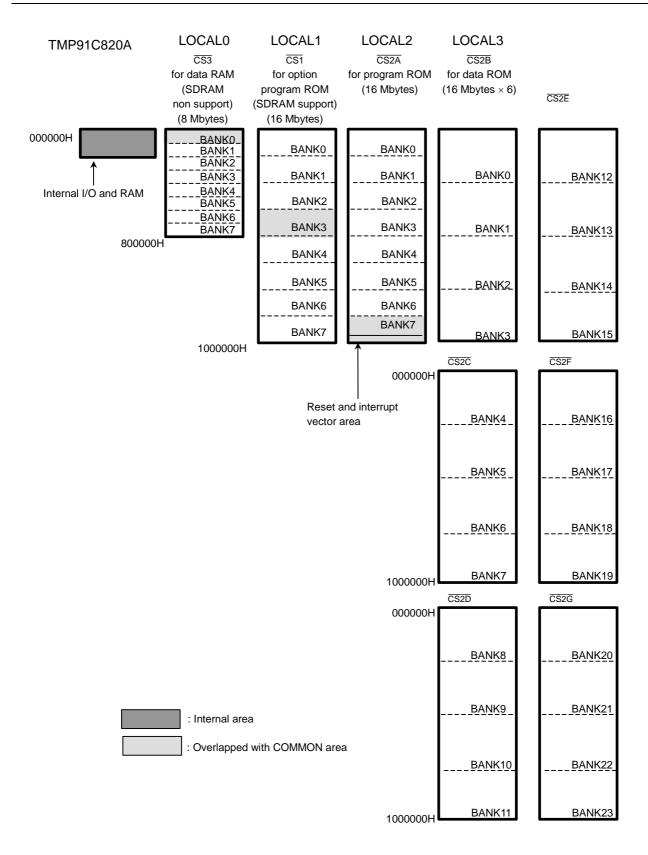


Figure 3.8.2 Physical Address Map

3.8.2 Block Diagram

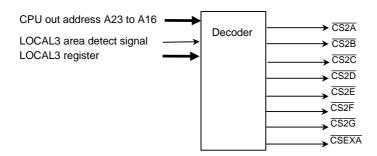


Figure 3.8.3 Block Diagram of MMU

3.8.3 **Control Registers**

for LOCAL1 0: Not use 1: Use

LOCAL0 Register

		7	6	5	4	3	2	1	0
LOCAL0	Bit symbol	LOE					L0EA22	L0EA21	L0EA20
(0350H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	Use BANK					Setting BAI	NK number fo	or LOCAL0
		for							
		LOCAL0							
		0: Not use							
		1: Use							
				LOCA	AL1 Register				
		7	6	5	4	3	2	1	0
LOCAL1	Bit symbol	L1E					L1EA23	L1EA22	L1EA21
(0351H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	Use BANK					Setting BAI	NK number fo	or LOCAL1

LOCAL2 Register

		7	6	5	4	3	2	1	0
LOCAL2	Bit symbol	L2E					L2EA23	L2EA22	L2EA21
(0352H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	Use BANK					Setting BAI	NK number f	or LOCAL2
		for							
		LOCAL2							
		0: Disable							
		1: Enable							

LOCAL3 Register

		7	6	5	4	3	2	1	0
LOCAL3	Bit symbol	L3E			L3EA26	L3EA25	L3EA24	L3EA23	L3EA22
(0353H)	Read/Write	R/W			R/W	R/W	R/W	R/W	R/W
	After reset	0			0	0	0	0	0
	Function	Use BANK			01000 to 01	011: CS2D	01100 to 0	1111: CS2E	
		for			00000 to 00	011: CS2B	10000 to 1	0011: CS2F	
		LOCAL3			00100 to 00	111: CS2C	10100 to 1	0111: CS2G	
		0: Disable					11000 to 1	1111: Set pr	ohibition
		1: Enable							

Figure 3.8.4 Register for LOCAL0 to LOCAL3

3.8.4 Operational Description

Setup bank value and bank use in bank setting register register in COMMON area. Moreover, in that case, a concommon control ler simulation taneous ly sets up mapping. We the LOCAL area, MMU outputs physical address to the outpank setting regions text. eAcate memory becomes possible to the please do not use as bankhtahattore to be erblamps with either of 8 BANKs of LOCAL area on the physical setting register.

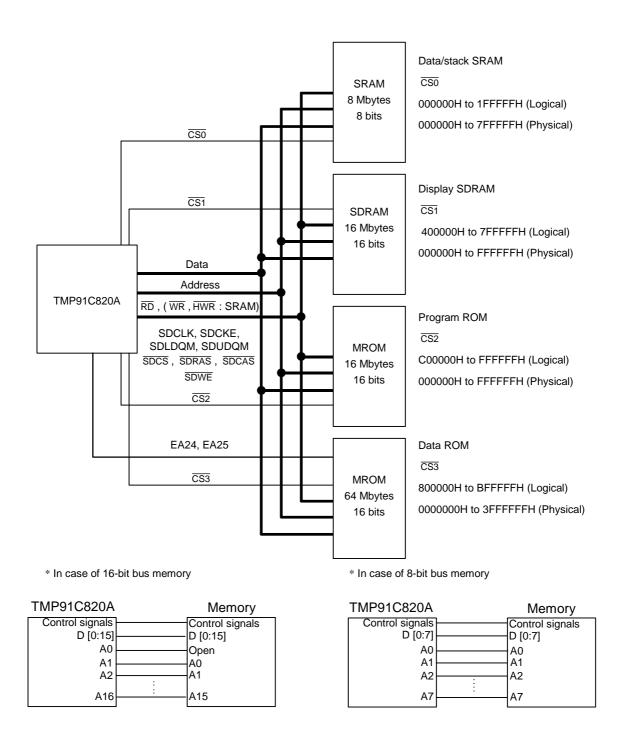


Figure 3.8.5 (a) H/W Setting Example

At Figure 3. 8. 5 (a), i to simmo exuste xo ann TpMRe 901 C820A and some program ROM: MROM, 16 Mbyte, data ROM: MROM, 64 Mbyte, d8-bit bus, display RAM: SDRAM, 16 Mbytes.

In case of 16-bit bus memencytocoshniefctt1-oloni, tiatchdress bus frand 8-bit bus caseondaidencetscoolonulvetC9t1iC820A.

In that figure, logical deadhdersess a reen shooth wyns i Atad each me mochip select s to solp a slope a slope and to solp and the sold at a MROSMA: n case of this example, as day to a slope a slope and to solve a slope and the solve and th

;Initial ;CS0	Setting		
,000	LD	(MSAR0),00H	; Logical address area: 000000H to 1FFFFFH
	LD	(MAMR0),FFH	; Logical address size: 2 Mbytes
	LD	(B0CS),89H	; Condition: 8 bits, 1 wait (8 Mbytes, SRAM)
;CS1		,	, ,
	LD	(MSAR1),40H	; Logical address area: 400000H to 5FFFFFH
	LD	(MAMR1),FFH	; Logical address size: 4 Mbytes
	LD	(B1CS),83H	; Condition: 16 bits, 0 waits (16 Mbytes, SDRAM)
;CS2			
	LD	(MSAR2),C0H	; Logical address area: C00000H to FFFFFH
	LD	(MAMR2),7FH	; Logical address size: 4 Mbytes
	LD	(B2CS),C3H	; Condition: 16 bits, 0 waits (16 Mbytes, MROM)
;CS3			
	LD	(MSAR3),80H	; Logical address area: 800000H to BFFFFFH
	LD	(MAMR3),7FH	; Logical address size: 4 Mbytes
	LD	(B3CS),85H	; Condition: 16 bits, 3 waits (64 Mbytes, MROM)
;CSX			
_	LD	(BEXCS),00H	; Other: 16 bits, 2 waits (Don't care)
;Port		(====)	
	LD	(P6FC),3FH	; CS0 to CS3 , EA24, EA25: port 6 setting
4 -	LD	(P6FC2),02H	; $\overline{\text{CS1}} \rightarrow \overline{\text{SDCS}}$ setting
to	LDW	(PZCR),0707H	; HWR , WR , RD
	LD	(PFFC),7FH	; PF [6:0] = SDRAM control
	LD	(SDACR),0ADH	; Add-MUX enable, 128-M select
to			; SDRAM setup time
	LD LD	(SDACR),06DH (SDRCR),01H	; Add MUX enable, 128-M select ; Interval reflesh

Figure 3.8.6 (b) Bank Operation S/W Example 1

Secondly, it shows example of initial setting at Figure Because onnect to RAM: 8-bit leadst, o & Malby & t-ebsi, tibluse At this set 1-wait setting of sathe os a below aty buse of the same of the busand 3 waits.

By CS/WAIT controller, egancahicksimpesnebrsycstiizoen, solon't set memory size, needgtocasle tadtohraetsIsosize: fitting to each loaddress is set'bsyBeAntKhrængeiæster setting.

CSEX setting of CS/WAIT controller is except above CS example isn't used CSEX setting.

Finally pin condition is sects.OFSORS &CS BOE & 24, e E At 205 and SDRAM condition.

```
BANK Operation
;***** <del>CS2</del> *****
■ ORG 000000H
                                 ; Program ROM: Start address at BANK0 of LOCAL2
                                 ; Program ROM: Start address at BANK1 of LOCAL2
 ORG
       200000H
 ORG
       400000H
                                 ; Program ROM: Start address at BANK2 of LOCAL2
 ORG
                                 ; Program ROM: Start address at BANK3 of LOCAL2
       600000H
ORG
       H000008
                                 ; Program ROM: Start address at BANK4 of LOCAL2
ORG
       A00000H
                                 ; Program ROM: Start address at BANK5 of LOCAL2
| ORG C00000H
                                 ; Program ROM: Start address at BANK6 of LOCAL2
 ORG
       E00000H
                                ; Program ROM: Start address at BANK7( = COMMON2) of LOCAL2
                                 ; Logical address E00000H to FFFFFH
                                 ; Physical address 0E00000H to 0FFFFFH
        LD
                (LOCAL3),85H
                                 ; LOCAL3 BANK5 set 14xxxxH
       LDW
                HL,(800000H)_
                                  Load data (5555H) form BANK5 (140000H: Physical address)
                                                                  of LOCAL3 (CS3)
       LD
                (LOCAL3),88H
                                  LOCAL3 BANK8 set 20xxxxH
       LDW
                BC,(800000H)_
                                 Load data (AAAAH) form BANK8 (200000H: Physical address)
                                                                  of LOCAL3 (CS3)
I to
ORG FFFFFF
                                  Program ROM: End address at BANK7 ( = COMMON2) of LOCAL2
F:***** CS3 *****
ORG 0000000H
                                  Data ROM: Start address at BANK0 of LOCAL3
ORG
       0400000H
                                  Data ROM: Start address at BANK1 of LOCAL3
 ORG
                                  Data ROM: Start address at BANK2 of LOCAL3
       H0000080
                                  Data ROM: Start address at BANK3 of LOCAL3
 ORG
       0C00000H
 ORG
       1000000H
                                  Data ROM: Start address at BANK4 of LOCAL3
 ORG
       1400000H
                                  Data ROM: Start address at BANK5 of LOCAL3
                5555H
to
ORG
       1800000H
                                 ; Data ROM: Start address at BANK6 of LOCAL3
 ORG
       1C00000H
                                ; Data ROM: Start address at BANK7 of LOCAL3
 ORG
       2000000H
                                 ; Data ROM: Start address at BANK8 of LOCAL3
        dw
                AAAAH 4
l to
ORG 2400000H
                                ; Data ROM: Start address at BANK9 of LOCAL3
                                ; Data ROM: Start address at BANK10 of LOCAL3
■ ORG 2800000H
 ORG
       2C00000H
                                ; Data ROM: Start address at BANK11 of LOCAL3
 ORG
       3000000H
                                 ; Data ROM: Start address at BANK12 of LOCAL3
 ORG
      3400000H
                                 ; Data ROM: Start address at BANK13 of LOCAL3
ORG
                                  Data ROM: Start address at BANK14 of LOCAL3
       3800000H
ORG
       3C00000H
                                  Data ROM: Start address at BANK15 of LOCAL3
ORG
       3FFFFFFH
                                  Data ROM: End address at BANK15 of LOCAL3
```

Figure 3.8.7 (c) BANK Operation S/W Example 2

Here shows example sost beattweet one BANK and other BANK. Fone software example. Adot line square area shows one me CS2s program PCSN/s and at a ROM. Program start from EOOOOOH at a BANK register of LOCAL3 area upper 5-bit address of a linease of this example, because most upper address biupper address bit of BANK essi s4tebrits-oddiatos beat a mean BANKs. After settaicnog sBANKs/80000OH to BFFFFFH address address, actually access to physical 140000OH to 170000

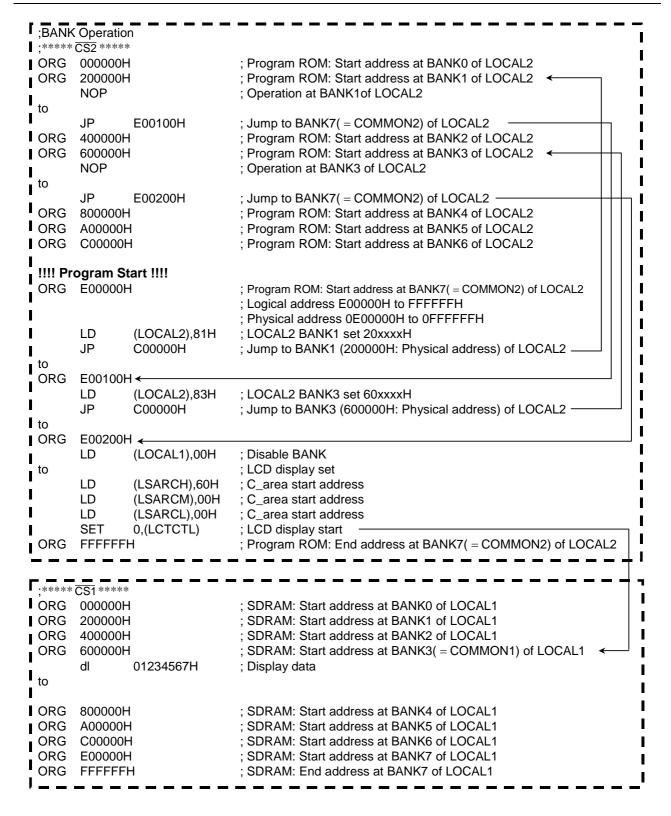
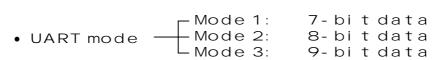


Figure 3.8.8 (d) Bank Operation S/W Example 3

At Figure 3. 8. 8 (d), it shows example of program jump. In the same way with before example, too soptroism as socretary and strain (SDCS) SDRAM. Program Obstaction of the same way with before example, too some of the same of the same

By a way of setting of BANK register, the setting that BA conflict with is possibmereWhegitowal kababasews SeMMON area exist, management of BANK is confused. We recommends no address and COMMON address conflict with.

When using LCD display darteccfoomm & D&AsM|tawje a g eda sp COMMON area in SDRAM. Because of, LCD displays DMA occeur at sy changed, you do are one by COMMON area.


It is a mark paid attention to here, it needs to go by way moves from a BANK to a BANK. In other words, it must wri COMMON area and it prohibits writing the BANK registers bank register's datain BANK area, programrunaway.

Please do not set Bank fuohiostpiloany oRFAMMUTaiss is because r display data is not controlled by the CPU. Therefore if ELCD displaying, it cannot not biesolptica gr.! Il diciast reechios non heavy data area.

3.9 Serial Channels

TMP91C82OA inclurdieas Ith/r@echsænnels. For each channels (Asynchronous transmissio(nS)yonchroOnionstseitofan)csennino ble sele (Channel 2 can be selected only UART mode.)

• I/Ointerface MoodeO: For transmitting and receiving synchronizing signal SCLK for ex

In mode 1 and mode 2 a pari tMyoble t3 chæars bæevæadkæteupb. function fo master control kæntsitælrktesnisa wiea a seri al link (A multi-con Figure 3. 9. 2, 3.09ck3di3a opp. a4mesnfeoble a ch channel.

Each channel can be used independently.

Each channel operates in the same fashi on except for to operation of channel Ois explained below.

Table 3.9.1 Differences between Channels 0 to 2

	Channel 0	Channel 1	Channel 2
Pin name	TXD0 (PC0) RXD0 (PC1) CTS0 /SCLK0 (PC2)	TXD1 (PC3) RXD1 (PC4) CTS1/SCLK1 (PC5)	TXD2 (PB0) RXD2 (PB1)
IrDA mode	Yes	No	No

This chapter contains the following sections:

- 3. 9. 1 Block Diagrams
- 3. 9. 2 Operation of Each Circuit
- 3. 9. 3 SFRs
- 3. 9. 4 Operationin Each Mode
- 3. 9. 5 Support for IrDA

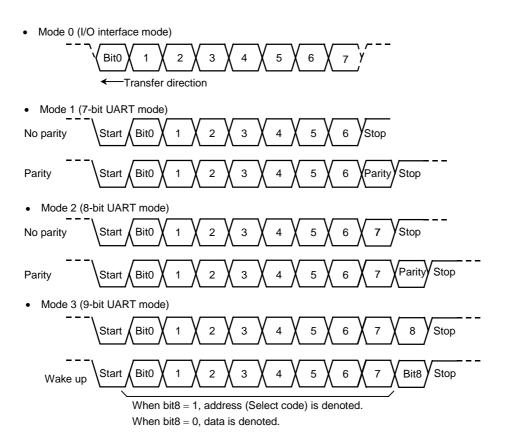


Figure 3.9.1 Data Formats

3.9.1 Block Diagrams

Figure 3. 9. 2 is a block diagram representing serial

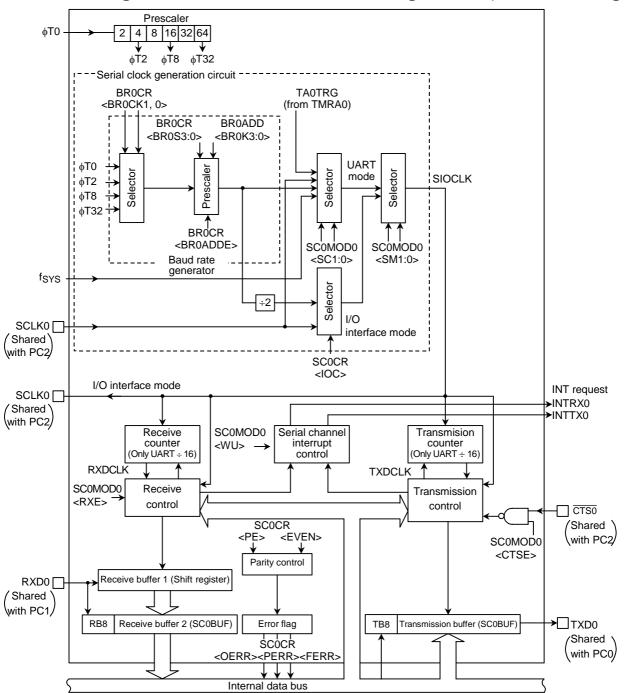


Figure 3.9.2 Block Diagram of the Serial Channel 0

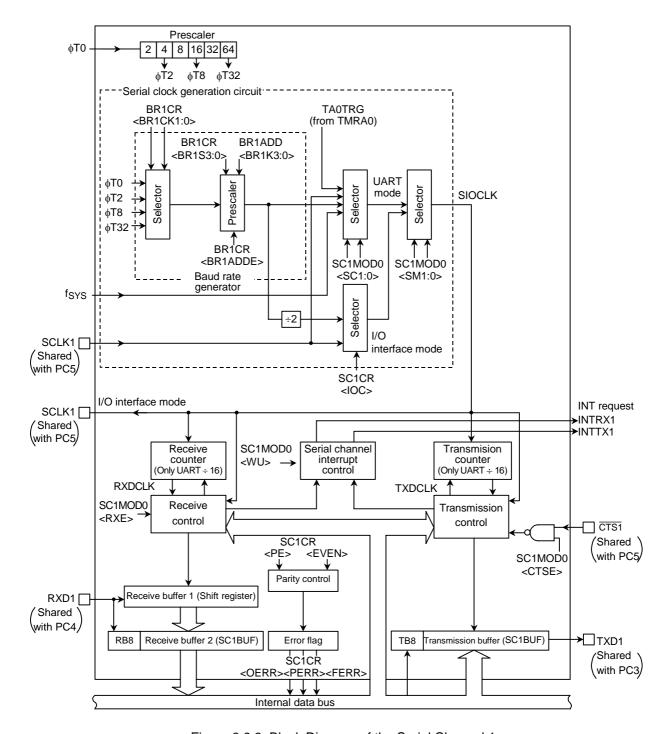


Figure 3.9.3 Block Diagram of the Serial Channel 1

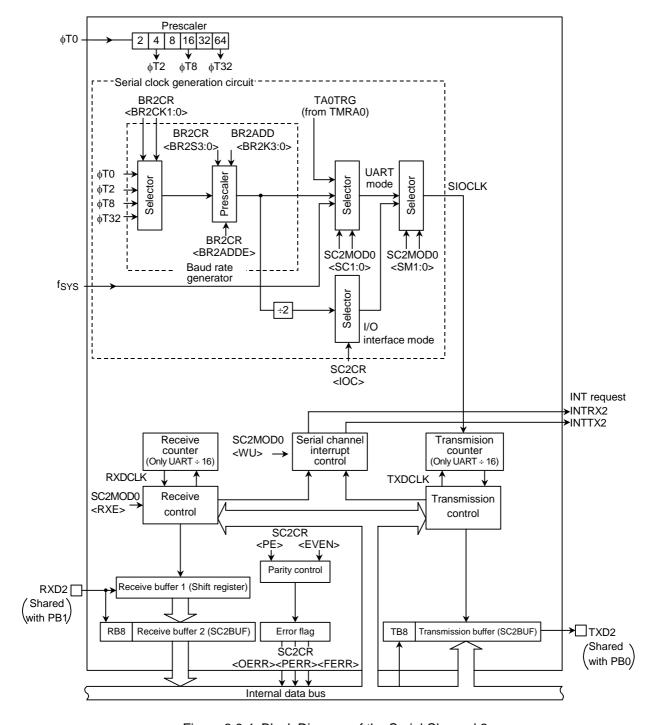


Figure 3.9.4 Block Diagram of the Serial Channel 2

3.9.2 Operation of Each Circuit

(1) Prescaler, prescaler clock selects

There is a 6-bit prescallent colorowkakiThneg sceock sel SYSCR<PRCK1: O> isadhidviindpeudtbtyo4then)ToOesTobaelperreassaler berun by selectingntehreabtabuodasatthaegweaking serial cloo

Table 3. 9. 2 shows pretsicoanlient tool to hook hook broad rate genera

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

Select System Clock <sysck></sysck>	Select Prescaler Clock <prck1:0></prck1:0>	Gear Value <gear2:0></gear2:0>	Prescaler Output Clock Resolution			
			фТ0	φ T 2	φТ8	фТ32
1 (fs)	00 (f _{FPH})	XXX	fs/2 ²	fs/2 ⁴	fs/2 ⁶	fs/2 ⁸
0 (fc)		000 (fc)	fc/2 ²	fc/2 ⁴	fc/2 ⁶	fc/2 ⁸
		001 (fc/2)	fc/2 ³	fc/2 ⁵	fc/2 ⁷	fc/29
		010 (fc/4)	fc/2 ⁴	fc/2 ⁶	fc/2 ⁸	fc/2 ¹⁰
		011 (fc/8)	fc/2 ⁵	fc/2 ⁷	fc/2 ⁹	fc/2 ¹¹
		100 (fc/16)	fc/2 ⁶	fc/2 ⁸	fc/2 ¹⁰	fc/2 ¹²
	10 (fc/16 clock)	XXX	-	fc/2 ⁸	fc/2 ¹⁰	fc/2 ¹²

X: Don't care, -: Cannot be used

The baudrate generator selectos Obote 2 of the baudrate generator se

(2) Baudrategenerator

The baud rate generator igsnæcatesitt, and incission a clocks that determine the transfer rate of the serie

The input clock to the boll cooperate of the 6-bit prescaler whimmen is Sone roof of those the toput clocusing the BROCR < BROCK 1: O > field in the baudrate generate of the solution of the baudrate generates of the solution of the so

The baudrate generatom dynctil wides rafwhei opuhedi vides by $1 \circ F(NI-K) / 16 \circ r \cdot 16 \circ values$, determining the transf

The transfer rate is estettetrinnigns exof bByR1010R < BROADDE, BROADD < BROK3: O>.

- In UART mode
- (1) When BROCR < B-RODADDE >

The settings BROADD<BROM3:TOnce abraeuid or mactegener at the selected prescaler clock by N, whi=dh, i2s, s3et i. n 16)

(2) When BROCR < B-ROADDE >

The $\mathbb{N}(16K)/16$ division function is enabled. T divides the selected $\mathbb{P}(4-6K)$ and 1-6K ucsliched the NV alue of BROCR < BROS 3:20 > 3(.N . 15) and the value of K set in B (\mathbb{K} 1, 2, 3... 15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR0CR<BR0ADDE> to 0.

• Inl/Ointerface mode

The N(1-6K) / 16 di vi si on function i s not avail able BROCR < BROADDE > to Obefore di vi di ng by N.

The method for calculating the transfer rate whused is explained below.

- In UART mode
 Input clock of baudrate generator
 Baudrate quency di vi der for baudrate generat

• Integer di vi der (Ndi vi der)

For example, when the sour €1e2cl2c8s8kMfHzeqtuleenicyp (vitofreque (mic2y (fc/16)), the frequency divioseralNo(BROBROCR<BROAĐO),E \$ he baudrate in UART mode is as fol

* Clock state

System clock: High frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: System clock

Baud r=a $\frac{f g / 16}{5}$

=12. 288+165+169600(bps)

Note: The N + (16 - K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

• N+(1-6K)/16divider(Only UART mode)

Accordingly, when the sour=c4e & Model of the proty (frequency of vider N= (7月R (QCR < BFO) ADD < BROK33: 207-3) BROCR < BROTA DD (BROK33: 207-3) BROCR < BROTA DD (BROTA DD (BROTA

* Clock state

System clock: High frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: System clock

Baud r=a <u>f c / 4</u> 7+ (1-63) / 1 6

 $=4. \times 90 + 4 \div (713/16) + 9600(bps)$

Table 3. 9. 3. 9. @fsblandenachelteansferrates.

Additionally, the external clock input is avaichannels O, 1). The method for calculating the ba

• In UART mode

Baudr=ætxeternal clocki+n1pobut frequency Itis necessæstairsyftyo(External≥o4/ofockinput cycle)

• Inl/Ointerface mode

Baudr=ætxeternal clock input frequency

It is necessæstairsyftyo(External≥c1l6o/ofkcinputcycle)

TOSHIBA

<u> </u>	•			,	Unit (kbps)
fc [MHz]	Input Clock Frequency Divider	φТО	фТ2	фТ8	фТ32
	2	76.800	19.200	4.800	1.200
9.830400	4	38.400	9.600	2.400	0.600
9.030400	8	19.200	4.800	1.200	0.300
	0	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
12.200000	A	19.200	4.800	1.200	0.300
14.745600	3	76.800	19.200	4.800	1.200
	6	38.400	9.600	2.400	0.600
	С	19.200	4.800	1.200	0.300

Table 3.9.3 Transfer Rate Selection (When baud rate generator is used and BR0CR<BR0ADDE> = 0)

Note 1: Transfer rates in I/O interface mode are eight times faster than the values given above.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc and the system clock is the prescaler clock input.

Unit (kbps) fc 12.288 MHz 9.8304 MHz 8 MHz 6.144 MHz 12 MHz TA0REG0 96 62.5 48 1H 76.8 2H 48 31.25 24 38.4 31.25 ЗН 32 16 4H 24 19.2 12 5H 19.2 9.6 8H 12 9.6 ΑH 9.6 4.8 10H 6 4.8 3 14H 4.8 2.4

Method for calculating the transfer rate (when TMRA0 is used):

$$Transfer\ rate = \frac{Clock\ frequency\ determined\ by\ SYSCR0}{TA0REG\times \frac{2^3}{4}\times 16}$$
 (when TMRA0 (Input clock ϕ T1) is used)

Note 1: The TMRA0 match detect signal cannot be used as the transfer clock in I/O interface mode.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc and the system clock is the prescaler clock input.

(3) Serial clock generation circuit

This circuit generates the basic clock for transmi

• Inl/Ointerface mode

In SCLK output mode with the sect, t**the Sasic** of color generated by dividing the bate outpute of the text previously.

In SCLK input mode with the set, tithinge SrCOCR of OCC Ring to the falling edge will be detected according to the register to generate the basic clock.

• In UART mode

The SCOMODO<SC1: O> seetst iwng to beet re it him en baud rate of clock, the interneads styll settle and collection of the external clock (SCLKO) is used to generate

(4) Receiving counter

The receiving countercountercountercounts up the pulses of the SIOCLK clock. It takes bit of data; each data bit is sampled three times cycles.

The value of the data bit is determined from the majority rule.

For example, if the dast padocitti i vsess ay maps 11e, dOr send 1 on 79th clock cycles, the recent over diatAadka ita ibsitas ampland 1 is taken to be 0.

- (5) Receiving control
 - Inl/Ointerface mode

In SCLK output mode with the settithme \$RXXDCRsilouncade sampled on the rising or falling edge of the shift SCLKOpin, accensicocontexts of the setting.

In SCLK input mode with the $s \in 1$, tithe $s \in \infty$ $s \in \infty$ $s \in \infty$ sampled on the rising or falling edge of the SCI SCOCR $s \in \infty$.

In UART mode

The receiving control block has a circuit, which majority rule. Received bits are sampled three three samples are O, tehde absithes srtexcrotg bit and the operation commences.

The values of the data bits that are received as majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers structure.

Received data is stored one bit at a time in receiregister). When 7 bits or 8 bits of data have been stodata is transferred to receiving buffer 2 (SCOBUF); be generated. The CPU only reads receiving buffer 2 reads receiving buffer 2 (SCOBUF), the received dat However, unless receiving buffer 2 (SCOBUF), the received dat received by bruefore in the received by bruefore in the received by bruefore in the contents of receiving buffer 1 will be lost, althouand SCOCR < RIB 8 bewipreserved.

SCOCR<RB8> is used to store either the parity bit - the most significant bit (MSB) - in 9- bit UART mode.

In 9-bit UART mode the wakeup function for the sl setting SCOMODO<WU> to 1; in this mode INTRXO intervalue of SCOCR<RB8>is 1.

(7) Transmission counter

The transmission counter is a 4-bit binary counter which, like the receiving counter, counts the SI OCL generated every 16 SI OCLK clock pulses.

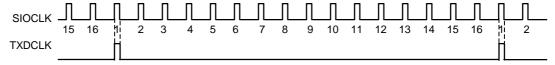


Figure 3.9.5 Generation of the Transmission Clock

(8) Transmission control

• Inl/Ointerface mode

In SCLK output mode with the SeQ, tithe Sladarion of transmission buffer is output one bit at a time t falling edge of the shift clock which is output or SCOCR<SCLKS>setting.

In SCLK input mode with the settingeScatcatinoth transmission buffer is output one bit at a time of allingedge of the SCLKO input, according to the

• In UART mode

When transmission data sent from the CPU is wribuffer, transmission starts on the rising edge o transmission shift clock TXDSFT.

Handshake function

Serial channels \overline{OT} Spienaclus sa sa this pinallows da in units of one frame; thus, overrun errors can functions is enabled or disabled by the SCOMOD < C

When tones opin goes high on completion of the curtransmission is homeothese thousand the contract of the curtransmission is homeothese thousand the contract of the curtransmission of

Though the Respism, oa handshake function can be ea setting any port as Resissign med tioo Rome. Set Thinge uld be out put h to request send data hiavletias for empolaettaerde boyes of twar interrupt routine.

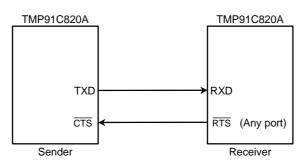
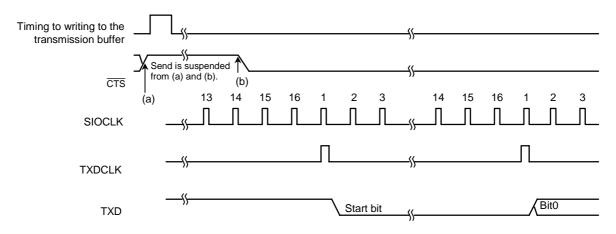



Figure 3.9.6 Handshake Function

Note 1: If the $\overline{\text{CTS}}$ signal goes high during transmission, no more data will be sent after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.9.7 CTS (Clear to send) Timing

(9) Transmission buffer

The transmission buffeoru (SaCrOcBUE) notes hit fitestransmiss written from the CPU foramethod lte(aLStB) iignorfider. When are shifted out, the threacnosmeds seimph you fidegrenerates interrupt.

(10) Parity control circuit

When SCOCR < PE > in the serial channel control registransmit and receive data and replace rewiit phanpiatry to ya.n Howewaedded or UART mode or 8-bit UART mode. The SCOCR < EVEN > field control register adrigo od was peaintilitely texted selected.

In the case of transmitsosmiadmi, cpahiy to ye in erasuted when d to the transmission buffer SCOBUF. The data is transens to red in SCOBUF < TB7 > in 7 - bit UART mode or in UART mode. SCOCR < PE > and SCOCR & ESWEETN to reensmission buffer.

In the case of receiving, data is shifted into recei after the data has been to trangsofue free co2t (csrcoods by), and twith SCOBUF < RB7 > in 7 - bit UART mode or with SCOCR < R If they are not equal, a parity error is generated an

(11) Error flags

Three error flags are provided to increase the reli

1. Overrunerror < OERR>

If all the bits of the next data itemhave been recval id data still remains stored in receiving buff generated.

- (INTRXinterrupt routine)
- 1) Readrecei ving buffer
- 2) Readerror flag
- 3) If < OERR >

then

- a) Set to disable receiving (Write Oto SCOMOD
- b) Wait to terminate current frame
- c) Readreceivingbuffer
- d) Readerror flag
- e) Set to enabl(\(\exists \) rietce il vtionSpCOMODO < RXE >)
- f) Request to transmit again
- 4) Other
- 2. Parityerror < PERR>

The parity generated of oint on e edaetiavs in injois to the fer 2 (compared with the parity bit received via the RXI parity error is generated.

Framingerror < FERR >

The stop bit for the received data is sampled the the majority of the samples are O, a framing error

(12) Ti mi ng generati on

a. In UART mode

Receiving

Mode	9 Bits (Note)	8 Bits + Parity (Note)	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	_	Center of last bit (Parity bit)	Center of stop bit
Overrun error timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit

Note: In 9 bits and 8 bits + parity modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Transmitting

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt timing	Just before stop bit is transmitted	Just before stop bit is transmitted	Just before stop bit is transmitted

b. I/O interface

Transmission interrupt	SCLK output mode	Immediately after last bit data. (See figure 3.9.25)
timing	SCLK input mode	Immediately after rise of last SCLK signal rising mode, or immediately after fall in falling mode. (See figure 3.9.26)
Receiving interrupt	SCLK output mode	Timing used to transfer received to data receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK). (See figure 3.9.27)
timing	SCLK input mode	Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK). (See figure 3.9.28)

3.9.3 SFRs

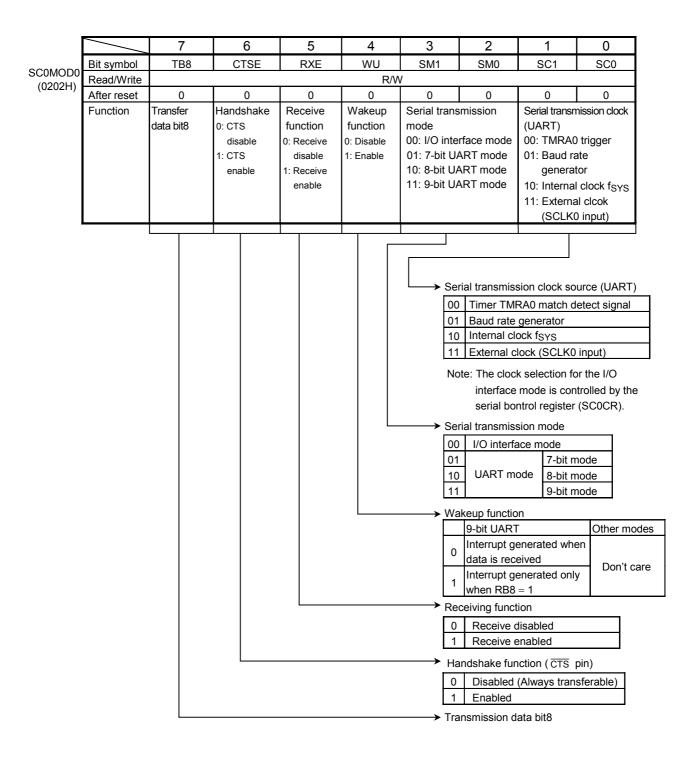


Figure 3.9.8 Serial Mode Control Register (Channel 0, SC0MOD0)

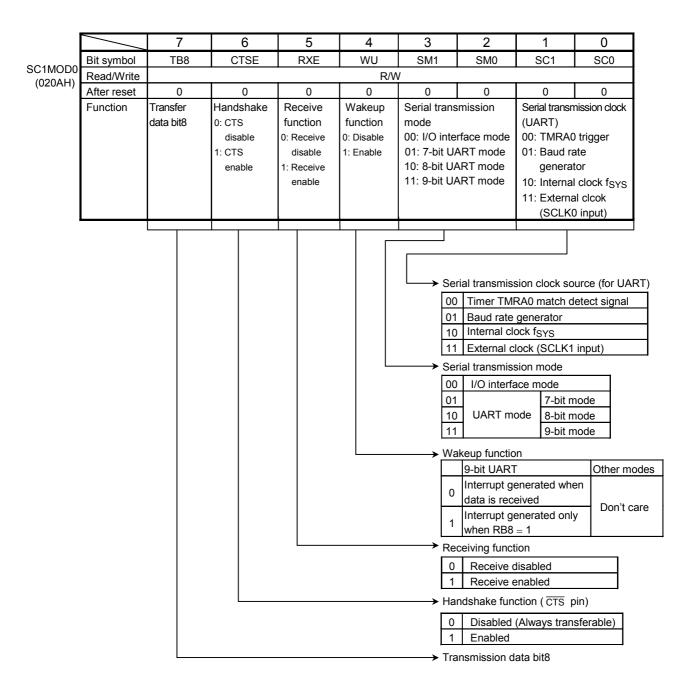


Figure 3.9.9 Serial Mode Control Register (Channel 1, SC1MOD0)

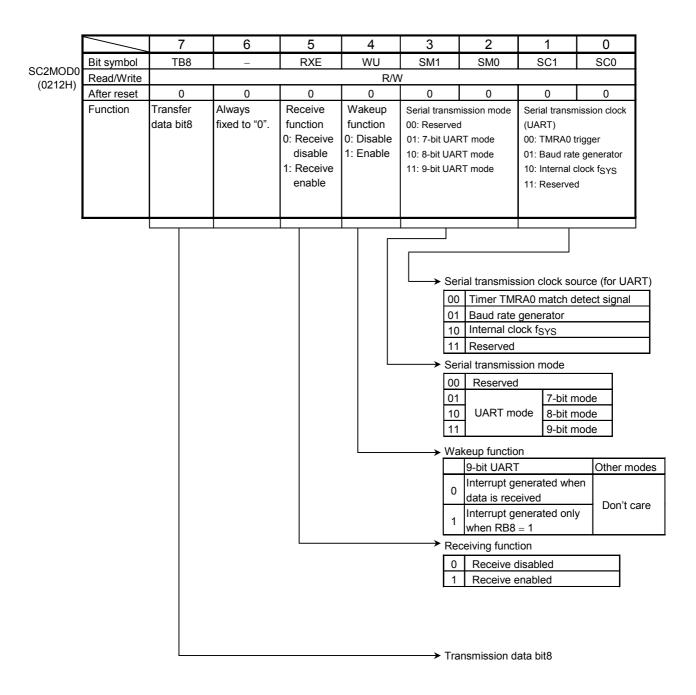
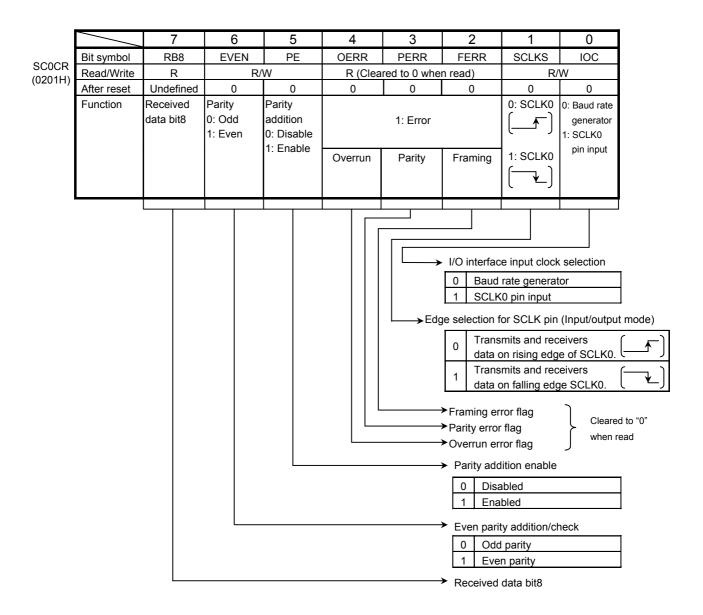
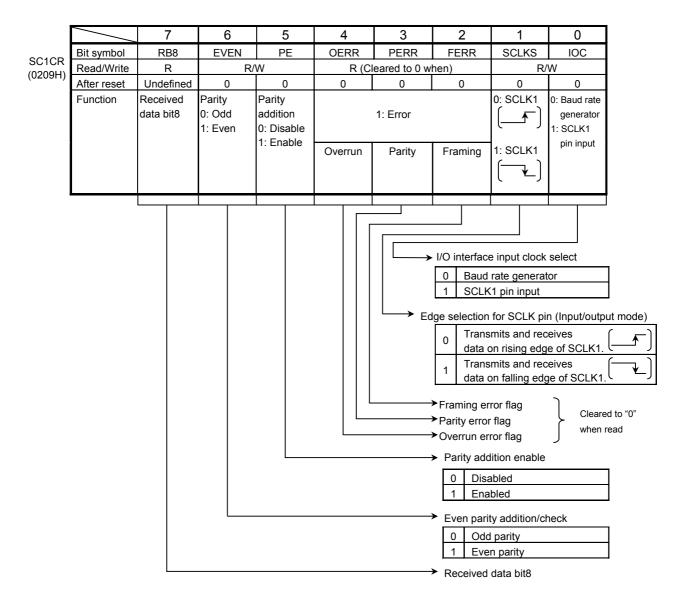




Figure 3.9.10 Serial Mode Control Register (Channel 2, SC2MOD0)

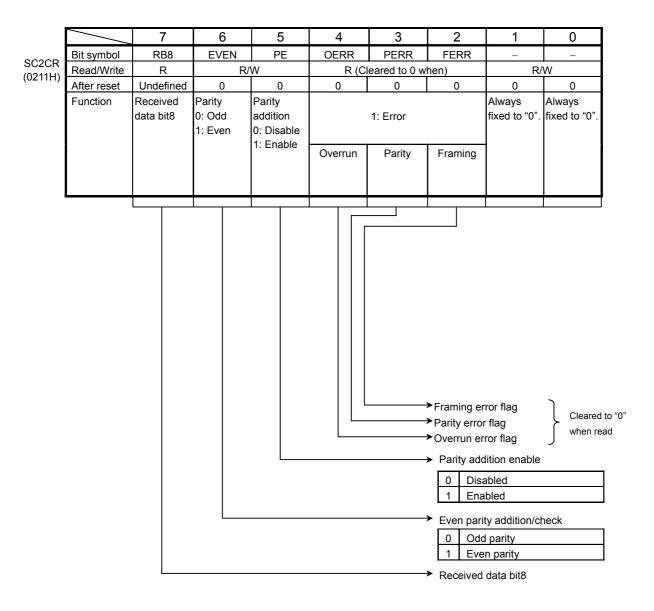

Note: As all error flags are cleared after reading, do not test only a single bit with a bit testing instruction.

Figure 3.9.11 Serial Control Register (Channel 0, SC0CR)

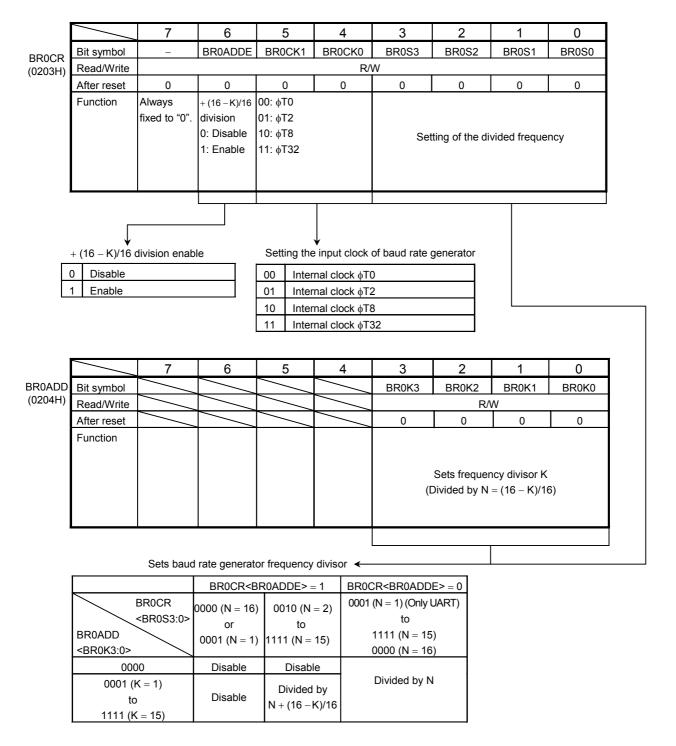
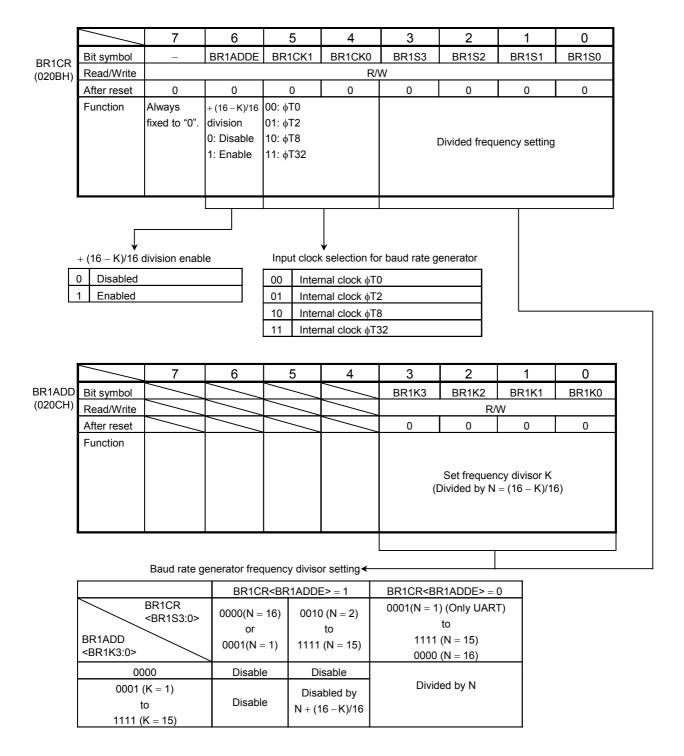

Note: As all error flags are cleared after reading, do not test only a single bit with a bit testing instruction.

Figure 3.9.12 Serial Control Register (Channel 1, SC1CR)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit testing instruction.

Figure 3.9.13 Serial Control Register (Channel 2, SC2CR)

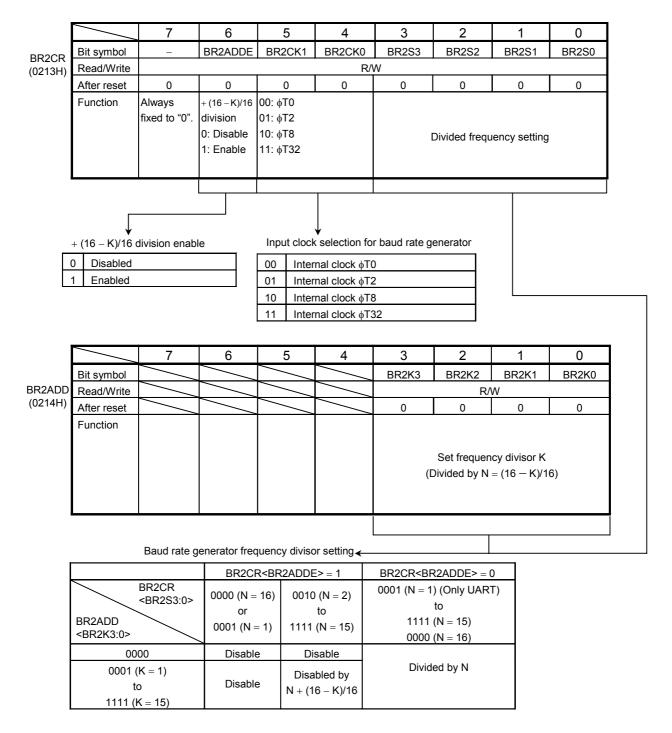

Note1:Availability of +(16-K)/16 division function

~	(TO GITTOTOTI TGTTOTIOTI		
	/ /z	UART mode	I/O mode	
	2 to 15	0	×	
	1 , 16	×	×	

The baud rate generator can be set "1" in UART mode and disable +(16-K)/16 division function. Don't use in I/O interface mode.

Note2:Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD<BR0K3:0> when +(16-K)/16 division function is used.

Figure 3.9.14 Baud Rate Generator Control (Channel 0, BR0CR, BR0ADD)

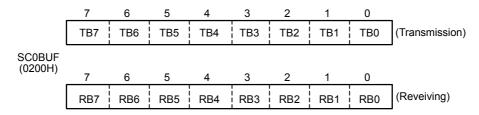

Note1:Availability of +(16-K)/16 division function

N N	UART mode	I/O mode		
2 to 15	0	×		
1 , 16	×	×		

The baud rate generator can be set "1" in UART mode and disable +(16-K)/16 division function. Don't use in I/O interface mode.

Note2:Set BR1CR <BR1ADDE> to 1 after setting K (K = 1 to 15) to BR1ADD<BR1K3:0> when +(16-K)/16 division function is used.

Figure 3.9.15 Baud Rate Generator Control (Channel 1, BR1CR, BR1ADD)

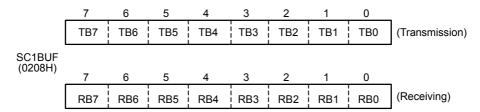

Note1:Availability of +(16-K)/16 division function

N	UART mode	I/O mode
2 to 15	0	×
1 , 16	×	×

The baud rate generator can be set "1" in UART mode and disable +(16-K)/16 division function. Don't use in I/O interface mode.

Note2:Set BR2CR <BR2ADDE> to 1 after setting K (K = 1 to 15) to BR2ADD<BR2K3:0> when +(16-K)/16 division function is used.

Figure 3.9.16 Baud Rate Generator Control (Channel 2, BR2CR, BR2ADD)

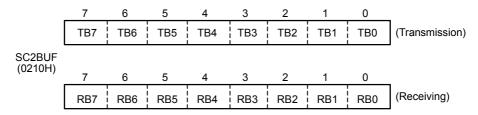


Note: Prohibit read-modify-write for SC0BUF.

Figure 3.9.17 Serial Transmission/Receiving Buffer Registers (Channel 0, SC0BUF)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	12S0	FDPX0						
(0205H)	Read/Write	R/W	R/W						
	After reset	0	0						
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

Figure 3.9.18 Serial Mode Control Register 1 (Channel 0, SC0MOD1)



Note: Prohibit read-modify-write for SC1BUF.

Figure 3.9.19 Serial Transmission/Receiving Buffer Registers (Channel 1, SC1BUF)

		7	6	5	4	3	2	1	0
SC1MOD1	Bit symbol	12S1	FDPX1						
(020DH)	Read/Write	R/W	R/W						
	After reset	0	0						
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

Figure 3.9.20 Serial Mode Control Register 1 (Channel 1, SC1MOD1)

Note: Prohibit read-modify-write for SC2BUF.

Figure 3.9.21 Serial Transmission/Receiving Buffer Registers (Channel 2, SC2BUF)

		7	6	5	4	3	2	1	0
SC2MOD1	Bit symbol	12S2	FDPX2						
(0215H)	Read/Write	R/W	R/W						
	After reset	0	0						
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

Figure 3.9.22 Serial Mode Control Register 1 (Channel 2, SC2MOD1)

3.9.4 Operation in Each Mode

(1) Mode O(I/Ointerface mode)

This mode allows an increase in the number of I/Op data to or receivain regx diætan afros in ft register.

This mode includes the SCLK output mode to output s SCLK input mode to input external synchronous clock

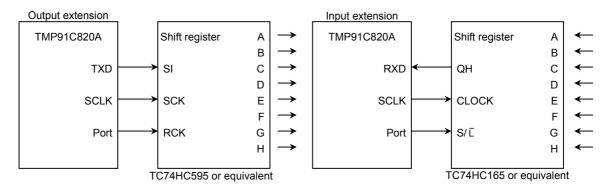


Figure 3.9.23 SCLK Output Mode Connection Example

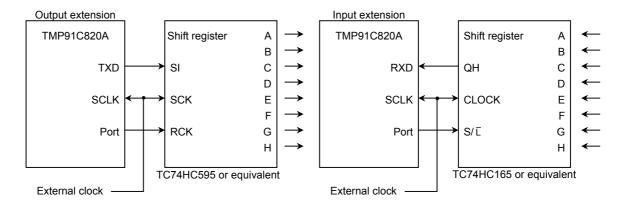


Figure 3.9.24 Example of SCLK Input Mode Connection

a. Transmission

In SCLK output mode 8-bit data and a synchronou TXDO and SCLKO pins respectively each time the Ctransmission buffer. When all data is output, I generate the INTTXO interrupt.

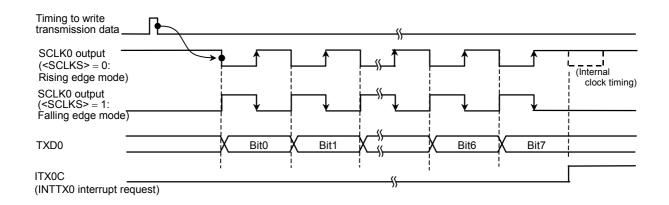


Figure 3.9.25 Transmitting Operation in I/O Interface Mode (SCLK0 output mode) (Channel 0)

In SCLK input mode, 8-bit data is output on the I input becomes active af wheir ttheendtad talmeats ribeeresom issithe CPU.

When all data is output, INTESO<ITXOC> will be interrupt.

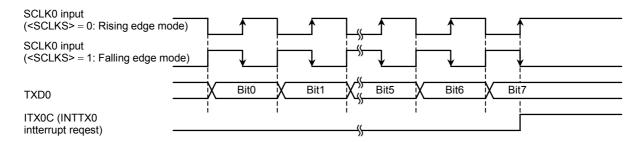


Figure 3.9.26 Transmitting Operation in I/O Interface Mode (SCLK0 input mode) (Channel 0)

b. Receiving

In SCLK output mode, the synchronous clock is outhe data is shifted to hiese sit vair nt gs low bafe finet the leave it very low bafe finet the leave it very low bafe finet the leave it virtue of the data will be considered by the very low of the timing shown below) O a not virtue of the leave of the le

The outputting for the first SCLKO starts by set

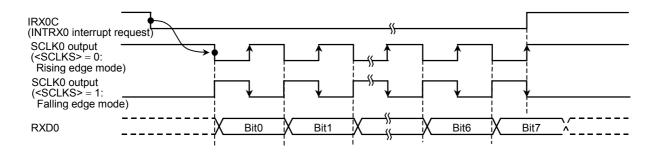


Figure 3.9.27 Receiving Operation in I/O Interface Mode (SCLK0 output mode) (Channel 0)

In SCLK input mode, the data is shifted to recein input becomes active after the receive interrupt by reading the received data. When 8-bit data is received in grant to receive the sequence of the sequence

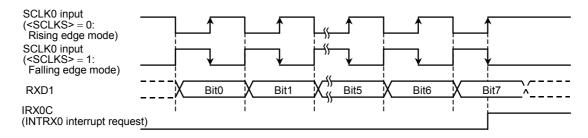


Figure 3.9.28 Receiving Operation in I/O Interface Mode (SCLK0 input mode) (Channel 0)

Note: The system must be put in the receive enable state (SCMOD0<RXE> = 1) before data can be received.

c. Transmissionandreceiving (Full duplex mode)

When the full duplex medevelue edeset the interrupenable the level of transmit interrupt. In the transmit ing the next transmi

The example is following.

Example: Channel O, SCLK output
Baud r=976600 bps
f \in 14.7456 MHz

* Clock state

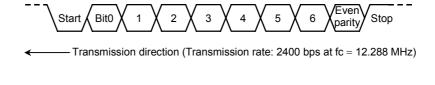
System clock: High frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: f_{FPH}

Main routine 6 5 4 3 2 Set the INTTX0 level to 1. INTES0 0 0 0 0 0 0 Set the INTRX0 level to 0. Set PC0, PC1 and PC2 to function as the TXD0, **PCCR** RXD0 and SCLK0 pins respectively. **PCFC** SC0MOD0 0 0 0 0 0 0 0 0 Select I/O interface mode. 0 SC0MOD1 1 0 0 Select full duplex mode. SC0CR SCLK_out, transmit on negative edge, receive on positive edge. BR0CR 0 0 0 Baud rate = 9600 bps. SC0MOD0 0 0 0 0 Enable receiving. 0 1 0 0 SC0BUF Set the transmit data and start. INTTX0 interrupt routine Acc SC0BUF Read the receiving buffer. SC0BUF Set the next transmit data.

X: Don't care, -: No change


(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting the ser SCOMODO < SM1: O > field to O1.

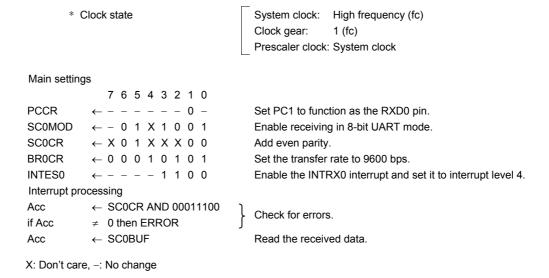
In this mode a parity biofcamp be eiatolydeidt Useenabled o the setting of the serigals than SnOcolo Rope be bit e whethe or odd parity will be used is determined by the SSCOCR < PE > is set to 1 (Enabled).

Example: When transmitting data of the following for be set as describeexαρβ ealnα awt. i δ hiaspplies to chann

System clock: High frequency (fc)

INTES0 \leftarrow 1 1 0 0 - - - - Enable the INTTX0 interrupt and set it to interrupt level 4. SC0BUF \leftarrow * * * * * * * * Set data for transmission.

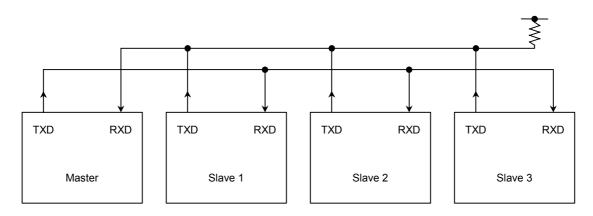
X: Don't care, -: No change


* Clock state

(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selsecctMecoDox SMe1t:t0 ngo 10. In thi parity bit can be addedt(iUsse moafbal ped roirtoly its iabled by t SCOCR<PE>); whether event prawrill tyboer ucscled piasr idetermi SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (Enal Example: When receiving data of the following form set as described below.

Transmission direction (Transmission rate: 9600 bps at fc = 12.288 MHz)


(4) Mode 3 (9-bit UART mode)

9- bit UART mode is selected by setting SCOMODO < SM1 bit cannot be added.

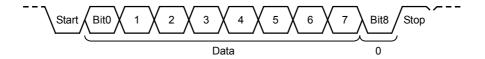
In the case of transmission the MSB (9th bit) is wricase of receiving it is stored in SCOCR < RB8 >. When t MSB is read or written first, before the rest of the S

Wakeupfunction

In 9-bit UART mode, the wakeup function for slave c SCOMODO<WU> to 1. The interrupt INTRXO occurs only

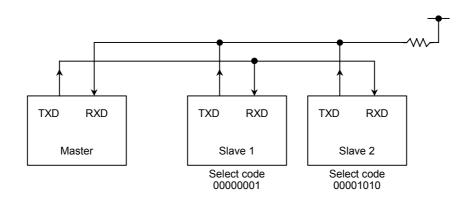
Note: The TXD pin of each slave controller must be in open-drain output mode.

Figure 3.9.29 Serial Link Using Wakeup Function


Protocol

a. Select 9-bit UART mode on the master and slave cont

- o. Set the SCOMODO<WU> bit on each slave controller t
- c. The master controller transmits one-frame datail slave controllers. The MSB (Bit8) <TB8>is set to 1.



- d. Each slave controller receives the above frame. Eacode against its own selear cwth coosce of the emocatric threes lot lears
 O.
- e. The master controller transmits data to the sp SCOMOD<WU>bitiscleared to O. The MSB (Bit8) <TB8>

f. The other slave controld metrol@(i\thouse) > \text{Wollandoire the resoluse} \text{because} \text{Molsole (iBi t8 or <RB8>) are set to O, disabling IN The slave contreO) ear(\text{Woldoins mit data to the master consible to indicate the end of data receiving to transmission.

Example: To link two slave controllers serially wi internals yests so the ftransfer clock.

Since Serial Channels @xæmcdt 11 yophheæstæmenway, channused for the purposes of this explanation.

• Setting the master controller

```
← - - - - - 0 1 <u>\</u>
PCCR
                                             Set PC0 and PC1 to function as the TXD0 and RXD0 pins
                                             respectively.
PCFC
             ← - - - - X 1 ∫
INTES0
             \leftarrow 1 1 0 0 1 1 0 1
                                             Enable the INTTX0 interrupt and set it to interrupt level 4.
                                             Enable the INTRX0 interrupt and set it to interrupt level 5.
SCOMODO \leftarrow 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0
                                             Set f<sub>SYS</sub> as the transmission clock for 9-bit UART mode.
SC0BUF
             \leftarrow 0 0 0 0 0 0 0 1
                                             Set the select code for slave controller 1.
INTTX0 interrupt
                                             Set TB8 to 0.
SCOMODO \leftarrow 0
SC0BUF
                                             Set data for transmission.
```

Setting the slave controller

```
PCCR
                             - 0 1
                                          Select PC1 and PC0 to function as the RXD0 and TXD0 pins
PCFC
               - - - - - X 1
                                          respectively (Open-drain output).
PCODE
             \leftarrow X X X X - X X 1
INTES0
             \leftarrow 1 1 0 1 1 1 1 0
                                          Enable INTRX0 and INTTX0.
SC0MOD0 ← 0 0 1 1 1 1 1 0
                                          Set <WU> to 1 in 9-bit UART transmission mode using f<sub>SYS</sub>
                                          as the transfer clock.
INTRX0 interrupt
Acc \leftarrow SC0BUF
if Acc = select code
Then SC0MOD0 \leftarrow ---- Clear <WU> to 0.
```

3.9.5 Support for IrDA

SIOO includes supportffrom telded at DAcom commication specifiqure 3.9.30 shows the block diagram.

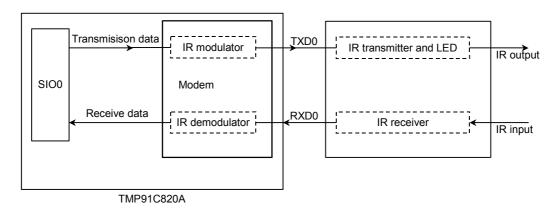


Figure 3.9.30 Block Diagram

(1) Modul ation of the transmission data

When the transmit data it p Opt st the on o X மெறை மெய் n witheit 1/16 times for width of ebwaiudd thaitses e The ecptueld sby the SIR When the transmit data is 1, the mode moutputs O.

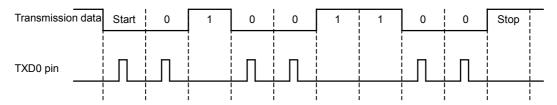


Figure 3.9.31 Transmission Example

(2) Demodul ation of the receive data

When the receive data is the effective width of pulso Otherwise the modemoutputs 1 to SIOO. The effecti SIRCR<SIRWD3: O>.

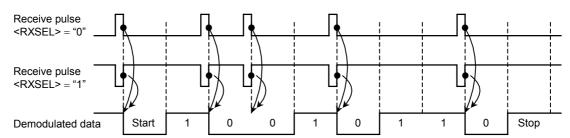


Figure 3.9.32 Receiving Example

(3) Dataformat

The data for matis fixed as follows:

- Datalength: 8bits
- Parity bits: none
- Stopbits: 1

(4) SFR

Figure 3. 9. 33 shows the control register SIRCR. Se stopping. The followii bnepsehxæwtmhbibsseletesicster:

- 1) SI Osetting ; Set the SI Oto UART mode.
- 2) LD(SIRCR);; (\$572Ht the receive data pulse width to
- 3) LD(SIRCR), 37H; TXEN, RXENenable the trans
- 4) Start transmītses in odem operates as follows: and receiving STO OOS ItO OO ts transmitting.
 - •I Rrecei ver starts recei vi ng.

(5) Notes

- 1) Baudrate generator for IrDA
 To generate baudrate from the rop (ው An,e pate domaid SIOO by s
 to SCOMODO<SC1: O>. To use ano ts has mand of መርተል መርጉ በተመመከት የ
 are not allowed.
- 2) As the IrDA 1. O phyisficaaltlomertspeata transfinfra-red pulse widthis specified.

The IrDA 1. Ospecification is defined in Table 3. 9.

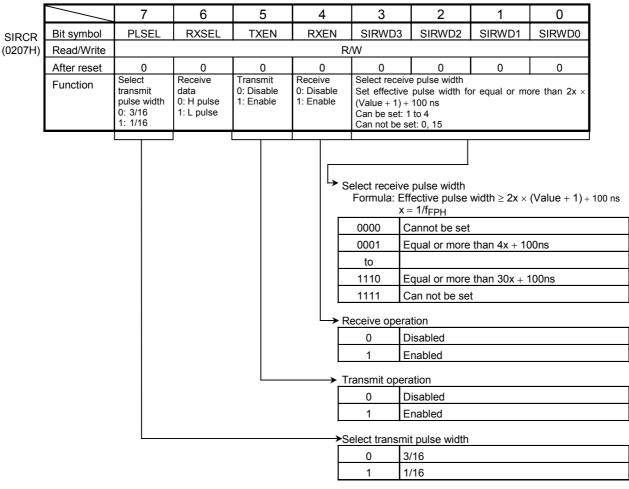
Table 0.0.0 Bada Nate and False Width Opcomodions										
Baud Rate	Modulation Rate Tolerance (% of rate) Pulse Width (Minimum)		Pulse Width (Typical)	Pulse width (Maximum)						
2.4 kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs					
9.6 kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs					
19.2 kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs					
38.4 kbps	RZI	±0.87	1.41 μs	4.88 μs	5.96 μs					
57.6 kbps	RZI	±0.87	1.41 μs	3.26 μs	4.34 μs					
115.2 kbps	RZI	±0.87	1.41 μs	1.63 μs	2.23 μs					

Table 3.9.5 Baud Rate and Pulse Width Specifications

The pulse width is defined eithes $(b\mu s) (b\mu s) (b\mu s) = T \times (b\mu s)$.

The TMP91C82OA has the function selects the pulse 3/16 or 1/16. But 1/16 pud tseedwindetrin tchaen bload usderlaete is eat than 38. 4 kbps.

As the same r (e1a-6KO)n/, 16 di vi si on functi on i n the bau SI OO can not be used to generate 115. 2kbps baud rate


Alsowhen the 38.4kbpsam(11-6K) 6 p b lds ev ivisid bh,functibe used.

Pulse Width	Baud Rate									
	115.2 kbps	57.6 kbps	38.4 kbps	19.2 kbps	9.6 kbps	2.4 kbps				
T × 3/16	×	0	0	0	0	0				
T × 1/16	-	_	×	0	0	0				

^{○:} Can be used (16 – K)/16 division function.

 $[\]times$: Can not be used (16 – K)/16 division function.

^{-:} Can not be set to 1/16 pulse width.

Note: If pulse width complying with the IrDA 1.0 standard (1.6 μs min.) can be guaranteed with a low baud rate, setting this bit to "1" shortens the duration of infrared ray activation, resulting in reduced power dissipation.

Figure 3.9.33 IrDA Control Register

3.10 Serial Bus Interface (SBI)

The TMP91C82OA has a one-channel serial bus interfasynchronous 8-bit S7CO monothed an I

The serial businterfacted random through random through POJO (SDA) in through rand through POJO (PSO2K() SIP 7/11n(the clocked 8-bit SIO mode.

Each pinis specified as follows.

	P7ODE <ode72, ode71=""></ode72,>	P7CR <p72c, p70c="" p71c,=""></p72c,>	P7FC <p72f, p70f="" p71f,=""></p72f,>	
I ² C bus mode	11	11X	11X	
Clocked synchronous	XX	011	111	
8-bit SIO mode	^^	010	111	

X: Don't care

3.10.1 Configuration

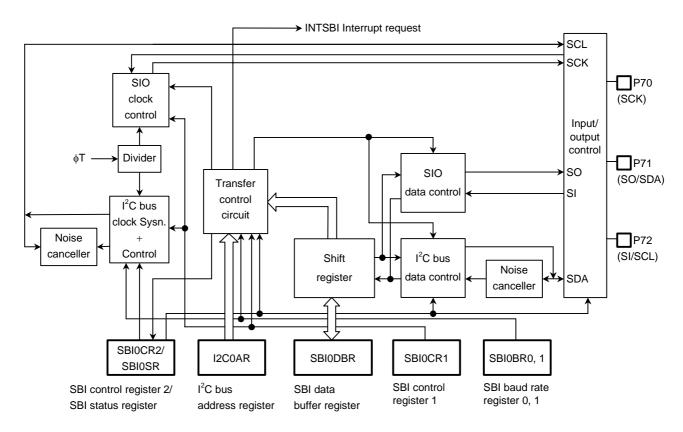


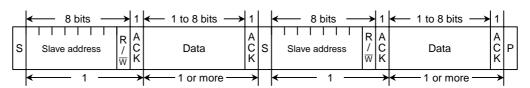
Figure 3.10.1 Serial Bus Interface (SBI)

3.10.2 Serial Bus Interface (SBI) Control

The following registers are used to control the ser operation status.

- Serial businterface control register 1 (SBI OCR1
- Serial businterface control register 2 (SBI OCR2
- Serial businterface data buffer register (SBI OI
- I 2C bus addstess r(egiCOAR)
- Serial businterface status register (SBI OSR)
- Serial businterface baudrate register O (SBI OBI
- Serial businterface baudrate register 1 (SBI OBI

The above registers differ depending on a mode to be un Refer to sect PCoBnu3s. MoOde4 Control " and 3. 10. 7 " Clocke SIO Mode Control ".


3.10.3 The Data Formats in the I²C Bus Mode

The data for mact suisnet drobell s shown below.

(a) Addressing format

(b) Addressing format (with restart)

(c) Free data format (Data transferred from master device to slave device)

S: Start condition

 R/\overline{W} : Direction bit

ACK: Acknowledge bit

P: Stop condition

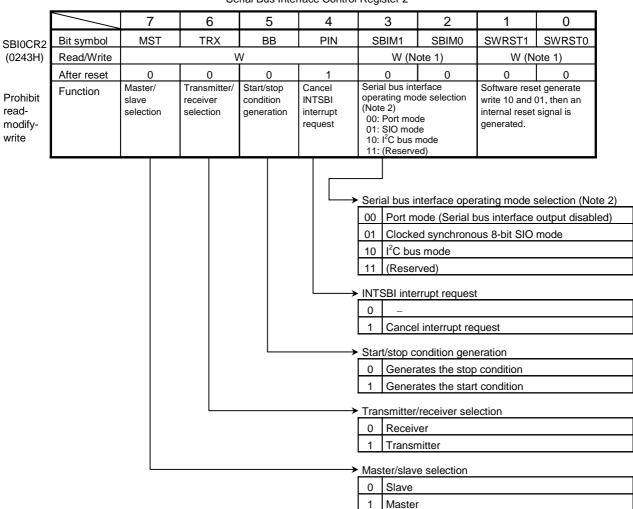
Figure 3.10.2 Data Format in the I²C Bus Mode

3.10.4 I²C Bus Mode Control

The following registers are used to control and monithe serial businter of buse in the l

Seirial Bus Interface Conrol Register 1

1		7	6		5	4	4	;	3	2		1	0	
SBI0CR1 (0240H)	Bit symbol	BC2	BC1	В	3C0	A	CK			SCK2	2 SC	K1	SCK(SWRM)/ ON
	Read/Write		W	•		R	W				W		R/W	
	After Reset	0	0		0		0			0			D/1 (Not	
Prohibit read- modify- write	Function	Number of t (Note 1)	ransferre	ed bits		mode specifi 0: Not gen	fication (Note 2)						and	
				Internal serial clock selection <sck2:0> at write 000</sck2:0>								signal		
						,	INUITID	EI 0I I		sferred <ack> :</ack>	= 0		<ack></ack>	· = 1
								2:0>	Numb	per of	Bits	Numb clo puls	oer of ock	Bits
							00 00 01 01 10 10 11	1 0 1 0 1	8 1 2 3 4 5 6	2 3 4 5	8 1 2 3 4 5 6 7	5 2 3 4 5 6	2 3 4 5 6	8 1 2 3 4 5 6 7


Note 1: Set the <BC2:0> to 000 before switching to a clock synchronous 8-bit SIO mode.

Note 2: For the frequency of the SCL line clock, see 3.10.5 (3) "Serial clock".

Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4:This I²C bus circuit dose not support high-speed mode, it supports standard mode only.

Figure 3.10.3 Registers for the I²C Bus Mode

Serial Bus Interface Control Register 2

Note 1: Reading this register function as SBI0SR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and clock synchronous 8-bit SIO mode after confirming that input signals via port are high level.

Figure 3.10.4 Registers for the I²C Bus Mode

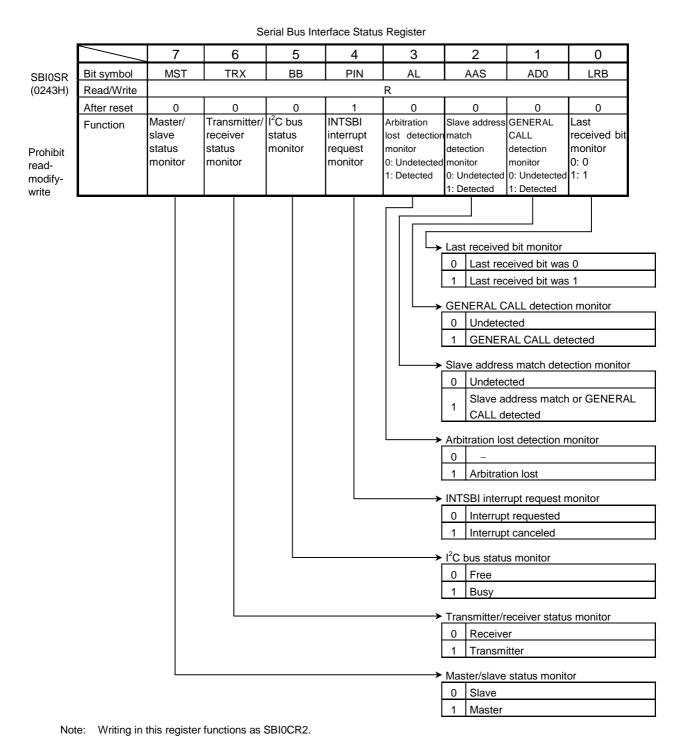


Figure 3.10.5 Registers for the I²C Bus Mode

Serial Bus Interface Baud Rate Regster 0 7 6 4 2 0 SBI0BR0 Bit symbol I2SBI0 (0244H) Read/Write W R/W After reset 0 Prohibit Write "0". IDLE2 read-Function modify-0: Stop write 1: Run Operation during IDLE 2 mode Stop 0 Operation Serial Bus Interface Baud Rate Register 1 7 6 3 2 5 4 0 SBI0BR1 P4EN Bit symbol (0245H) Read/Write W W After reset 0 0 Prohibit Write "0". Internal Function readclock modify-0: Stop write 1: Operate ▶ Baud rate clock control 0 Stop Operate

Sirial Bus Interface Data Buffer Register

		7	6	5	4	3	2	1	0			
SBI0DBR	Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
(0241H)	Read/Write	R (Received)/W (Transfer)										
Prohibit	After reset	Undefined										

readmodifywrite

- Note 1: When writing transmitted data, start from the MSB (Bit7). Receiving data is placed from LSB (Bit0).
- Note 2: SBIODBR can't be read the written data. Therefore read-modify-write instruction (e.g., "BIT" instruction) is prohibitted.
- Note 3: Written data in SBI0DBR is cleared by INTSBI signal.

I²C Bus Address Register

		7	6	5	4	3	2	1	0
I2C0AR	Bit symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
(0242H)	Read/Write				١	N			
Prohibit read- modify- write	After reset	ter reset 0 0 0 0 0 0 0			0	0			
	Function	Slave address selection for when device is operating as slave device							
,						А	.ddress reco	anition mode	specification

Slave address recognition Non slave address recognition

Figure 3.10.6 Registers for the I²C Bus Mode

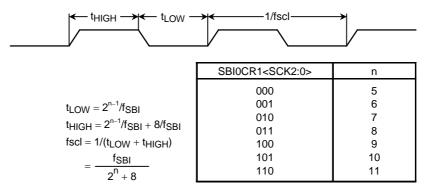
3.10.5 Control in I²C Bus Mode

(1) Acknowledge mode specification

Set the SBI OCR1 < ACK > to 1 for operation in the TMP91C82OA generates an additional clock pulse for operating in master mode. In the transmitter mode of SDA pinisrel eased in order to receive the acknowled receiver mode during the clock pulse cycle, the SDA generate the acknowledge signal.

Clear the <ACK > to Ofor operation in the non-acknowledges not generate a clock pulse for the acknowledge master mode.

(2) Number of transfer bits


The SBI OCR1 < BC2: O > is usbeed toof sheil tesc from now t transreceiving data.

Since the <BC2: O> is cleared to OOO as a start co direction bit transmission are executed in 8 bits retains a specified value.

(3) Serial clock

a. Clock source

The SBI OCR1<SCK2: O> is used to select a maximoutputted on the SCL pinin master mode. Set the bcalculated according to the formulabel 20 by ust, o mees such as the smalles topulse width of t

Note 1: f_{SBI} shows f_{FPH}.

Note 2: It's prohibit to use fc/16 prescaler clock when using SBI block.
(I²C bus and clock synchronous.)

Figure 3.10.7 Clock Source

b. Clock synchronization

In the blus mode, in order to wired-AND a bus, a mass down a clock line to low level, in the first place, master device which generates a high-level clock high-level clock pulse needs to detect the situal procedure.

The TMP91C82OA has a clock synchronization futransfer even when more than one master exists on

The example explains the clock synchronization simultaneously exist on a bus.

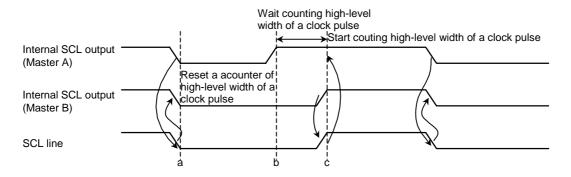


Figure 3.10.8 Clock Synchronization

As master A pulls down the internal SCL output to SCL line of the bus becomes the low level. After deresets a counter owf the top flam vown clock pulse and sSCL output to the low level.

Master Afi ni shes counting low-level width of an sets the internal SCL output to the highlevel. Si of the bus at the low level, master A wait for counclock pulse. After master Bfi ni shes counting low at point cand master A detects the SCL line of the starts counting high level of an own clock pulse determined by the master device with the shortemaster device with the longest low-level width fronnected to the bus.

(4) Slave addresscongon ia tido ne so so de specification

When the TMP91C82OA is used as a slave device, set t < ALS > to the I 2CtOMAR < ACL Sea to O for the address recogn

(5) Master/slave selection

Set the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 0 for coperating the TMP910 Clear the SBI OCR2<MST> to 0 for coperating the TMP910 Clear the SBI OCR2<MST> to 0 for coperating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the TMP910 Clear the SBI OCR2<MST> to 1 for operating the S

(6) Transmitter/receiver selection

Set the SBI OCR2<TRX> to Merfor Properation as a receiver. When dat the <TRX> to Ofor operation as a receiver. When dat transferred in slave mode, when a slave address wit or a GENERAL CALL is received (Al O aef-theirta start cor <TRX> is set to 1 by the hardwar (a) is derinte for one the onnals device is 1, and is cleared to Oby the hardware if the anacknowledge signal is returned from the slave de the hardware if a transmiante dislice to 10 by the hardware when an acknowledge siepoth, at hieson contrreent tucron dition is not set.

The <TRX> is cleared to O by the hardwar & abfutseirsa st detected or arbitration is lost.

(7) Start/stop condition generation

When the SBI OSR<BB> is sectors as the date in the selection bit which SBI ODBR are output on a bus after generating a star SBI OCR2 < MST, TRX, BB, PIrNy>to steits three cress in the data buffer register (SBI ODBR) and set 1 to < ACK > before

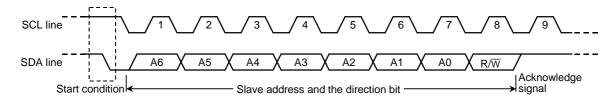


Figure 3.10.9 Start Condition Generation and Slave Address Generation

When the <BB> is 1, a se opugeans tecopor copoennotin taitoin is started to the <MST, TRX, PIN>, a Drock of to the &B B. In a contents of BB, and PIN> until a stop condition is generated on a

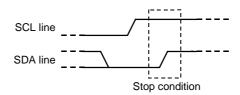


Figure 3.10.10 Stop Condition Generation

The state of the bus can be ascertained by reading SBI OSR<BB> will be set to 1 if a start condition has be cleared to 0 if a stop condition has been detected

And about generation of stop condition in master rpoint. Please r(e4f)e"rSttopps.c1oon.d6 tion generation".

(8) Interrupt servi cerequests and interrupt cancel I When a seri all bus interface interrupt request (INT is cleared to O. During the time that the SBI OCR2<PI down to the low level.

The < PIN> is cleared to <code>O</code> awhae in sa throadmooth tedor recoveriting/reading data to/from SBI ODBR sets the < PIN

The time from the <PIN> being set to 1 untiowthe SCL In the address recognie (b) proposed (section of the address is the same as the value set at the I 2CO received (AII 8- bit data addietO ao fint) er Ad shough SBIOCR set to 1 by the program, the <PIN> is not clear it to C

(9) Serial buospienater 6 a omeo de selection

SBI OCR2<SBI M1: O> is used to specify the serial bu SBI OCR2<SBI M1: O> to 10 when the decvious imade oals et eus confirming pincondition of serial businterface to Switch a mode to port after confirming a busis free

(10) Arbi tration lost detection monitor

Since more than one master device can exi3s buss mult mode, a bus arbitration procedure has been implement integrity of transferred data.

Dataonthe SDAlime busus reboliftorraltion.

The following shows an example of a bus arbitration devices exists in multaneously on the bus. Master A arountil point a. After master A outputs L and master B wire-AND and the SDAI ine is pulled down to the low-I line of the bus is pulled up at point b, the slave dev that is, data in master A. A data transmitted from main master B is called "ARBITRATION LOST". Master B dereleases the internal SDA output in order not to after masters with arbitration upscleyuas to the second word.

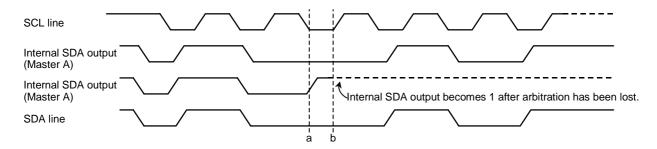


Figure 3.10.11 Arbitration Lost

The TMP91C82OA compares the levels on the bus's Sinternal SDA output on the rising edge of the SCL liarbitration is lost and SBI OSR<AL> is set to 1.

When SBI OSR < AL > is set StTo, 1T, RSXB-laOrSeR & Meared to OO an is switched to slave recke outepunto do stopped locatat setting < AL >

SBI OSR<AL> is cleared with a contraries and from SBI OD data is written to SBI OCR2.

Figure 3.10.12 Example of when TMP91C820A is a Master Device B (D7A = D7B, D6A = D6B)

(11) SI ave address match detecti on moni tor

SBIOSR<AAS> is set to 1 in slave mode, in address I 2COAR<ALOS; when a GENERAL CALL is received, or who matches the value set in I 2COAR. WHEN TO SECOARS ALSS et after the first word of educations with the set of the set

(12) GENERAL CALL detection monitor

SBI OSR < ADO > is set to 1 in slave mode, when a GENER 8-bit received datais to and the SalsOtSar < tAto and sclear of start condition or stop condition is detected on the

(13) Last received bit monitor

The SDA line value stored at the rising edge of SBIOSR<LRB>. In the ackimmonweldeidagtee hmyo daef, ter an INTSB request is generated, an isacrkena od w.b. ye degea dsiing ogn at the contSBIOSR<LRB>.

(14) Software reset function

The software reset funicatli iozneitshuesSeBoltooi inrociutt, when by external noises, etc.

An internal reset signal pulse can be generated by 10 and 01. This initializes the SBI circuit int SBI OCR2<SBI M1: O>) regrieogties rtsears das teatruistialized as SBI OCR1<SWRMON> is automatia catelrytshetSBI circuit initialized.

(15) Serial bus interface data buffer register (SBI OE The received data can be reed along that de the by writing the SBI ODBR.

In the master mode, after the start condition is gedirection bit are set in this register.

(16) I 2CBUS address register (I 2COAR)

I 2COAR<SA6: O> is used to set the slave address whe as a slave device.

The slave address output from the master device I 2COAR<ALS> to O. The data format is the addressing is not recognized 1attheed AtLaSF or mat is the free data

(17) Baudrateregister (SBI OBR1)

Write1toSBIOBR1<P4EN>beforeoperationcommenc

(18) Settingregister for I DLE2 mode operation (SBI OBS SBI OBRO<I 2SBI O> is the register setting operat Therefor, setting <I 2SBI O> is necessary before the

3.10.6 Data Transfer in I²C Bus Mode

(1) Deviceinitialization

Set the SBI OBR1 < PRENACEBSOK2: O>, set SBI OBR1 to 17 to 5 and 3 in the SBI OCR1 to O.

Set as lave address < SA6: O> a@d/htehrea:AAb8d/(exs\siSn>gfoto the I2COAR.

For specifying the defearule of easievitetri mogoditeo, acs leanvr Ototh BB> and set 1 to the < PIN>, 10 to the < SBIM1: O>.

- (2) Start condition and slave address generation
 - a. Master mode

In the master mode, the start condition and the start

Check a bus free sta # Q)s. (when < BB>

Set the SBI OCR1 < ACK > tgoe 1m (Ae) k ma on wall sepote cify a slavandadirection bit to be transmitted to the SBI OC

When SBI OCR⊋Q,BB he start condition are generated SBI OCR2<MST, TRX, BB, PIN>. Subsequently to the are output from the SCL pin. While eight clocks are the direction bit which are set to the SBI ODBR. At released and the acknowledge signal is received.

An INTS2 interrupt request occurs at the falli <PIN> is cleared to O. In the master mode, the SC low-level while <PIN>nitsrOr.uWhitemeanuest occurs, changed according to the direction bit only where turned from the slave device.

b. Slave mode

In the slave mode, the start condition and the sl

After the start condition is received from the nare output from the SCL pin, the slave address an output from the master device are received.

When a GENERAL CALL or the same address as the solution of the same address as the solution of the same address as the same addres

An INTSBI interrupt request occurs on the falli <PIN> is cleared to O. In slave mode the SCL line i while the =OPIN>

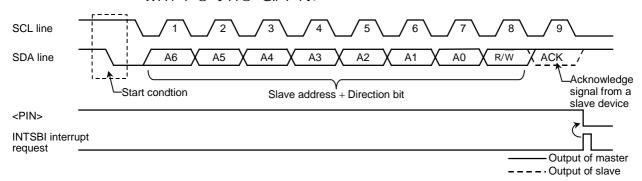


Figure 3.10.13 Start Condition Generation and Slave Address Transfer

(3) 1-worddatatransfer

Check the <MST > by the I NTSBI interrupt process af completed, and determine whether the mode is a master

a. If < ⋈ST(>Master mode)

Check the <TRX> and determine whether the mode is $\underline{\text{When the}} < \underline{\text{TR}(xransmit} \text{ ter mode})$

Check the <LRB>. When <LRB> is 1, a receiver d Implement the process to generate a stop condit terminate data transfer.

When the <LRB> is O, theequese is viewer wids at a. When the transmitted data is 8 shrifted, eword atteat thou \$1 Bria On DBR. When the transmitted data is other than 8 bits, set the <B write the transmitted has a two is \$1 Bria On DBR end at a, <PIN a serial clock pulse is \$1 Greet me in a graet of two flows and of dat \$1 SCL pin, and then the one-word data is transmitted and NTSBI interrupt respective by the comes of the SCL pulled down to the low locater lands for the educate and the school length, repeat the procedure from the <LRB> check

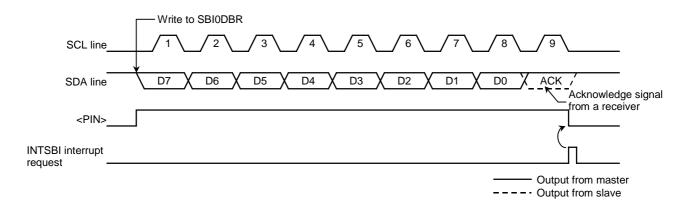


Figure 3.10.14 Example in which <BC2:0> = 000 and <ACK> = 1 in Transmitter Mode

When t∢ R≥=O(Recei ver mode)

When the next transmitted data is other than 8 b < ACK > to 1 and read the remesible explains release the (Data which is read immediately after a slave add the data is read, < PIN > becomes 1.

Serial clock pulse foint dantaen is stelenfilme on Souland out level from SDA pin with acknowledge timing.

An INTSBI interrupt request then occurs and the TMP91C82OA pule Salopoint to the low level. The TMP9 a clock pulse for 1 word of data transfer and the that received data is read from the SBI ODBR.

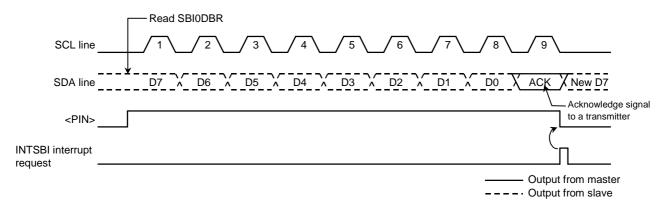


Figure 3.10.15 Example of when <BC2:0> = 000, <ACK> = 1 in Receiver Mode

In order to terminate the transmission of data to Obefore reading data which is 1 word before the ladata word does not generate a clock pulse as the adata has been transmitted and an interrupt requised. O> to OO1 and read the data. The TMP91C82OA go 1-bit data transfer. Since the master device is a remains high. The transmitter interprets the high receiver indicates to the transmitter that data

After the one data bit has been received and a generated, the TMP91C82pAcgedietiabes Section and terminates data transfer.

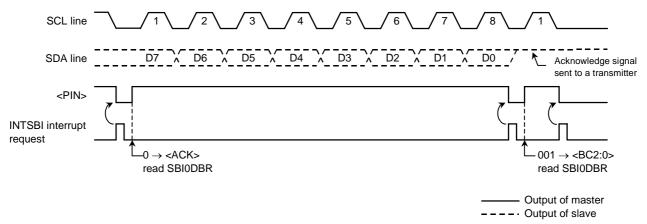


Figure 3.10.16 Termination of Data Transfer in Master Receiver Mode

b. If < MS=TO>(Slave mode)

In the slave mode the TMP91C82OA operates either slave mode after losing arbitration.

In the slave mode, an INTSBI interrupt request o recei ves a slave address or a GENERAL CALL from th GENERAL CALL is received and data transfer is co received address. In the master mode, the TMP91C8 if it losing arbitratteiromupAtnrleNqTuSeBilt ionccurs when transfer termi nates a 6 the rWhesiamglaNtTbSiBtlriantterru occurs the <PIN> is cleal mpeichtios Opeauch detaile (SwCn to the Eitherreading/writingfrom/tothe SBI ODBR or se the SCL pinaftewit meing t

Check the SBIOSR<ALA-AS×,TRaxn-d ≪AnDxD>implements processes according to conditions listed in the

or set the <PIN> to 1.

Set <BC2:0> to the number of bits in

a word and read the received data

from SBI0DBR.

<AL> <AAS> <AD0> Conditions 0 The TMP91C820A loses arbitration when

<TRX> **Process** Set the number of bits a word in <BC2:0> and write the transmitted transmitting a slave address and receives a slave address for which the value of the data to SBI0DBR. direction bit sent from another master is 1. 0 In salve receiver mode the TMP91C820A receives a slave address for which the value of the direction bit sent from the Λ In salve transmitter mode a single word of Check the <LRB> setting. If <LRB> is transmitted. is set to 1, set <PIN> to 1 since the receiver win no request the data Set <BC2:0> to the number of bits in a which follows. Then, clear <TRX> to word. 0 to release the bus. If <LRB> is cleared to 0 of and write the transmitted data to SBI0DBR since the receiver requests next data. Read the SBI0DBR for setting the 1/0 The TMP91C820A loses arbitration when <PIN> to 1 (Reading dummy data) transmitting a slave address and receives

a slave address or GENERAL CALL for

which the value of the direction bit sent

The TMP91C820A loses arbitration when transmitting a slave address or data and

In slave receiver mode the TMP91C820A receives a slave address or GENERAL CALL for which the value of the direction

In slave receiver mode the TMP91C820A

from another master is 0.

terminates word data transfer.

bit sent from the master is 0.

terminates receiving word data.

0

1

0

0

1/0

1/0

Table 3.10.1 Operation in the Slave Mode

(4) Stop condition generation

When the SBI OSR<BB> is "off" getrheer sate iquagnacset op condit by setting "111" to the SBI OCR2<MST, TRX, PI N> and "not modify the contents of the SBI OCR2<MST, TRX, PI I generated on a bus. When puSICILeld the wonf by uostiheer devices generates a stop condition of the SDI OCR2 wonf by uostiheer devices.

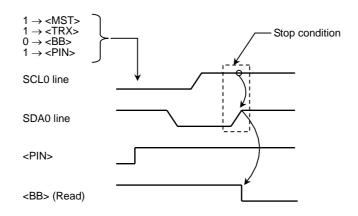


Figure 3.10.17 Stop Condition Generation (Single master)

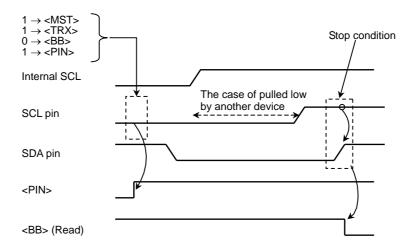


Figure 3.10.18 Stop Condition Generation (Multi master)

(5) Restart

Restart is used to chadge at the admiss feet to be to wo feen a master as lave device during transferring data. The follow TMP91C82OA is in the master mode.

Clear Oto the SBI OCR2< MtbsTetTRX pBBe, < PhN> and relear The SDAline remains the highlevel and the SCL pinis is not generated on a bust, o ab eo is sia strains yus mead te from ot Check the SBI OSR < BB> until it becomes Oto check that Check the < LRB> until it becomes 1 to check that the down to the low letwell downsort Amfetrer cardon uf is similarly githaut free generate a start condition with procedure 3. 10. 6 (2)

In order to meet setup ti me when russota wai nigng alkenes software from the ti me of meta atthien logulsoicsofnifee unti generate the start condition.

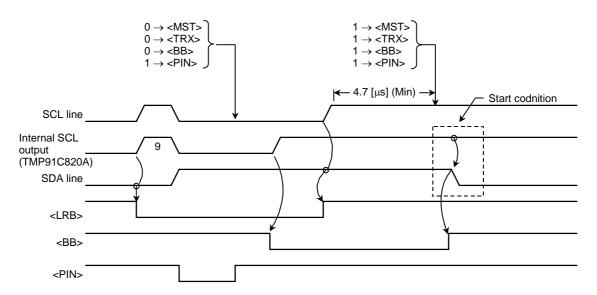
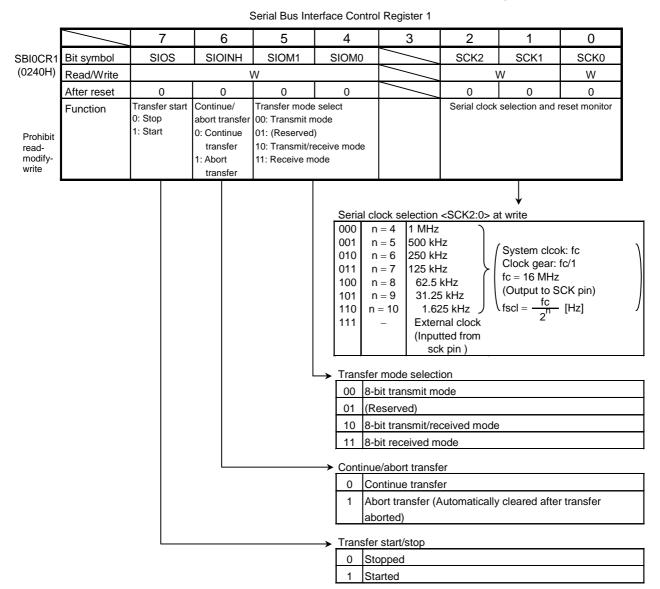
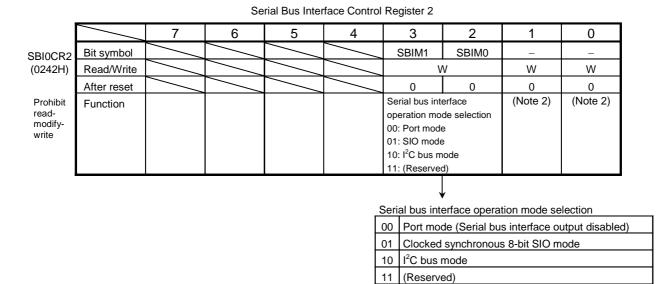



Figure 3.10.19 Timing Diagram for TMP91C820A Restart

3.10.7 Clocked Synchronous 8-Bit SIO Mode control


The following registers are used to control and moniserial businterface (SBI) is being operated in clock

Note: Set the tranfer mode and the serial clock after setting <SIOS> to 0 and <SIOINH> to 1.

	Serial Bus Interface Data Buffer Register										
SBI0DBR		7	6	5	4	3	2	1	0		
(0241H)	Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Prohibit read-	Read/Write	R (Receiver)/W (Transfer)									
modify-	After reset	Undefined									
write ¹											

Figure 3.10.20 Register for the SIO Mode (1/3)

Note 1: Set the SBI0CR1<BC2:0> 000 before switching to a clocked synchronous 8-bit SIO mode.

Note 2: Please always write "00" to SBICR2<1:0>.

Serial Bus Interface Status Register

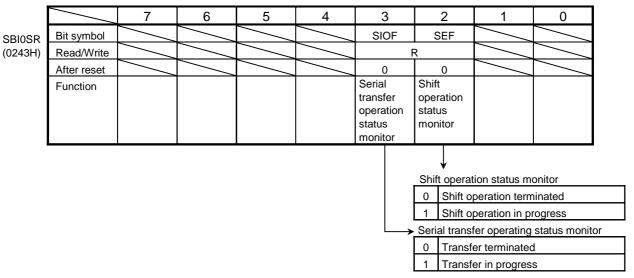


Figure 3.10.21 Registers for the SIO Mode (2/3)

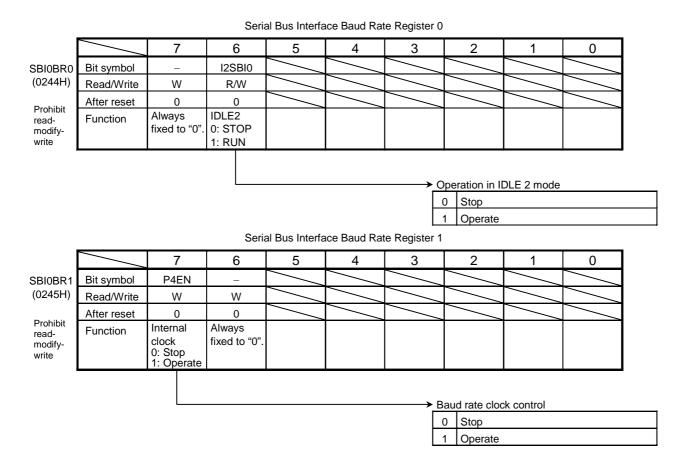


Figure 3.10.22 Registers for the SIO Mode (3/3)

(1) Serial Clock

a. Clock source

SBIOCR1<SCK2: O>liescutsteholet food et owing functions:

<u>Internal</u> clock

Ininternal clock mode one of seven frequencies signal is output to the outside on the SCK pin. The transfer starts. When the device is writing (in receive mode), data can botcf ockowathe se an autfunction is executed which automatically stops the shift operation until reading or writing has been

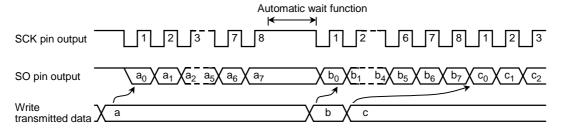


Figure 3.10.23 Automatic Wait Function

External clock1(1<1S)CK2: O>

An external clock input via the SCK pinis used a ensure the integrity of shift operations, both to pulse widths shown beilnotwa imust.b the mean maximum data frequency is 1 MHz6(MWhze)nfc

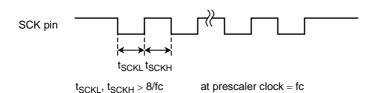


Figure 3.10.24 Maximum Data Transfer Frequency when External Clock Input Used

b. Shift edge

Data is transmitted on the leading edge of the cledge.

<u>Leadinge</u>dge shift

Data is shifted on the leading edge of the serial SCK pininput/output).

Trailing edge shift

Datais shifted on the trailing edge of the serial SCK pininput/output).

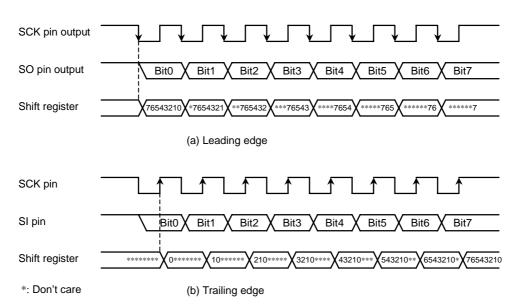


Figure 3.10.25 Shift Edge

(2) Transfer modes

The SBI OCR1 < SI OM1: O> is used to select a transmit mode.

a. 8-bittransmit mode

Set a control register to a transmit mode and v SBI ODBR.

After the transmit data is written, set the SBI of transfer. The transmintered ndant is BIs Of Dr Barnts of the shirt and output to the SOpinin synchronized with the least significant bit (iLsS si) on Withaetnatihse threams finerre register, the SBI ODBR becomes empty. An INTSBI request is generated to request new data.

When the internal clock is used, the serial clocking function will be initiated if new data is not load the specified 8-bit day then between a mathematic automatic and the function is canceled.

When the external clock is used, data should be we data is shifted. The dtertærrsmfierre slipteye til hes maximum de between the time when an interrupt request is gen is written to SBI ODBR by the interrupt service pr

When the transmit ises\$talrot\$eRd√SelfOtFexgtohes 1 output SOpinholds final bit of the last data until falli

Transmitting data is telmed ex \$1 lb 9 Scol tear 10 i brygthe buff interrupt service program or setting the < \$1 OI N cleared, the transmitted mode ends when all data data is surely transmits telept by the \$1 pe to \$2 pe \$2 pe \$3 pe \$4 pe \$

When an external closs of inescuesses dariyttics callear SBI OSF before new data is sholufintineydd, acttahiess wlirsa en, smitted an ends.

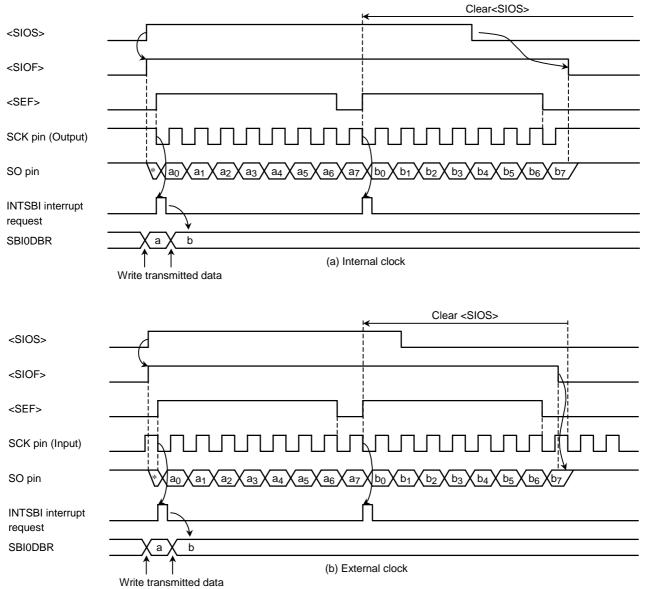


Figure 3.10.26 Transfer Mode

```
STEST1: BIT SEF, (SBIOSR) = 1 then If oxo DEF>
JRNZ, STEST1

STEST2: BIT O, (P7) = 0 then ISOMP
JRZ, STEST2
LD (SBIOCR1), 000004-101B; <SIOS>
```

b. 8-bitreceive mode

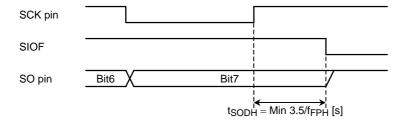


Figure 3.10.27 Transmitted Data Hold Time at End of Transmission

Set the control reginosoftee antob sreetc & BV @ CR1 < SIOS > switching to receive mode. Data is received into and synchronized with a tale tsienroj falt conhobble, least si (LSB). When 8-bit datatias insetcreain vsefole; r the edid far om the sto SBIODBR. An INTSBI (Buffer full) interrupt rethat the received data be read. The data is then interrupt service program.

When an internal clock is used, the serial clock function will be in effect until the received dat

When an external clock is used, since shift oper external clock pulse, the received data should be next serial clock pulsed ivsed reportables its first better read, any which is to be received, is canceled. The maximexternal clock is used is determined by the delay interrupt request is generated and the time when

Receiving of data ends when <SIOS> is cleared to service program or when 1.SIOI<NSHDS is etcleared to data is transferred to SBIODBR in complete blocks the transfer is complete in Immwhreather it adata is bei properly by the program, set SBIOSR<SIOF> to be swhen receiving has been to be incompleted, the last data is read. When <SIOINH> is <SIOF> is cleared to O. (The received data become readit.)

Note: When the transfer mode is changed, the contents of SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing <SIOS> to 0, read the last data, then change the mode.

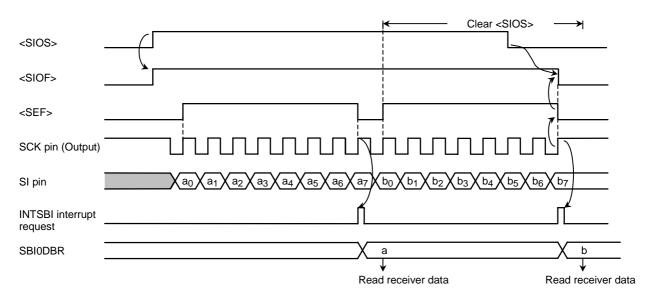


Figure 3.10.28 Receiver Mode (Example: Internal clock)

c. 8-bittransmit/receive mode

Set a control register to a transmit/receive modes After the data has been written, set SBIOCR transmitting/receiving. When data is transmitted in the stansmitting from the least SBI gamid system through the set of the serial clocks ignal. When data the SI pin on the trailaing lead gead gead for the shift register NTOSEBIIOND Bear and paint equest in the interrupt service program reads the receive register and writes the three to read at the set of the service of the

When an internal clock is used, the automatic wuntil the received data has been read and the next

When an external clock is used, since the shift the external clock, receit vends and staticed recent a is wrinewshift operation is executed. The maximum traclock is used is determined by the delay time between the second and a second a second and a second a seco

When the transmit ises\$talrot\$eRd≤\$dfOtFe>rgtches 1 output SOpinholds final bit of the last data until falli

Transmitting/receiving data ends when <SIOS>i interrupt service proglr<8ml Olf WHein SBleOCRO 1. When is cleared to 0, received data is transferred to transmit/receive mode ends when the transfer is whether data is being transmitted/received proptobe sensed. <SIOF>is set to 0 when transmitting/received to 0.

Note: When the transfer mode is changed, the contents of SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing <SIOS> to 0, read the last data, then change the transfer mode.

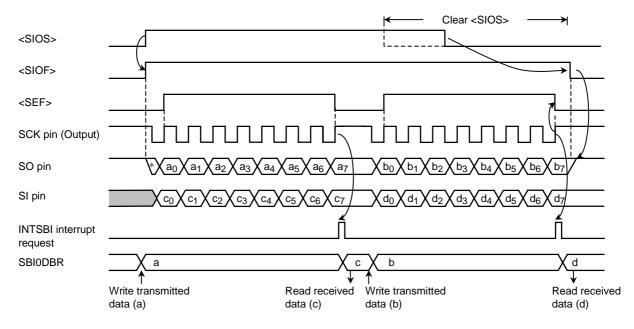


Figure 3.10.29 Transmit/Received Mode (Example using internal clock)

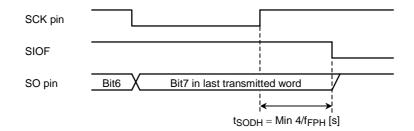


Figure 3.10.30 Transmitted Data Hold Time at End of Transmit/Receive

3.11 Analog/Digital Converter

The TMP91C82OA incorporates a 10-bit successive ap converter (ADconverter) with 8-channel analoginput. Figure 3. 11. 1 is a block diagram of the ADconverter. The AN7) are shared with the input-only port 8 and can thus be

Note: When IDLE2, IDLE1 or STOP mode is selected, so as to reduce the power, with some timings the system may enter a standby mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

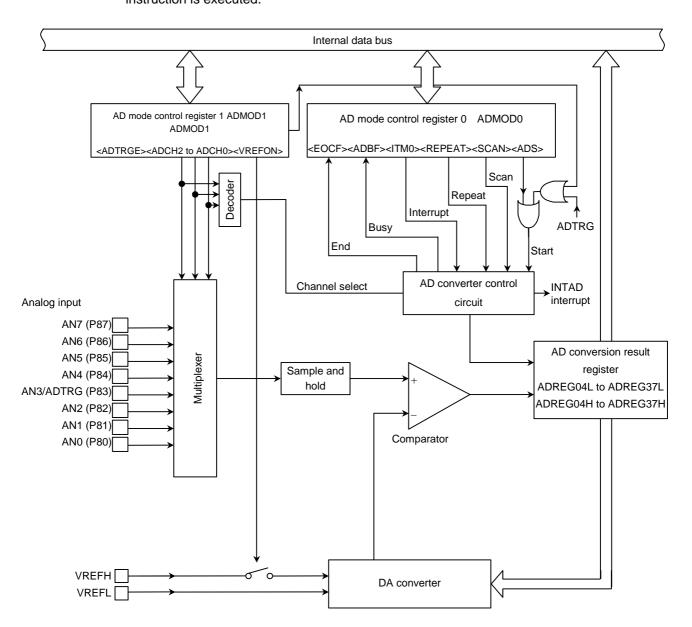


Figure 3.11.1 Block Diagram of AD Converter

3.11.1 Analog/Digital Converter Registers

The two AD mode controll rtenge i As Diteors voe contror ADMODO and The eight AD convers i ol no ol we tran up pope sit a missi (ADREGO 4 H/L, ADREG 26 H/L and ADREG 37 H/L) store the results of AD cofigure 3. 11. 2 shows the registers related to the AD co

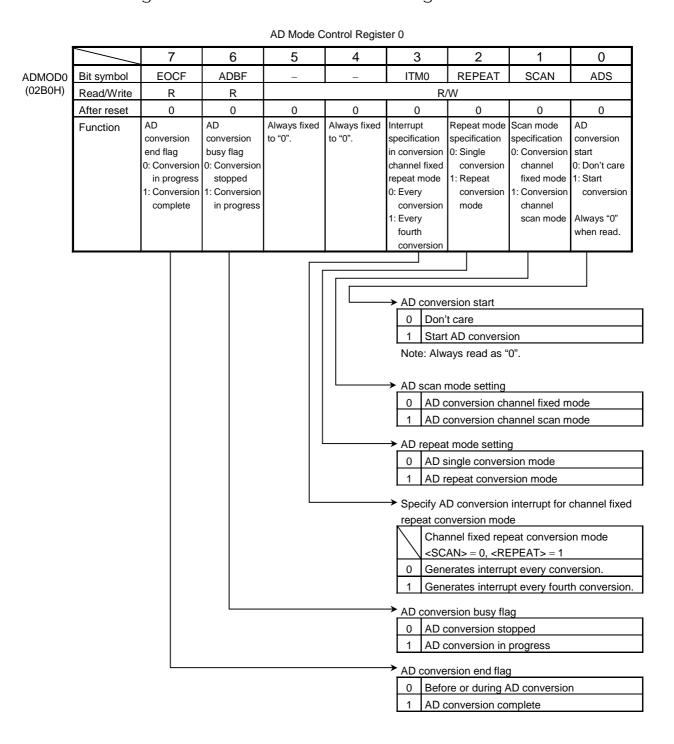
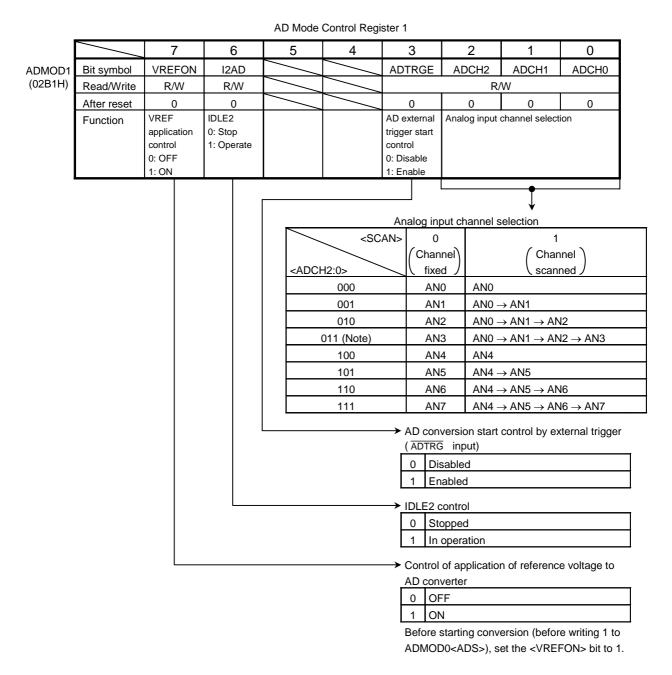



Figure 3.11.2 AD Converter Related Register

Note: As pin AN3 also functions as the \overline{ADTRG} input pin, do not set <ADCH2:0> = 011 when using \overline{ADTRG} with <ADTRGE> set to 1.

Figure 3.11.3 AD Converter Related Register

AD Conversion Data Low Register 0/4

ADREG04L (02A0H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR01	ADR00						ADR0RF
Read/Write	F	₹						R
After reset	Unde	fined						0
Function		2 bits of AD on result.						AD conversion data storage flag 1:Conversion result stored

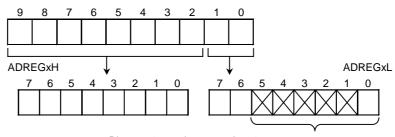
AD Conversion Data Upper Register 0/4

ADREG04H (02A1H)

		7	6	5	4	3	2	1	0
ιВ	it symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
R	lead/Write		R						
A	fter reset		Undefined						
F	unction	Stores upper 8 bits AD conversion result.							

AD Conversion Data Lower Register 1/5

ADREG15L (02A2H)


	7	6	5	4	3	2	1	0
Bit symbol	ADR11	ADR10						ADR1RF
Read/Write	l i	3						R
After reset	Unde	efined						0
Function		2 bits of AD on result.						AD conversion result flag 1:Conversion result stored

AD Conversion Data Upper Register 1/5

ADREG15H (02A3H)

		7	6	5	4	3	2	1	0
ы	Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
	Read/Write				F	₹			
	After reset		Undefined						
	Function		Stores upper 8 bits of AD conversion result.						

Channel x conversion result

- Bits 5 to 1 are always read as 1
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.4 AD Converter Related Registers

AD Conversion Result Lower Register 2/6

ADREG26L (02A4H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR21	ADR20						ADR2RF
Read/Write	F	₹						R
After reset	Unde	fined						0
Function	Stores lower conversion	2 bits of AD on result.						AD conversion data storage flag 1:Conversion result stored

AD Conversion Data Upper Register 2/6

ADREG26H (02A5H)

		7	6	5	4	3	2	1	0
.	Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
	Read/Write		R						
ĺ	After reset		Undefined						
	Function		Stores upper 8 bits of AD conversion result.						

AD Conversion Data Lower Register 3/7

ADREG37L (02A6H)


	7	6	5	4	3	2	1	0
Bit symbol	ADR31	ADR30						ADR3RF
Read/Write	F	₹						R
After reset	Unde	efined						0
Function		· 2 bits of AD on result.						AD conversion data storage flag 1:Conversion result stored

AD Conversion Result Upper Register 3/7

ADREG37H (02A7H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
Read/Write		R						
After reset		Undefined						
Function	Stores upper 8 bits of AD conversion result.							

Channel x conversion result

- Bits 5 to1 are always read as 1.
- Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

Figure 3.11.5 AD Converter Related Registers

3.11.2 Description of Operation

(1) Analogreference voltage

A high-level analog reference voltage is applied to reference voltage is applied to the VREFL pin. To pervoltage, the difference VREFL we exist voltage. The result of the division is then compared to the division is then compared to the division is the new parents.

To turn off the switch between VREFH and VRE ADMOD1 < VREFON > in AD mode control register 1. To so OFF state, first write a 1 to ADMOD1 in Vire FtOne > i nutaeir reference voltage stalbaite of the following the mode transport of the mode to the mode transport of the mode transport of

(2) Analoginput channel selection

The analoginput channel selection varies depends converter.

- Inanaloginput channel fixed=r0x)de (ADMODO<SCAN> Setting ADMOD1<ADCH2: O> selects one of the inpu input channel.
- Inanaloginput channel scan moloje (ADMODO < SCAN > Setting ADMOD1 < ADC bolze Coon f stehlee ceit os ht scan modes.

Table 3. 11. 1 illustrates analog i nput channel sel On a reset, ADMODO<SCAN> i s set to O and ADMOD1<ADCOOO. Thus pin ANOs sefexted in prust rochtaused a Pianalog channels can be used as standard i nput port pins.

<adch2:0></adch2:0>	Channel Fixed <scan> = 0</scan>	Channel Scan <scan> = 1</scan>
000	AN0	AN0
001	AN1	$AN0 \rightarrow AN1$
010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
011	AN3	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
100	AN4	AN4
101	AN5	AN4 → AN5
110	AN6	$AN4 \rightarrow AN5 \rightarrow AN6$
111	AN7	$AN4 \to AN5 \to AN6 \to AN7$

Table 3.11.1 Analog Input Channel Selection

(3) Starting AD conversion

or ADMOD1 < ADTRGE > in AD mode control register 1, a ADTRGP in. When AD conversion starts, the AD co ADMODO < ADBF > will be set to 1, indicating that ADco Writing a 1 to ADMODO < ADS > during AD conversion retime, to determine whether the AD conversion result

To start AD conversion, write a 1 to ADMODO < ADS > in

time, to determine whether the ADconversion resultable value of the conversion data storage flag ADREGxL<.

During ADconversion, a falaDit Repiero well in betign others.

- (4) ADconversi on modes and the ADconversi on endinted The four ADconversi on modes are:
 - Channel fixed single conversion mode
 - Channel scansingle conversion mode
 - Channel fixed repeat conversion mode
 - Channel scanrepeat conversion mode

The ADMODO<REPEAT> and ADMODO<SCAN> settings in register Odetermine the ADmode setting.

Completion of AD conversion triggers an INTAD AI request. Also, ADMODO<EOCF> will be set to 1 to ind been completed.

a. Channel fixed single conversion mode

Setting ADMODO<REPEAT > and ADMODO<SCAN > to OO channel fixed single conversion mode.

In this mode data on one specified channel is conversion has been completed, the ADMODO<EO ADMODO<ADBF>is clearleNdTtAcDO, natment ampt request is

b. Channel scansingle conversion mode

Setting ADMODO<REPEAT> and ADMODO<SCAN> to O1 channel scapsivengsieon mode.

In this mode data on the specified scan channels scan conversion chansploeted, ADMODO<EOCF> is sADMODO<ADBF>is clearleNdTtAcDO, natmed ampt request is

c. Channel fixed repeat conversion mode

Setting ADMODO<REPEAT > and ADMODO<SCAN > to 10 channel fixed repeat conversion mode.

In this mode data on one specified channel is conversion has been completed, ADMODO<EOCF>ADMODO<ADBF> is not cleared to O but held at 1. I generation timin by shokes et thing of ADMODO<ITMO>.

Setting < I TMO > to O generates an interrupt reconversion is completed.

Setting < I TMO> to 1 genepa treesques to the completi four th conversion.

d. Channel scanrepeat conversion mode

Setting ADMODO<REPEAT> and ADMODO<SCAN> to 11 channel scanrepeat conversion mode.

In this mode data on the specified scan channels each scoomversion has been completed, ADMODO<EOCINTADI nterrupt request is generated. ADMODO<AE held at 1.

To stop conversion in a repeat conversion mode (to ADMODO < REPEAT > . After the current conversion repeat conversion and ADMODO ADBE > is cleared to

Switching to a halt state (IDLE2 mode with ADMOIDLE1 mode or STOP mode) i mmediately stops operative when AD conversion is still in progress. In reases candd), when the drawletris is the reast add, to from the ingle conversion, more assess a and b), conversion the halt is released (The converter remains

Table 3. 11. 2 shows the relationship between the interrupt requests.

Table 3.11.2 Relationship between AD Conversion Modes and Interrupt Requests

Mode	Interrupt Request	ADMOD0			
Mode	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>	
Channel fixed single conversion mode	After completion of conversion	Х	0	0	
Channel scan single conversion mode	After completion of scan conversion	Х	0	1	
Channel fixed repeat	Every conversion	0	1	0	
conversion mode	Every forth conversion	1	1	0	
Channel scan repeat conversion mode	After completion of every scan conversion	x	1	1	

X: Don't care

(5) ADconversiontime

84 statess(altOHF) 516 MHz) are required for the AD conchannel.

(6) Storing and reading the results of AD conversion
The AD conversion data ruppgpies taem of HANDER & AD REGO 4H/L store the results of AD conversion. (ADREGO 4H/L tregisters.)

Table 3. 11. 3 shows the correspondence between the registers, which are used to hold the results of ADc

Table 3.11.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

	AD Conversion Result Register						
Analog Input Channel (Port 8)	Conversion Modes Other than at Right	Channel Fixed Repeat Conversion Mode (Every 4th conversion)					
AN0	ADREG04H/L						
AN1	ADREG15H/L	ADREG04H/L ←					
AN2	ADREG26H/L	↓ ADREG15H/L					
AN3	ADREG37H/L	ADREGION/L					
AN4	ADREG04H/L	V ADREG26H/L					
AN5	ADREG15H/L						
AN6	ADREG26H/L	ADREG37H/L					
AN7	ADREG37H/L						

<ADRXRF> bitO of the AD conversion data lower reconversion data storage flag. The storage flag incresult register has been read or not. When a converconversion resulf ltargeigis stetri, othe When either of the Aregisters (ADREGXHor ADREGXL) is read, the flag is

Reading the AD conversion result also clears t ADMODO<EOCF> to O.

Settingexample:

a. Convert the analoginput voltage on the AN3 pin a address 1000Husing the ADinterrupt (INTAD) produced

Main routine:

Interrupt routine processing example:

WA ← ADREG37 Read value of ADREG37L and ADREG37H into 16-bit general-purpose register WA.

WA >> 6 Shift contents read into WA six times to right and zero-fill upper bits.

(1000H) ← WA Write contents of WA to memory address 1000H.

b. This example repeated by repositive ofts at the esample the thr AN1 and AN2, using channel scan repeat conversion

X: Don't care, -: No change

3.12 Watchdog Timer (Runaway detection timer)

The TMP91C82OA features a watchdog timer for detecting The watchdog timer (WDT) is used to return the CPU to nor CPU has started to malfunction (Runaway) due to causes timer detects a malfunction, it generates a non-maskabl the malfunction.

Connecting the watchdoegrteismetropiunt potetrontahily forces ar

3.12.1 Configuration

Figure 3. 12. 1 is a block diagram of he watchdog timer

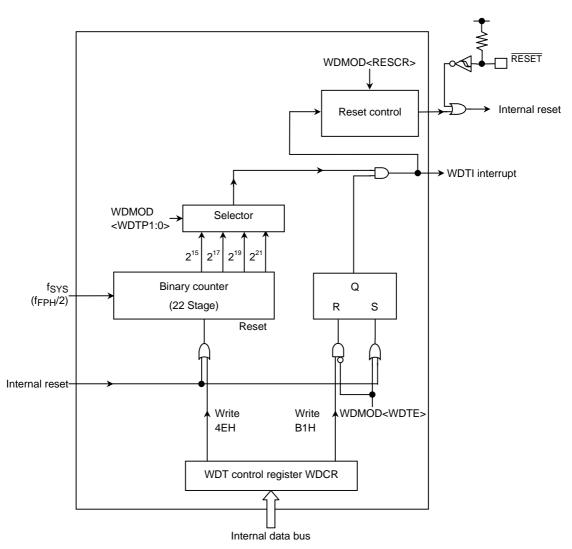


Figure 3.12.1 Block Diagram of Watchdog Timer

The watchdog timer consists of a 22-stage binary cou(sfy)s as the input clock. The binsyrs/2cs6\usin2tesfys62\text{am obut put fsys62}. Selecting one of the outputs using WDMOD<WDTP1 interrupt and outputs watchdog timer out when an over

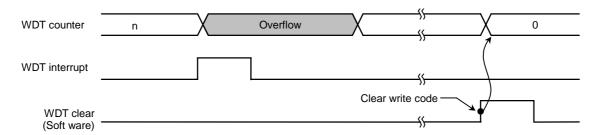


Figure 3.12.2 Normal Mode

The runaway detection cross nuclette aintoolts now breeset pininte In this case, the reset time will be between 22 and 29

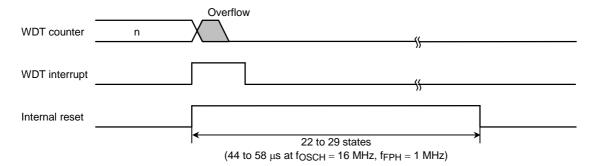


Figure 3.12.3 Reset Mode

3.12.2 Control Registers

The watchdog timer WDT is controlled by two controls (1) Watchdog timer mode register (WDMOD)

a. Setting the detection time for the watchdog time. This 2-bit register is used for setting the watchen detecting runaway. On a reset this reg WDMOD<WDTP\$OO>

The detection times for WDT are shown in Figure 3

b. Watchdog ti mer enabl e/disable control registe
 On a reset WDMOD<WDTE>isinitialized to 1, enab

To disable the watchdogy it moesre, titthiis boe detsos @aand to disable code (B1H) to to homen twa obch moe og oj sitemer (WDCR). To difficult for the water cohiososoptie note bory runaway.

However, it is possible to return the watchdog t the enabled state merely by setting < WDTE> to 1.

c. Watchdog ti mer out reset connecti on < RESCR >

This register is used to connect the output of RESET terminal internally. Since WDMOD<RESCR>is a reset by the wartwill domgotti bree performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the bina Disable control the wad icts allowerd to the wad icts allowerd to the work to the WDCF Oand then writing the disable code (B1H) to the WDCF

WDMOD \leftarrow 0 - - - - - 0 Clear WDMOD<WDTE> to 0. WDCR \leftarrow 1 0 1 1 0 0 0 1 Write the disable code (B1H).

• Enablecontrol

Set WDMOD<WDTE> to 1.

Watchdog ti mer cl ear control

To clear the binary counter and cause counting t (4EH) to the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

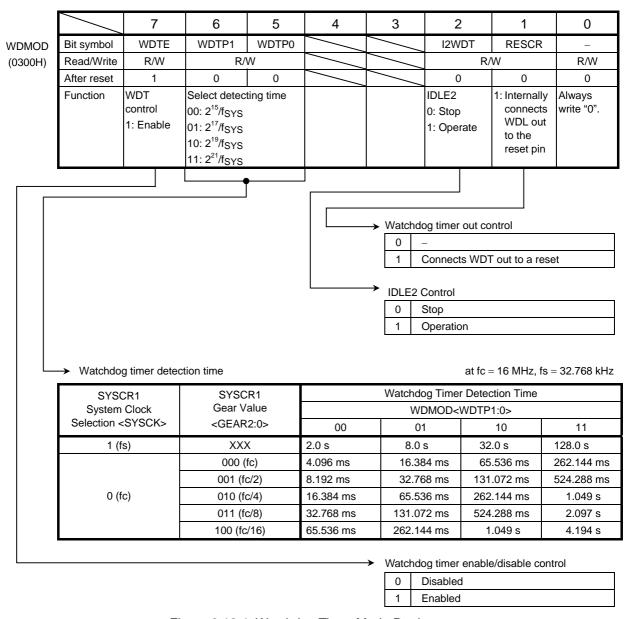


Figure 3.12.4 Watchdog Timer Mode Register

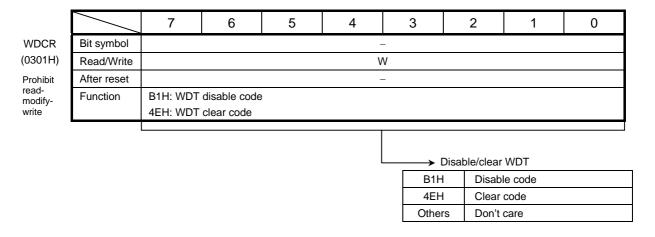


Figure 3.12.5 Watchdog Timer Control Register

3.12.3 Operation

The watchdog timer generates an INTWD interrupt whe WDMOD<WDTP1: O> has elapsed. The watchdog timer must before an INTWD interrupt will be generated. If the Coccurs) due to causes sumo to tans x nexo i ustee, thruet ichoests ruction ubinary counter, the binaray nd caunnit NeTrWD il nitoevrerufpitowill be The CPU will detect malfunt cotti hoen! (NRTUMD iwaty) endrugept and in is possible to return toptenea CtP London on menanis of an antiprogram.

The watchdog timer does not operate in IDLE1 or STOP continues counting duri Brus by sets less (when

When the device is in IDLE2 mode, the operation WDMOD<I 2WDT > setting. Ensure that WDMOD<I 2WDT > is set IDLE2 mode.

Example: a. Clear the binary counter.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

b. Set the watchdog ti me 1 r 3 stection ti me to 2 WDMOD \leftarrow 1 0 1 - - - - 0

c. Disable the watchdog timer.

WDMOD $\leftarrow 0 - - - - 0$ Clear WDTE to 0.

WDCR \leftarrow 1 0 1 1 0 0 0 1 Write the disable code (B1H).

3.13 Real Time Clock (RTC)

3.13.1 Function Description for RTC

- 1) Clock function (Hour, minute, second)
- 2) Calendar function (Month and day, day of the week,
- 3) 24-or 1201/IPM/Jrc(Asck function
- 4) +/30 second adjustment function (by software)
- 5) Alarmfunction (Alarmoutput)
- 6) Alarminterrupt generate

3.13.2 Block Diagram

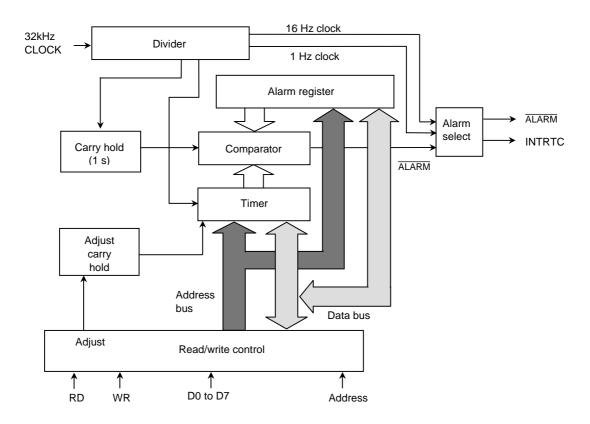


Figure 3.13.1 RTC Block Diagram

Note 1: The Christian era year column:

This product has year column toward only lower two columns. Therefore the next year in 99 works as 00 years. In system to use it, please manage upper two columns with the system side when handle year column in the christian era.

Note 2: Leap year:

A leap year is the year, which is divisible with 4, but the year, which there is exception, and is divisible with 100, is not a leap year. However, the year is divisible with 400, is a leap year. But there is not this product for the correspondence to the above exception. Because there are only with the year which is divisible with 4 as a leap year, please cope with the system side if this function is problem.

3.13.3 Control Registers

Table 3.13.1 PAGE 0 (Timer function) Registers

Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	0320H		40 s	20 s	10 s	8 s	4 s	2 s	1 s	Second column	R/W
MINR	0321H		40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.	Minute column	R/W
HOURR	0322H			20 hours	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	0323H						W2	W1	Wo	Day of the week column	R/W
DATER	0324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	0325H				Oct.	Aug.	Apr.	Feb.	Jan.	Month column	R/W
YEARR	0326H	Year 80	Year 40	Year 20	Year 10	Year 8	Year 4	Year 2	Year 1	Year column (Lower two columns)	R/W
PAGER	0327H	INTENA			ADJUST	ENATMR	ENAALM		PAGE	PAGE register	W, R/W
RESTR	0328H	DIS1HZ	DIS16HZ	RSTTMR	RSTALM	0	0	0	0	Reset register	Write only

Note: As for SECR, MINR, HOURR, DAYR, MONTHR, YEARR of PAGE0, current state is read when read it.

Table 3.13.2 PAGE 1 (Alarm function) Registers

Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	0320H										R/W
MINR	0321H		40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.	Minute column for alarm	R/W
HOURR	0322H			20 hours	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column for alarm	R/W
DAYR	0323H						W2	W1	Wo	Day of the week column for alarm	R/W
DATER	0324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column for alarm	R/W
MONTHR	0325H								24/12	24-hour clock mode	R/W
YEARR	0326H							LEAP1	LEAP0	Leap-year mode	R/W
PAGER	0327H	INTENA				ENATMR	ENAALM		PAGE	PAGE register	W, R/W
RESTR	0328H	DIS1HZ	DIS16HZ	RSTTMR	RSTALM	0	0	0	0	Reset register	Write only

3.13.4 Detailed Explanation of Control Register

RTCis not i ni ti al i zed by reset. Therefore, al I registers must be i ni ti al i zed at the

(1) Second col umn register (for PAGEO onl y)

SECR	
(0320H)	

		7	6	5	4	3	2	1	0
ľ	Bit symbol		SE6	SE5	SE4	SE3	SE2	SE1	SE0
I	Read/Write					R/W			
	After reset					Undefined			
	Function	"0" is read.	40 s column	20 s column	10 s column	8 s column	4 s column	2 s column	1 s column

0	0	0	0	0	0	0	0 s
0	0	0	0	0	0	1	1 s
0	0	0	0	0	1	0	2 s
0	0	0	0	1	0	0	4 s
0	0	0	0	1	0	1	5 s
0	0	0	0	1	1	0	6 s
0	0	0	0	1	1	1	7 s
0	0	0	1	0	0	0	8 s
0	0	0	1	0	0	1	9 s
0	0	1	0	0	0	0	10 s

0	0	1	1	0	0	1	19 s
0	1	0	0	0	0	0	20 s

0	1	0	1	0	0	1	29 s
0	1	1	0	0	0	0	30 s

0	1	1	1	0	0	1	39 s
1	0	0	0	0	0	0	40 s

1	0	0	1	0	0	1	49 s
1	0	1	0	0	0	0	50 s

1	0	1	1	0	0	1	59 s

TOSHIBA

(2) Minutecolumnregister (for PAGEO/1)

MINR	
(0321H	I)

I		7	6	5	4	3	2	1	0
	Bit symbol		MI6	MI5	MI4	MI3	MI2	MI1	MIO
	Read/Write					R/W			
	After reset					Undefined			
	Function	"0" is read.	40 min. column	20 min. column	10 min. column	8 min. column	4 min. column	2 min. column	1 min. column

0	0	0	0	0	0	0	0 min.
0	0	0	0	0	0	1	1 min.
0	0	0	0	0	1	0	2 min.
0	0	0	0	0	1	1	3 min.
0	0	0	0	1	0	0	4 min.
0	0	0	0	1	0	1	5 min.
0	0	0	0	1	1	0	6 min.
0	0	0	0	1	1	1	7 min.
0	0	0	1	0	0	0	8 min.
0	0	0	1	0	0	1	9 min.
0	0	1	0	0	0	0	10 min.
0	0	1	1	0	0	1	19 min.
0	1	0	0	0	0	0	20 min.
0	1	0	1	0	0	1	29 min.
0	1	1	0	0	0	0	30 min.
•							
0	1	1	1	0	0	1	39 min.
1	0	0	0	0	0	0	40 min.
1	0	0	1	0	0	1	49 min.
1	0	1	0	0	0	0	50 min.
_	_	_	_	_	_	_	
1	0	1	1	0	0	1	59 min

(3) Hour column register (for PAGEO/1)

a. In case of 24-hour clock mode (MONTHR<MOO>

		7	6	5	4	
HOURR	Bit symbol			HO5	HO4	
(0322H)	Read/Write					
	After reset					
	Function		•	20 haur	10 hour	0

	7	6	5	4	3	2	1	0			
Bit symbol			HO5	HO4	HO3	HO2	HO1	HO0			
Read/Write					R/	W					
After reset				Undefined							
Function	"0" is	read.						1 hour column			
					1						

0	0	0	0	0	0	0 o'clock
0	0	0	0	0	1	1 o'clock
0	0	0	0	1	0	2 o'clock
0	0	1	0	0	0	8 o'clock
0	0	1	0	0	1	9 o'clock
0	1	0	0	0	0	10 o'clock
0	1	1	0	0	1	19 o'clock
1	0	0	0	0	0	20 o'clock
1	0	0	0	1	1	23 o'clock

b. In case of 12-hour clock mode (MONTHR<MOO>

HOURR	
(0322H)	

	7	6	5	4	3	2	1	0	
Bit symbol			HO5	HO4	HO3	HO2	HO1	HO0	
Read/Write			R/W						
After reset			Undefined						
Function	"0" is	read.	PM/ AM	10 hour column	8 hour column	4 hour column	2 hour column	1 hour column	

0	0	0	0	0	0	0 o'clock (AM)
0	0	0	0	0	1	1 o'clock
0	0	0	0	1	0	2 o'clock
0	0	1	0	0	1	9 o'clock
0	1	0	0	0	0	10 o'clock
0	1	0	0	0	1	11 o'clock
1	0	0	0	0	0	0 o'clock (PM)
1	0	0	0	0	1	1 o'clock

TOSHIBA

(4) Day of the week column register (for PAGEO/1)

DAYR (0323H)

	7	6	5	4	3	2	1	0
Bit symbol						WE2	WE1	WE0
Read/Write						R/W		
After reset						Undefined		
Function		"0" is read.					W1	W0

0	0	0	Sunday
0	0	1	Monday
0	1	0	Tuesday
0	1	1	Wednesday
1	0	0	Thursday
1	0	1	Friday
1	1	0	Saturday

(5) Daycol umnregister (for PAGEO/1)

DATER (0324H)

	7	6	5	4	3	2	1	0	
Bit symbol			DA5	DA4	DA3	DA2	DA1	DA0	
Read/Write			R/W						
After reset				Undefined					
Function	"0" is	read.	Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	

			,			
0	0	0	0	0	0	0
0	0	0	0	0	1	1st day
0	0	0	0	1	0	2nd day
0	0	0	0	1	1	3rd day
0	0	0	1	0	0	4th day
0	0	1	0	0	1	9th day
0	1	0	0	0	0	10th day
0	1	0	0	0	1	11th day
0	1	1	0	0	1	19th day
1	0	0	0	0	0	20th day
1	0	1	0	0	1	29th day
1	1	0	0	0	0	30th day
1	1	0	0	0	1	31st day

TOSHIBA

(6) Month col umn register (for PAGEO onl y)

		7	6	5	4	3	2	1	0
MONTHR	Bit symbol				MO4	MO3	MO2	MO1	MO0
(0325H)	Read/Write								
	After reset						Undefined		
	Function	"0" is read.			10 months	8 months	4 months	2 months	1 month

0	0	0	0	1	January
0	0	0	1	0	February
0	0	0	1	1	March
0	0	1	0	0	April
0	0	1	0	1	May
0	0	1	1	0	June
0	0	1	1	1	July
0	1	0	0	0	August
0	1	0	0	1	September
1	0	0	0	0	October
1	0	0	0	1	November
1	0	0	1	0	December

(7) Select 24-hohorourlookookr (1f2or PAGE 1 only)

		7	6	5	4	3	2	1	0		
MONTHR	Bit symbol								MO0		
(0325H)	Read/Write								R/W		
	After reset								Undefined		
	Function		"0" is read.								

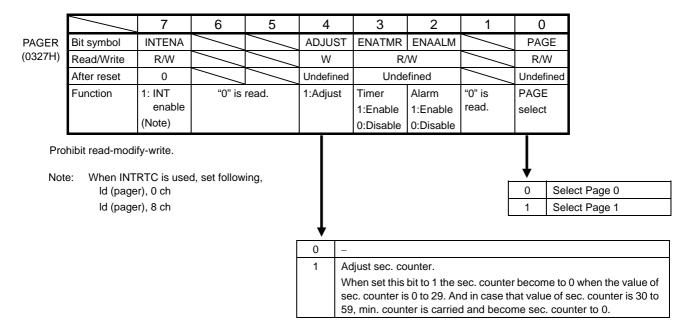
(8) Year column register (for PAGEO only)

YEARR (0326H)

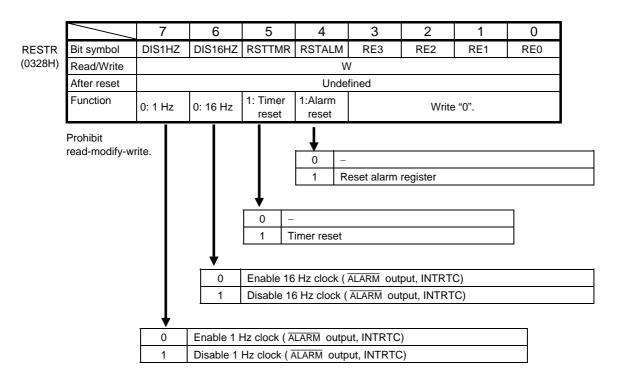
	7	6	5	4	3	2	1	0		
Bit symbol	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0		
Read/Write		R/W								
After reset		Undefined								
Function	80 years	40 years	20 years	10 years	8 years	4 years	2 years	1 year		

1	0	0	1	1	0	0	1	99 year
0	0	0	0	0	0	0	0	00 year
0	0	0	0	0	0	0	1	01 year
0	0	0	0	0	0	1	0	02 year
0	0	0	0	0	0	1	1	03 year
0	0	0	0	0	1	0	0	04 year
0	0	0	0	0	1	0	1	05 year

(9) Leap-year register (for PAGE1 only)


YEA (032

		7	6	5	4	3	2	1	0
ARR	Bit symbol							LEAP1	LEAP0
326H)	Read/Write							R/	W
	After reset							Unde	fined
	Function							00: Leap y	ear
								01: One ye	ear after
								leap ye	ear
				"0" is	read.			10: Two ye	ears after
								leap ye	ear
								11: Three	years
								after le	ap year



0	0	Current year is leap year
0	1	Present is next year of a leap year
1	0	Present is two years after a leap year
1	1	Present is three years after leap year

(10) Setting PAGE register (for PAGEO/1)

(11) Settingreset register (for PAGEO/1)

3.13.5 Operational Description

- (1) Readingtimer data
 - a. There is the case, which reads wrong data when happens during the operation which timer datare times with the following correct data.

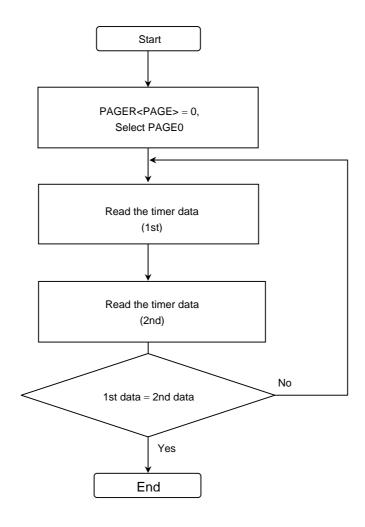
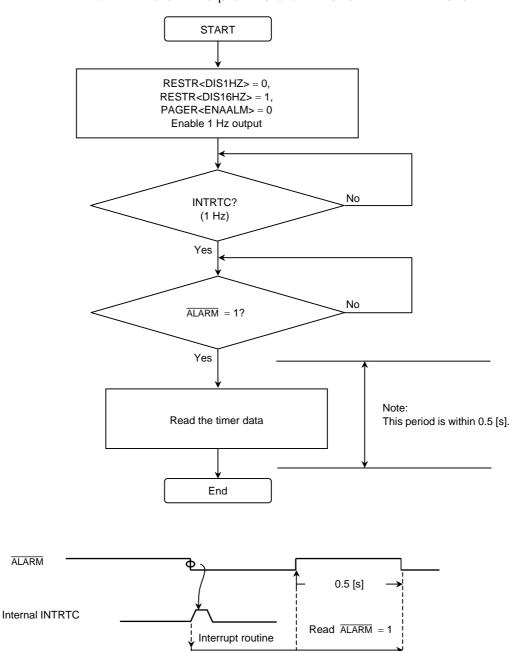



Figure 3.13.2 Flowchart of Timer Data Read

Readout of timerAdaR Mouthputused

Timer data cawniblen residn Ag A de kopeu o fout by d Ae Li Ae Rowting = 1 withinterrupt routine of INTRTC of 1 Hz.

The reason why read a timer of RTC after reading PORT in interrupt routine of ALARM = 1 is that carry of RTC timer occurs with rising edge of pulse period of 1 Hz. By reading timer during 0.5 second after carry happening, right data (A timer value) can be read.

Figure 3.13.3 Readout of the Timer Table Used ALARM Output

ALARM

(2) Writingtimer data

When there is carry on the way of write operation, exactly.

Therefore, in order to write in data exactly please

a. Resettingadivider

In RTC inside, there are 15-stage dividers, whi 32.768kHz. Carry of a timer is not done for one securite in data at this interval.

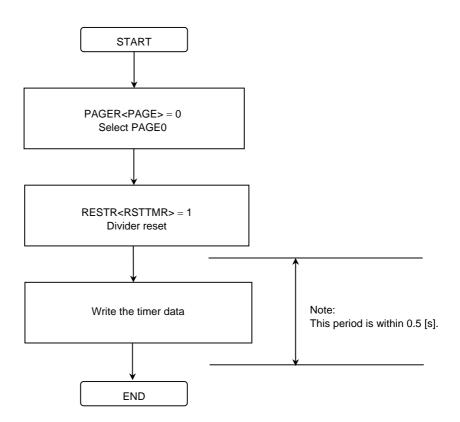


Figure 3.13.4 Flowchart of Data Write

b. Disabling the timer

Carry of a timer is prohibited when write in Oat prevent malfunction by i CLCOCK .HODLuDing a timer power to the cool of the c

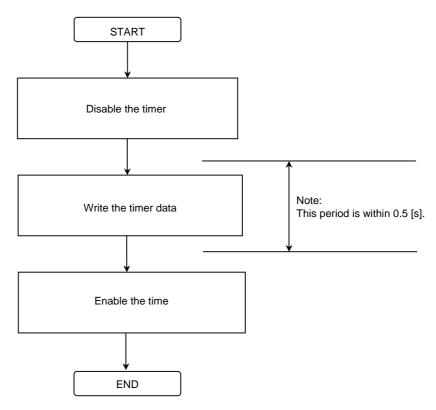


Figure 3.13.5 Flowchart of Timer Disable

3.13.6 Explanation of the Alarm Function

Can use all arm function by setting of register of PAGE to ALAR Notin as follows.

- (1) In accordance of alarmregister and the timer, of
- (2) Output clock of 1 Hz.
- (3) Output clock of 16 Hz.

Resetting does not i ni ti al i ze RTC. So the case of usi flag | NTERTCKEY < | RC > after reset.

(1) Inaccordance of alarmregister and a timer, output

When value of a timer of PAGE a a oncoergoiles of two of PAGE 1 woof PAGER < ENA-ALL Mobut puat ADRINO in and occur INTRTC.

Follows are ways using alarm.

Initialization of alarmis done by writing in 1 at Rall alarmbecomes don' allowaryes alonctohridse dawsiet, h value o occur INTRTC interrupt if PAGER < ENAALM > is 1.

Setting alarmmin., alarmhour, alarmday and alawriting indata at each register of PAGE 1.

When all setting contents accorded, RTC general PAGER < ENAALM > is 1. Howevert, caoe tset mattse) (Dwohnich does is considered to all ways accord.

The contents, which set it up once, cannot be reindependence. Initialization of alarmand resetti

Follows are example program at oAultApRundtithin and anno canha (PM12: OO) every day

- LD (PAGER), O9H; Alarmdisable, sett LD (RESTR), DOH; Alarminitialize
- LD (MONTHR), O1H; 24-hour clock mode
- LD (HOURR), 12H; Setting 12o'clock
- LD (MINR), OOH; Setting OOmin.

; Setupti me 31 µs Note)

- LD (PAGER), OCH; Alarmenable
- (LD (PAGER), 8CH ; Interrupt enable)

When CPU is operated by high-frequency oscillation clock at 32 kHzs() affoorut 1860 time regibsetcome evatiinds Inth example, it is neque sostarreyt tuop stetmes to be tween setting the enabling the alarmregister.

Note: This setup time is unnecessary under SLOW mode when you use only internal interruption.

(2) When output clock of 1 Hz

RTC outputs clockLafMilmzbtyosetting up PAGER,<ENAAl RESTR<DIS $161Z \times DIS161HZ \times And$ RTC generates INTRTC in falling edge of the clock.

(3) When output clock of 16 Hz

RTC outputs clockLoaRMi6Hbysetting up PAGEOR,<ENAAlRESTR<DIS1HZ×DIS1-60HZ And RTC generates INTRTC infalling edge of the clock.

3.14 LCD Controller (LCDC)

The TMP91C82OAincorporates two types liquid crystal of LCD Driver LSI. One circuit handles a RAM build-in type datain the LCD driveritse hain callned stans koit flytoper te i CpD calutie tver th must serially transfteorLtChDeodriisvpelrafyodraetaach display pictu

Shift-register type LCDdriver control mode (SR type)

Set the mode of operationsploatyadateed slates on composition and LCD: before start SR type.

After started SR type LCD@ roeuq upeus to toou @Plebaads ead data 1 data memory. After that LCDO6Itumaen somiLtGDdsaitzaeotfo externa through exclusive data knes (clobatro).sAtgatals tonnected L specified waveformsynchronizes with data transmissio After finish display data reading, LCDC cancels the bus As the display RAM, Soberal bubesuts mendin TMP91C82OA.

RAMbuilt-intype LCDdriver control mode (RAMmode)

Data transmission teck. Of Dechr by movies iens struction of CPU. After setting mode of operation to SFR, when moves inst LCDC outputs chip select signal to LCD driver connect (D1BSCPetc.). Therefore control of data transmission r is controlled by software. At this time, LCD controlle transmissi on data output from data bus (D7: O).

This section is constituted as follows.

- 3. 14. 1 Feature of LCDC of Each Mode
- 3. 14. 2 Block Diagram
- 3. 14. 3 SFR
- 3.14.4.1 Operation

 - 3. 14. 4. 2 Gray Scale Mode Indication
 - 3. 14. 4. 3 Memory Mapping
 - 3. 14. 4. 4 Hardware Cursor
 - 3. 14. 4. 5 Frame Signal Settlement
 - 3. 14. 4. 6 Timing Charts of Interpreting Memory Co
 - 3. 14. 4. 7 Interface Examples at SR Mode
 - 3. 14. 4. 8 Sample Program
- 14. 5 RAM Built-in Type LCD Driver Control Mode (R

Shift-Register Type LCD Driver Control Mode

- 3. 14. 5. 1 Operation
- 3. 14. 5. 2 InteratatenterampleAMMode
- 3. 14. 5. 3 Sample Program

3.14.1 Feature of LCDC of Each Mode

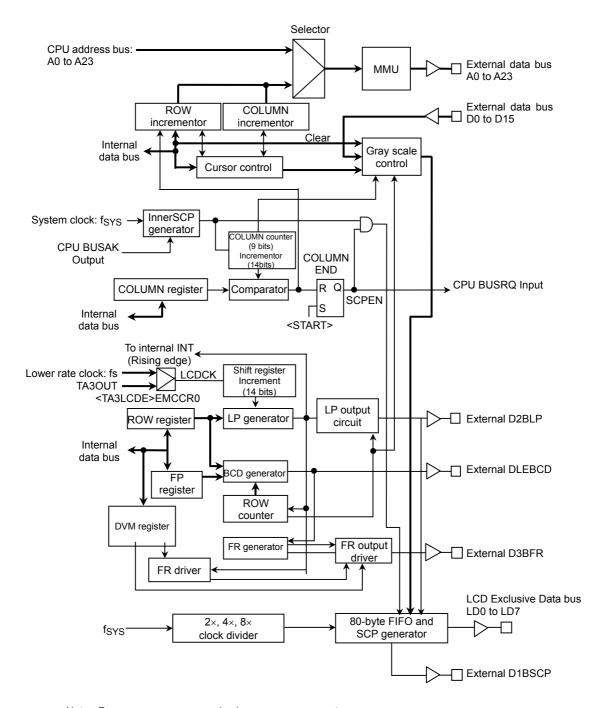

Each feature and operation of pinis as follows.

Table 3.14.1 Feature of LCDC of Each Mode

(Example: Toshi ba made LCDdri ver T6C13B, T6B66

		Shift Register Type LCD Driver Control Mode	RAM Built-in Type LCD Driver Control Mode
The number	r of picture in be handled	Common (Row): 128, 160, 200, 240, 320, 400, 480 Segment (Column): 128, 160, 240, 320, 400, 480, 560, 640	There is not a limitation
Display mer width	nory data bus	16-bit fixed	Depend on the setting of CS/WAIT controller.
LCD driver	data bus width	8-bit fixed	controller.
Transfer rate (at f _{FPH} = 3)		Min 55 ns/1 word at SDRAM/BURST Min 111 ns/1 word at SRAM	
(at IFFII 0	Data bus (D7 to D0)	Not used	Data bus; connect to data bus of LCD driver.
	LCD data bus: (LD7 to LD0)	Data bus; connect to data bus of LCD driver.	Not used
	Bus state	Not used	Bus state; connect with write enable pin of segment/common driver.
	Address bus: (A0)	Not used	Address 0; connect with D/I pin of segment driver. When A0 = 1 data bus value means display data, when A0 = 0 data bus means instruction data.
External pins	Shift clock pulse: (D1BSCP)	Shift clock pulses; connect with SCP pin of segment driver. Driver latches data bus value by falling edge of this pin.	Chip enable for segment driver 1; connect with $\overline{\text{CE}}$ pin of segment driver 1.
	Latch pulse: (D2BLP)	Latch pulses output; connect with LP pin of segment/common driver. Display data is renewed in output register in LCD driver by rising edge of this pin.	Chip enable for segment driver 2; connect with $\overline{\text{CE}}$ pin of segment driver 2.
	Frame: (D3BFR)	LCD frame output; connect with FR pin of segment/common driver.	Chip enable for segment driver 3; connect with $\overline{\text{CE}}$ pin of segment driver 3.
	Cascade pulse: (DLEBCD)	Cascade pulses output; connect with DIO1 pin of row driver. These pin outputs 1 shot pulse by every D3BFR pin changes.	Chip enable for common driver; connect with \overline{LE} pin of common driver.
	Display off: (DOFF)	Display off output; connect with DSPOF tern display off and H means display on.	ninal of segment/common driver. L means

3.14.2 Block Diagram

Note: Row means common, and column means segment.

Figure 3.14.1 LCDC Block Diagram

3.14.3 SFR

LCD Mode Register

LCDMODE (04B0H)

	7	6	5	4	3	2	1	0
Bit symbol	BAE	AAE	SCPW1	SCPW0	=	BULK	RAMTYPE	MODE
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	1	0	0	0	0	0
Function	Used by B AREA 0: Disable 1: Enable	Used by A AREA 0: Disable 1: Enable	00: Base S 01: 2 clocks 10: 4 clocks 11: 8 clocks	s s	Always write "0".	SDRAM BULK 0: 64 Mbits 1: 128 Mbits	Display RAM 0: SRAM 1: SDRAM	LCD driver type selection 0: RAM 1: SR

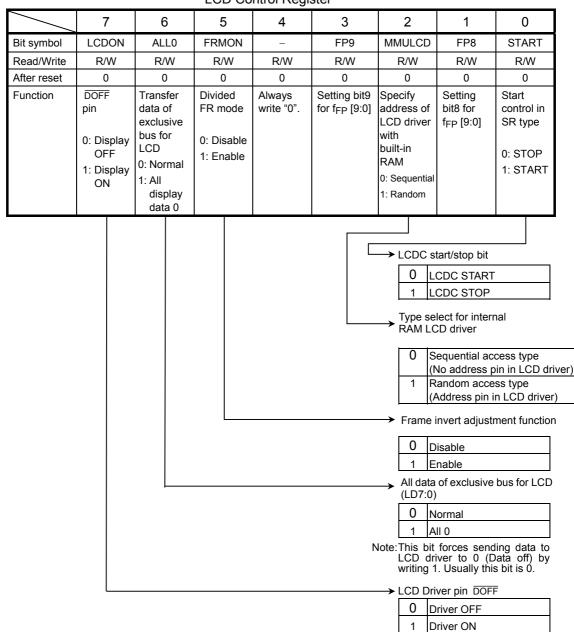
Note 1: <BULK> is effective only if 1 is set to <RAMTYPE>.

Note 2: SCPW [1:0] is introduced in section 3.14.4.6.

Divide FrameRegister

LCDDVM (04B1H)

	7	6	5	4	3	2	1	0			
Bit symbol	FMN7	FMN6	FMN5	FMN4	FMN3	FMN2	FMN1	FMN0			
Read/Write		R/W									
After reset		0									
Function		•	Setting Fram	ne invert adju	stment function	n bit7 to bit0)				


LCD Size Setting Register

LCDSIZE (04B2H)

	7	6	5	4	3	2	1	0
Bit symbol	COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0
Function	Setting the I	CD commo	n number for	SR mode	Setting the LC	D segment	number for S	R type
	0000: 128		0101: 400		0000: 128	0	101: 480	
	0001: 160		0110: 480		0001: 160	0	110: 560	
	0010: 200				0010: 240	0	111: 640	
	0011: 240				0011: 320			
	0100: 320		Other: Rese	erved	0100: 400	С	ther: Reserv	/ed

LCD Control Register

LCDCTL (04B3H)

Note: This bit determines the status of $\overline{\text{DOFF}}$ pin

0: $\overline{\text{DOFF}}$ pin outputs 0

1: DOFF pin outputs 1

LCD fFP Register

LCDFFP (04B4H)

	7	6	5	4	3	2	1	0			
Bit symbol	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0			
Read/Write		R/W									
After reset		0									
Function			•	Setting bit7	to bit0 for f _{FP}						

LCD Gray Level Setting Register

LCDGL (04B5H)

	7	6	5	4	3	2	1	0
Bit symbol							GRAY1	GRAY0
Read/Write							R/	W
After reset							0	0
Function							00: Monoch	nrome
							01: 4 levels	3
							10: 8 levels	3
							11: 16 leve	ls

Table 3.14.2 LCD Start/End Address Register

	Start	Address Re	gister	End /	Address Reg	gister
	Н	М	L	Н	М	L
	(bit23 to bit16)	(bit15 to bit8)	(bit7 to bit0)	(bit23 to bit16)	(bit15 to bit8)	(bit7 to bit0)
A-area	LSARAH	LSARAM		LEARAH	LEARAM	
A-area	(04C1H) (04C0	(04C0H)	=	(04C3H)	(04C2H)	_
After reset	40H 00H			40H	00H	
Darsa	LSARBH	LSARBM		LEARBH	LEARBM	
B-area	(04C5H)	(04C4H)	_	(04C7H)	(04C6H)	_
After reset	40H	00H		40H	00H	
C-area	LSARCH	LSARCM	LSARCL			
G-area	(04CAH)	(04C9H)	(04C8H)	L	_	_
After reset	40H	00H	00H			

Note: All registers are available for R (Read)/W (Write).

LCD Cursor Setting Register

LCDCM (04B6H)

	7	6	5	4	3	2	1	0
Bit symbol	CDE	ccs					CBE1	CBE0
Read/Write	R/W	R/W					R/W	R/W
After reset	0	0					0	0
Function	Cursor 0: OFF 1: ON	Cursor color 0: White 1: Black					O0: Don't bl 01: 2 Hz 10: 1 Hz 11: 0.5 Hz	(fs:32 kHz)

Note 1: The function of cursor blink is effective only when low-frequency oscillator is input.

Note 2: The function of cursor blink depends on the low-frequency oscillator (fs) even if you use timer out (TA3OUT) as LCDCK.

LCD Cursor Width Setting Register

LCDCW (04B7H)

	7	6	5	4	3	2	1	0
Bit symbol				CW4	CW3	CW2	CW1	CW0
Read/Write				R/W	R/W	R/W	R/W	R/W
After reset				0	0	0	0	0
Function						sor width	n)	
						00: 1 dot (Mii 11: 32 dots (l		

LCD Cursor Height Setting Register

LCDCH (04B8H)

	7	6	5	4	3	2	1	0		
Bit symbol				CH4	CH3	CH2	CH1	CH0		
Read/Write				R/W	R/W	R/W	R/W	R/W		
After reset				0	0	0	0	0		
Function										
				00000: 1 dot (Min)						
					1111	11: 32 dots (Max)			

LCD Cursor Start Address Setting Register

LCDCPL (04BAH)

	7	6	5	4	3	2	1	0			
Bit symbol	CAP7	CAP6	CAP5	CAP4 CAP3 CAP2 CAP1		CAP1	CAP0				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
After reset	0	0	0 0 0 0 0								
Function		Setting bit7 to bit0 for cursor start address									

LCD Cursor Start Address Setting Register

LCDCPM (04BBH)

	7	6	5	4	3	2	1	0			
Bit symbol	CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP9	CAP8			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
After reset	0	0 0 0 0 0 0									
Function		Setting bit15 to bit8 for cursor start address									

LCD Cursor Start Address Setting Register

LCDCPH (04BCH)

	7	6	5	4	3	2	1	0			
Bit symbol	CAP23	CAP22	CAP21	CAP20	CAP20 CAP19 CAP18		CAP17	CAP16			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
After reset	0	1	0	0	0	0	0	0			
Function		Setting bit23 to bit16 for cursor start address									

LCD Cursor Hot Point Pixel Number (Bit correction) Setting Register

LCDCP (04B9H)

	7	6	5	4	3	2	1	0			
Bit symbol					APB3	APB2	APB1	APB0			
Read/Write											
After reset					R/W 0						
Function					Setting bit 3 to bit0 of pixel for correction of ho point						
						(for 1-dot c	orrection)				

LCDC1L, LCDC1H, LCDC2L, LCDC2H, LCDC3L, LCDC3H, LCDR1L, LCDR1H Register

	7	6	5	4	3	2	1	0			
Bit symbol	D7	D6 D5		D4	D3	D3 D2		D0			
Read/Write		Depend on the specification of external LCD driver.									
After reset		Depend on the specification of external LCD driver.									
Function			Depend on t	he specificat	ion of external	LCD driver.					

These registers do not exist on TMP91C82OA. These ar and display registers to fient steet uneathst RtAMbleeutict Dodriver.

Address as Table 3. 14. 3ri esgàssie grise de vitri dintighi celsti expletinable becomes active siviben racescie os risching address.

And, the area of these address. WRstexnenable aceaness oct external access.

Table 3.14.4 shows the address map in the case of co

access type LCDdriver.

The explanation opia modulo of the Minus of explains this. This setup is performed by LCDCTL < MMULCD>.

Table 3.14.3 Memory Mapping for Built-in RAM Sequential Access Type

Register	Address		pose Access Type	Chip Enable Terminal	A0 Terminal					
LCDC1L	0FE0H	RAM built-in type	Instruction	D1BSCP	0					
LCDC1H	0FE1H	driver 1	Display data	DIBSCF	1					
LCDC2L	0FE2H	RAM built-in type	Instruction	D2BLP	0					
LCDC2H	0FE3H	driver 2	Display data	DZBLP	1					
LCDC3L	0FE4H	RAM built-in type	Instruction	D3BFR	0					
LCDC3H	0FE5H	driver 3	Display data	DOBER	1					
LCDR1L	0FE6H	ROW driver	Instruction	DLEBCD	0					
LCDR1H	0FE7H		Display data	DLLBCD	1					

Table 3.14.4 Memory Mapping for Built-in RAM Random Access Type

	•	7.
Address	Purpose Random Access Type	Chip Enable Terminal
3C0000H to 3CFFFFH	RAM built-in type driver 1	D1BSCP
3D0000H to 3DFFFFH	RAM built-in type driver 2	D2BLP
3E0000H to 3EFFFFH	RAM built-in type driver 3	D3BFR
3F0000H to 3FFFFFH	RAM built-in type driver 4	DLEBCD

Note 1: We call built-in RAM sequential access type LCD driver that use register to access to display RAM without address. (e.g., T6B65A, T6C84 etc: mar/2000)

Note 2: We call built-in RAM random access type LCD driver that is same method to access to SRAM. (e.g., T6C23, T6K01 etc: mar/2000)

3.14.4 Shift-Register Type LCD Driver Control Mode (SR type)

3.14.4.1 Operation

Set the mode of operation, start address of displevel and LCDsize to control registers before star After start it LCDC outputs bus release request to data memory. After that LoCfD collinames on the LoCfD collinames of the CfD at a retained the control of the connected LCD person and the control of the connected LCD driver output specified way transmission. At atternation is stated and LCD cancels the condition of the condition of the control of the condition of the c

Note: When set LCDC to SR type, during data reading (during DMA operation), CPU is stopped by internal BUSREQ signal. When using SR type LCDC, programmer need to care the CPU stop time. For detail, see the Table 3.14.8.

3.14.4.2 Gray Scale Mode Indication

Monochrome, 4-, 8- andd1e6cagm abye sseeallee tmeod by setti < GRAY 1: O>.

And when SDRAM mode, you can select the size of SDRA < BULK > .

TMP91C82OA realize gray scale display by thinni control palette is defined by 16-bit register (LGnI selected according to the gray scale level (Monoch Table 3. 14. 6). On/off f(cer. gla, tae and tread eithed detay) by 16-register (LGnL/H)r.elslowebeero eapoath ette has a initial adjust finely which matches to LCD driver you use panel.

D3BFR Level Data Setting Register bit0 2 3 5 6 Density 1 4 8 9 10 11 12 13 14 15 Code (Address/after reset) F 16/16 LGFH/L (04EF-E/FFFFH) • • • • • • • • • F 14/16 LGEH/L (04ED-C/FDFDH) • • • • 1316 • • • • • • D LGDH/L (04EB-A/FDDDH) 12/16 • 0 • 0 • 0 0 • • C LGCH/L (04E9-8/DDDDH) • • • • • • 11/16 • • 0 • • • 0 • • • 0 • • В LGBH/L (04E7-6/DDD5H) 0 0 • 10/16 • 0 • • 0 • • 0 • 0 • • LGAH/L (04E5-4/D5D5H) • 9 9/16 LG9H/L (04E3-2/D555H) • 0 0 • • • 8/16 0 0 • 0 • 0 0 0 8 LG8H/L (04E1-0/AAAAH) • • • • • 7 7/16 0 0 0 LG7H/L (04DF-E/8AAAH) 6/16 0 0 0 0 • 6 LG6H/L (04DD-C/8A8AH) • • • 5 5/16 0 0 • 0 0 0 • 0 0 0 0 0 0 • LG5H/L (04DB-A/888AH) 4/16 LG4H/L (04D9-8/8888H) 0 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 0 0 • 0 0 • 3 3/16 LG3H/L (04D7-6/8880H) 0 0 0 0 0 0 2/16 LG2H/L (04D5-4/8080H) 0 • 0 0 • LG1H/L (04D3-2/8000H) 1/16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 1 0/16 LG0H/L (04D1-0/0000H) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.14.5 Gray Scale Control Palette Default Setting

Table 3.14.6 Gray Scale Control Palette Effective Registers for Each Gray Level

	LG0	LG1	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	LGA	LGB	LGC	LGD	LGE	LGE
	L/H															
16-gray level	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
8-gray level	•	×	•	×	•	×	•	×	•	×	•	×	•	×	×	•
4-gray level	•	×	×	×	•	×	×	×	•	×	×	×	×	×	×	•
Monochrome	•															•

^{×:} Don't care, ●: Effective

^{●:} Display ON, O: Display OFF

3.14.4.3 Memory Mapping

The LCDC can display the WKCiDcphainse di whadeed horizon parts; upper, middle and lower. Each area calls A characteristics showing below.

Start/end address of each area in the physical men LCD start/end address registers (See Table 3. 14. 2) address.)

A and B areas are selectable enable or not in LCDMC area are disable, the Carea take over all panel space. The displaying prioriet Ayairse As set Coeffat by ewhile the is defined as all Carea (That is A and B area are disting LCD panel and A area is inserted from the top of the area set to enable while the panel area is defined as the bottom of the Carea overlapping.

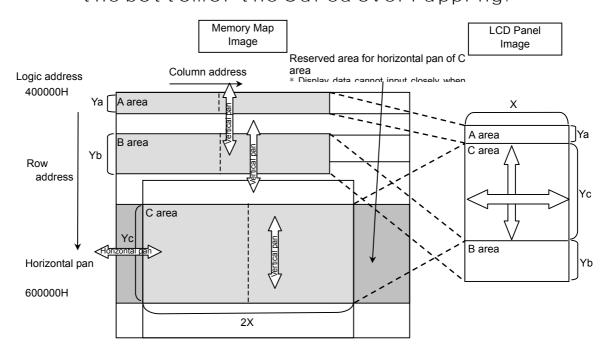


Figure 3.14.2 Memory Mapping from Physical Memory to LCD Panel

Display memory mapping and panning function
 LCDC can change the panel window if only you chand Barea can be vertical panned by changing can be vertical and http://clamm.giah.gpaoweaddcolumn.

An important thing is that display data from cannot be input contyionumbound Ityues we thin fpanning fur ow address of display RAM corresponds to 1st display data of 2nd line cannot be set within the RAM even if the necessare y datwa fit to tay later ship to the panel is equal to assist to growe address of display RAM. Address of display RAM.

And another important thing is, this limitati RAM without address multiplex. When you use SDF can select the size for display RAM capacity of SRAM, display RAM cealpiance its foil from to 512 by tes.

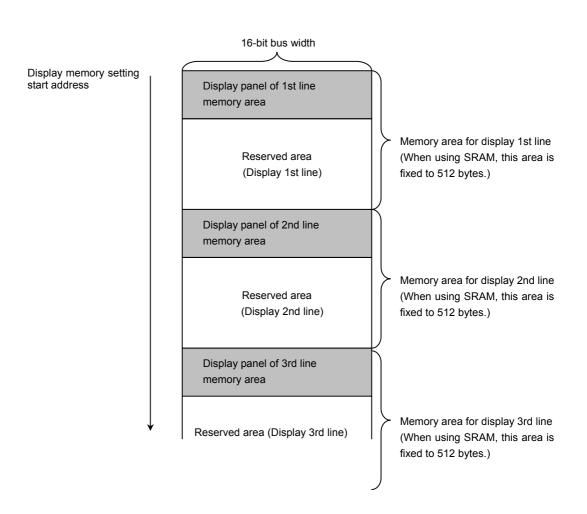


Figure 3.14.3 Memory Mapping Image for SRAM as Display RAM (Only A and B area)

TMP91C82OA can select fromounrodh sphery stogarlaey; 8 gray a With the intrinsic property of gray levels, a pixel different memory size.

Apixel use a bit in memorwyhif be an opinioxeth ruosnee 2 bits in memory. 3 bits for 8 gray as yn.d s4i bnigt bsilftæsy on néedojors py has som differences fsoom e e cohrosroaryt of memory.

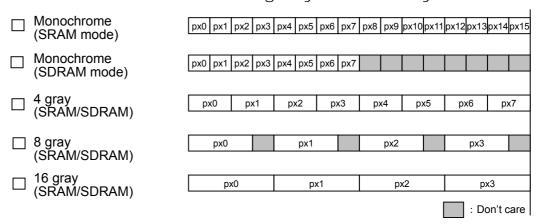


Figure 3.14.4 Gray display and using bit in memory

And "px" in above Fi gurdes 3t. of 14h 44 ic mange sopt our CD panel (Fi gure 3. 14. 5). But TMP91C82OA outputs data of px CPEO (LDO). Therefore PEO (LDO) should be connected DI7) according to LCD driver you use. Please note that data differs from LiOnDTclo Oct. - 1900 10/elr 1 bs. 4 rites of TOSTMP91C815, TMP91CO16, TMP91CO25 etc.).

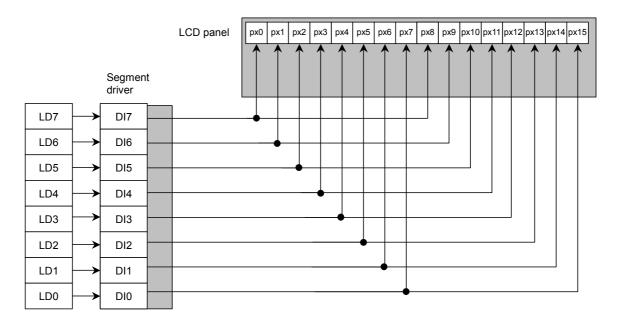
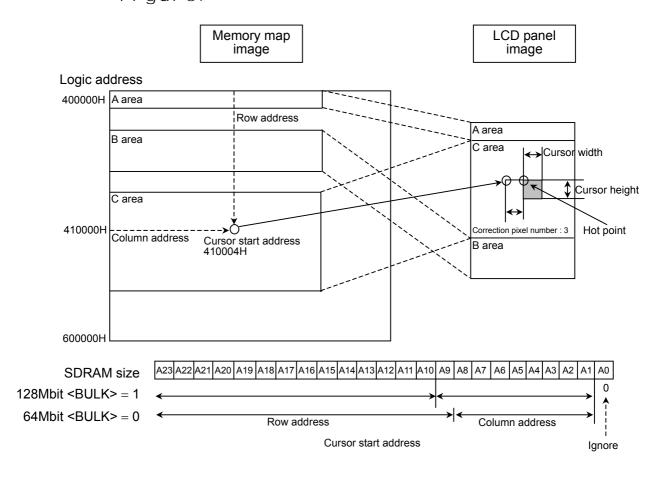


Figure 3.14.5 Connection between LCD Bus of TMP91C820A and Data Bus of LCDD


3.14.4.4 Hardware Cursor

TMP91C82OA has a cursori thhet vaslbl conko magnd size ca and maxi mum size is 32X32.

A programmer can control the cursor attributes registers, for example color (white/black), blin pixel location. Its space location is specified b 3. 14. 6.)

The precise location of the hot point is determine LCDCPM, LCDeOnPoLipixel correction number (LCDCP). For pixel for displatysionfosmeetetolsnaplata under 4-gray mode location of hot point every pixel by setting pixel nesister (LCDCP).

Cursorimage is showed Au,noBerCtahreesaeatrteinegable, 4-q start ad-d4r1eOsOsO4_hex and correc=t8_omebxiitn(t160eOcPe)Ilo figure.

Note: TMP91C820A sets the hardware cursor in the memory address. If panning function is set to enable during hardware cursor displaying, the cursor in the pannel moves, but start address of cursor is not changed.

Figure 3.14.6 Cursor Hot Point Position and Size, Cursor start address

LCD Cursor Setting Register

LCDCM (04B6H)

	7	6	5	4	3	2	1	0
Bit symbol	CDE	CCS					CBE1	CBE0
Read/Write	R/W	R/W					R/W	R/W
After reset	0	0					0	0
Function	Cursor 0: OFF 1: ON	Cursor color 0: White 1: Black					Oursor blink 00: Don't bl 01: 2 Hz 10: 1 Hz 11: 0.5 Hz	(fs: 32 kHz)

Note 1: The function of cursor blink is effective only when low-frequency osdillator is input.

Note 2: The function of cursor blink depends on the low-frequency oscillator (fs) even if you use timer out "TA3OUT" as LCDCK.

LCD Cursor Width Setting Register

LCDCW (04B7H)

	7	6	5	4	3	2	1	0		
Bit symbol				CW4	CW3	CW2	CW1	CW0		
Read/Write				R/W	R/W	R/W	R/W	R/W		
After reset				0	0	0	0	0		
Function				Cursor width 00000: 1 dot (MIN)						
				11111: 32 dots (MAX)						

LCD Cursor Height Setting Register

LCDCH (04B8H)

	7	6	5	4	3	2	1	0		
Bit symbol				CH4	CH3	CH2	CH1	CH0		
Read/Write				R/W	R/W	R/W	R/W	R/W		
After reset				0	0	0	0	0		
Function				Cursor height 00000: 1 dot (MIN)						
				11111: 32 0						

LCD Cursor Start Address Setting Register

LCDCPL (04BAH)

	7	6	5	4	3	2	1	0		
Bit symbol	CAP7	CAP6	CAP5	CAP4	CAP3	CAP2	CAP1	CAP0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
After reset	0	0	0	0	0	0	0	0		
Function		Setting bit7 to bit0 for cursor start address								

LCD Cursor Start Address Setting Register

LCDCPM (04BBH)

	7	6	5	4	3	2	1	0			
Bit symbol	CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP9	CAP8			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
After reset	0	0	0	0	0	0	0	0			
Function		Setting bit15 to bit8 for cursor start address									

LCD Cursor Start Address Setting Register

LCDCPH (04BCH)

	7	6	5	4	3	2	1	0		
Bit symbol	CAP23	CAP22	CAP21	CAP20	CAP19	CAP18	CAP17	CAP16		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
After reset	0	1	0	0	0	0	0	0		
Function		Setting bit23 to bit16 for cursor start address								

LCD Cursor Hot Point Pixel correction Setting Register

LCDCP (04B9H)

	7	6	5	4	3	2	1	0	
Bit symbol					APB3	APB2	APB1	APB0	
Read/Write					R/W				
After reset					0				
Function					Setting bit3 to bit0 for correction of hot point (for 1-dot correction)				

Table 3.14.7 Pixel correct and register setting

In case of monochrome (SRAM mode)	0000: 0 Pixel correct 0111: 7 Pixels correct 1111: 15 Pixels correct	
In case of monochrome	x000: 0 Pixel correct	x100: 4 Pixels correct
(SDRAM mode) and 4 gray	x001: 1 Pixel correct	x101: 5 Pixels correct
(SRAM/SDRAM mode)	x010: 2 Pixels correct	x110: 6 Pixels correct
	x011: 3 Pixels correct	x111: 7 Pixels correct
In case of 8 gray and 16 gray	xx00: 0 Pixel correct	xx10: 2 Pixels correct
(SRAN/SDRAM mode)	xx01: 1 Pixel correct	xx11: 3 Pixels correct

X: Don't care

Here, it is possible tpoe-coprinxeed tftrhbenaddubhresesstsaset bef Pixel number should be adjusted in response to the g

For example, When 4-gray and 16-bit BUS mode, correct because the small sest hapting all is set 8 topy is eart add Similarly correction pains ello sationed not be the mess not onde, 3-16-gray mode.

(e.g.) When mono,choomeomtoideen va⊨©e11_sh(eLxCDenPo) curs siz(e&8)

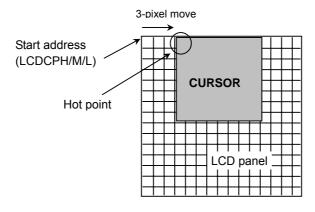


Figure 3.14.7 The Location Hot Point by Setting of Pixel

TOSHIBA

3.14.4.5 Frame Signal Settlement

TMP91C82OA defines so called frame period (Refres value set [PnO]. DLEBCD pin outputs pulse every frau usually outputs the signal inverts polarity every fand TMP91C82OA has a special function that can set polarity irrelevant to above frame frequency for tho of display.

LCD Control Register

LCDCTL (04B3H)

	7	6	5	4	3	2	1	0
Bit symbol	LCDON	ALL0	FRMON	-	FP9	MMULCD	FP8	START
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After reset	0	0	0	0	0	0	0	0
Function	DOFF port 0: Display OFF 1: Display ON	Setting all column ports to 0 0: Normal 1: All display data 0	Divided FR mode 0: Disable 1: Enable	Always write "0".	Setting bit9 for f _{FP} [9:0]	Specify address of LCD driver with built-in RAM 0: OFF 1: ON	Setting bit8 for f _{FP} [9:0]	Start control in SR mode 0: Stop 1: Start

LCD fFP Register

LCDFFP (04B4H)

	7	6	5	4	3	2	1	0			
Bit symbol	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0			
Read/Write		R/W									
After reset		0									
Function		Setting bit7 to bit0 for fFP									

Divide FRM Register

LCDDVM (04B1H)

	7	6	5	4	3	2	1	0			
Bit symbol	FMN7	MN7 FMN6 FMN5 FMN4 FMN3 FMN2 FMN1 FMN0									
Read/Write		RW									
After reset		0									
Function				Setting DV	M bit7 to bit0						

(1) Frame frequency setting

Basic frame period; Dhaā Be Dasconaling sorth hos cophaling sorth hos setting mentrie on the college from the college from the college from the college from the control of the college from the colleg

Frame petCock / (FD) [Hz] D: Constant for each commo fp Settimp[g9ofOf] register

LCDCK: Source clock of LCD

(Lowclock is usually selected)

Please select 时候外回] as of file frame period you want 3.14.7.

Note: Please make the value set to f_{FP} [9:0] into the following range.

COM (common nsuffired 10)24

(e.g.) In the case where frame periodisset to 72. 1

fr P= 240 (C⊕M) 30-312FH (by Table 3. 14. 8)

Therefore, LC⊕CTalnoFIPCDFFP <= F2PFTH 20>e set up.

(2) Frame invertadjustment function

This mode can prevent the deterioration tho the splay of N is set in (LCDDVM) register while this functi (LCDCTL) (<FRMON> "1"), D3BFR pin outputs the sign (D2BLPxN) timing.

If this function is n't necessary, D3BFR pinout put frequency of DLEBCD ptilmiasfftuem csteitothiothigs able (=(LCDCTO).

And it is no changenwgafværaDnLdEtBiOrbip in by LCDDVM setti

Note: Effects of this function have some differences as the LCD driver or LCD panel you use actually.

(3) Timer out LCDCK

LCDsourceclock (LCDCK) quaems y l(fst 1302w 768 [kHz]) (TA3OUT) outputs from internal TMRA23.

(e.g.) Here indicates the method that frame peri TA3OUT for source c⊨**ó**(kMeb£]L,CD2&€COM)

The next equation calculates frame period.

Frame period of D2BLP

Source clock for LCDC defines are kip (ets) rated then the

t_ p= D/ XT

D: The value is 3 at 1280

Therefore if you set the frame period at 70 [Hz] und XT=1283.x570

= 26880 [Hz]

XT should be above value.

In order to #12aok & & SOT[Hz] +uón [d kel Hzf]c (wTi 1 tohf timer 3,

1/¼T32×8/fc[s] T3: The value of timer re

inshor=tf,cX7(2x3B)[Hz]

Howeve⊨ (TBA3REG) is 13. 95 after calculate, it's i under a decimal point.

Soif=(3A3REG) is se=t2004,6 % Hz]. And because of D Frame pe28646 % (3) 28

= 75. 12 [Hz]

Furtherisf1f36 (+@) Mwith correction,

Frame pe28846 k (3) 36

= 70. 70 [Hz]

Reference: To maintain quality for display, pleas gray scale.

(You have to use frame ffræqnue in by esrettaldjings tment for timer out LCDCK.)

Monochrome: Fr=a7n@[p+ezr]i od

4 or 8 or 16 gray: F1 4 On + Hz i od

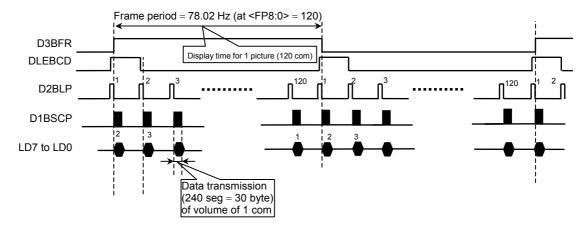


Figure 3.14.8 Timing Diagram for SR Mode

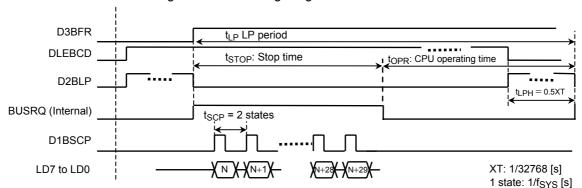


Figure 3.14.9 Timing Diagram for SR Mode (Detail)

D3BFRwaveform(in c+a6s3e(4ff2)4@ndwLCDDVM+OHBM_M14e:x)>

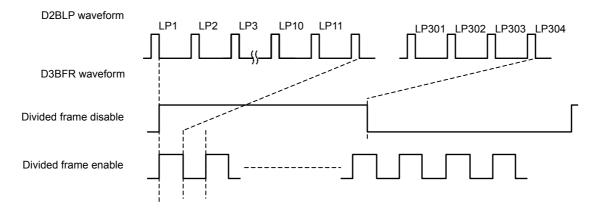


Figure 3.14.10 D2BLP and D3BFR Waveform

Table 3.14.8 $\,$ fFP Table for Each Common Number (1/2)

D	3	2.5	2	1.5	1.5	1	1	Unit
COM number	128	160	200	240	320	400	480	COM
COM + 0	85.33	81.92	81.92	91.02	68.27	81.92	68.27	
COM + 1	84.67	81.41	81.51	90.64	68.05	81.72	68.12	
COM + 2	84.02	80.91	81.11	90.27	67.84	81.51	67.98	
COM + 3	83.38	80.41	80.71	89.90	67.63	81.31	67.84	
COM + 4	82.75	79.92	80.31	89.53	67.42	81.11	67.70	
COM + 5	82.13	79.44	79.92	89.16	67.22	80.91	67.56	
COM + 6	81.51	78.96	79.53	88.80	67.01	80.71	67.42	
COM + 7	80.91	78.49	79.15	88.44	66.81	80.51	67.29	
COM + 8	80.31	78.02	78.77	88.09	66.60	80.31	67.15	
COM + 9	79.73	77.56	78.39	87.73	66.40	80.12	67.01	
COM + 10	79.15	77.10	78.02	87.38	66.20	79.92	66.87	
COM + 11	78.58	76.65	77.65	87.03	66.00	79.73	66.74	
COM + 12	78.02	76.20	77.28	86.69	65.80	79.53	66.60	
COM + 13	77.47	75.76	76.92	86.35	65.60	79.34	66.47	
COM + 14	76.92	75.33	76.56	86.01	65.41	79.15	66.33	
COM + 15	76.38	74.90	76.20	85.67	65.21	78.96	66.20	
COM + 16	75.85	74.47	75.85	85.33	65.02	78.77	66.06	
COM + 17	75.33	74.05	75.50	85.00	64.82	78.58	65.93	
COM + 18	74.81	73.64	75.16	84.67	64.63	78.39	65.80	
COM + 19	74.30	73.22	74.81	84.34	64.44	78.21	65.67	
COM + 20	73.80	72.82	74.47	84.02	64.25	78.02	65.54	
COM + 21	73.31	72.42	74.14	83.70	64.06	77.83	65.41	
COM + 22	72.82	72.02	73.80	83.38	63.88	77.65	65.27	
COM + 23	72.34	71.62	73.47	83.06	63.69	77.47	65.15	
COM + 24	71.86	71.23	73.14	82.75	63.50	77.28	65.02	
COM + 25	71.39	70.85	72.82	82.44	63.32	77.10	64.89	
COM + 26	70.93	70.47	72.50	82.13	63.14	76.92	64.76	Hz
COM + 27	70.47	70.09	72.18	81.82	62.95	76.74	64.63	
COM + 28	70.02	69.72	71.86	81.51	62.77	76.56	64.50	
COM + 29	69.57	69.35	71.55	81.21	62.59	76.38	64.38	
COM + 30	69.13	68.99	71.23	80.91	62.42	76.20	64.25	
COM + 31	68.70	68.62	70.93	80.61	62.24	76.03	64.13	
COM + 32	68.27	68.27	70.62	80.31	62.06	75.85	64.00	
COM + 33	67.84	67.91	70.32	80.02	61.88	75.68	63.88	
COM + 34	67.42	67.56	70.02	79.73	61.71	75.50	63.75	
COM + 35	67.01	67.22	69.72	79.44	61.54	75.33	63.63	
COM + 36	66.60	66.87	69.42	79.15	61.36	75.16	63.50	
COM + 37	66.20	66.53	69.13	78.86	61.19	74.98	63.38	
COM + 38	65.80	66.20	68.84	78.58	61.02	74.81	63.26	
COM + 39	65.41	65.87	68.55	78.30	60.85	74.64	63.14	
COM + 40	65.02	65.54	68.27	78.02	60.68	74.47	63.02	
COM + 41	64.63	65.21	67.98	77.74	60.51	74.30	62.89	
COM + 42	64.25	64.89	67.70	77.47	60.35	74.14	62.77	
COM + 43	63.88	64.57	67.42	77.19	60.18	73.97	62.65	
COM + 44	63.50	64.25	67.15	76.92	60.01	73.80	62.53	
COM + 45	63.14	63.94	66.87	76.65	59.85	73.64	62.42	
COM + 46	62.77	63.63	66.60	76.38	59.69	73.47	62.30	
COM + 47	62.42	63.32	66.33	76.12	59.52	73.31	62.18	
COM + 48	62.06	63.02	66.06	75.85	59.36	73.14	62.06	
COM + 49	61.71	62.71	65.80	75.59	59.20	72.98	61.94	
COM + 50	61.36	62.42	65.54	75.33	59.04	72.82	61.83	
COM + 51	61.02	62.12	65.27	75.07	58.88	72.66	61.71	

Table 3.14.9 $f_{\mbox{\scriptsize FP}}$ Table for Each Common Number (2/2)

D	3	2.5	2	1.5	1.5	1	1	Unit
COM number	128	160	200	240	320	400	480	COM
COM + 52	60.68	61.83	65.02	74.81	58.72	72.50	61.59	
COM + 53	60.35	61.54	64.76	74.56	58.57	72.34	61.48	
COM + 54	60.01	61.25	64.50	74.30	58.41	72.18	61.36	
COM + 55	59.69	60.96	64.25	74.05	58.25	72.02	61.25	
COM + 56	59.36	60.68	64.00	73.80	58.10	71.86	61.13	
COM + 57	59.04	60.40	63.75	73.55	57.95	71.70	61.02	
COM + 58	58.72	60.12	63.50	73.31	57.79	71.55	60.91	
COM + 59	58.41	59.85	63.26	73.06	57.64	71.39	60.79	
COM + 60	58.10	59.58	63.02	72.82	57.49	71.23	60.68	
COM + 61	57.79	59.31	62.77	72.58	57.34	71.08	60.57	
COM + 62	57.49	59.04	62.53	72.34	57.19	70.93	60.46	
COM + 63	57.19	58.78	62.30	72.10	57.04	70.77	60.35	
COM + 64	56.89	58.51	62.06	71.86	56.89	70.62	60.24	
COM + 65	56.59	58.25	61.83	71.62	56.74	70.47	60.12	
COM + 66	56.30	58.00	61.59	71.39	56.59	70.32	60.01	Hz
COM + 67	56.01	57.74	61.36	71.16	56.45	70.17	59.90	
COM + 68	55.73	57.49	61.13	70.93	56.30	70.02	59.80	
COM + 69	55.45	57.24	60.91	70.70	56.16	69.87	59.69	
COM + 70	55.16	56.99	60.68	70.47	56.01	69.72	59.58	
COM + 71	54.89	56.74	60.46	70.24	55.87	69.57	59.47	
COM + 72	54.61	56.50	60.24	70.02	55.73	69.42	59.36	
COM + 73	54.34	56.25	60.01	69.79	55.59	69.28	59.25	
COM + 74	54.07	56.01	59.80	69.57	55.45	69.13	59.15	
COM + 75	53.81	55.78	59.58	69.35	55.30	68.99	59.04	
COM + 76	53.54	55.54	59.36	69.13	55.16	68.84	58.94	
COM + 77	53.28	55.30	59.15	68.91	55.03	68.70	58.83	
COM + 78	53.02	55.07	58.94	68.70	54.89	68.55	58.72	
COM + 79	52.77	54.84	58.72	68.48	54.75	68.41	58.62	
COM + 80	52.51	54.61	58.51	68.27	54.61	68.27	58.51	

Note: Above value is at fs = 32.768 [kHz].

Table 3.14.10 Performance Listing for Each Segment and Common Number 64-Mbit SDRAM/BURST 4 GRAY

		COM	128	160	200	240	320	400	480	
	D		3	3	2	2	2	1	1	Unit
	t _{LP}		91.6	76.3	61.0	45.8	45.8	30.5	30.5	μS
SEG										
128	tSTOP		0.89	0.89	0.89	0.89	0.89	0.89	0.89	μS
	rate		0.97	1.17	1.46	1.94	1.94	2.91	2.91	%
160	tSTOP		1.11	1.11	1.11	1.11	1.11	1.11	1.11	μS
	rate		1.21	1.46	1.82	2.43	2.43	3.64	3.64	%
240	tSTOP		1.67	1.67	1.67	1.67	1.67	1.67	1.67	μS
	rate		1.82	2.18	2.73	3.64	3.64	5.46	5.46	%
320	tstop		2.22	2.22	2.22	2.22	2.22	2.22	2.22	μS
	rate		2.43	2.91	3.64	4.85	4.85	7.28	7.28	%
400	tSTOP		2.78	2.78	2.78	2.78	2.78	2.78	2.78	μS
	rate		3.03	3.64	4.55	6.07	6.07	9.10	9.10	%
480	tstop		3.33	3.33	3.33	3.33	3.33	3.33	3.33	μS
	rate		3.64	4.37	5.46	7.28	7.28	10.92	10.92	%
560	tstop		3.89	3.89	3.89	3.89	3.89	3.89	3.89	μS
	rate		4.25	5.10	6.37	8.50	8.50	12.74	12.74	%
640	tstop		4.44	4.44	4.44	4.44	4.44	4.44	4.44	μS
	rate		4.85	5.83	7.28	9.71	9.71	14.56	14.56	%

		COM	128	160	200	240	320	400	480	
	D	OOW	3	3	2	2	2	1	1	Unit
	_		91.6	76.3	61.0	45.8	45.8	30.5	30.5	Offic
SEG	t _{LP}		91.0	70.3	01.0	40.0	43.6	30.5	30.5	0
	4		2.11	0.11	2 11	2.11	0.11	2.11	2.11	μS
128	tSTOP		2.11	2.11	2.11	2.11	2.11	2.11		μS
	rate		2.31	2.77	3.46	4.61	4.61	6.92	6.92	%
160	tSTOP		2.56	2.56	2.56	2.56	2.56	2.56	2.56	μS
	rate		2.79	3.35	4.19	5.58	5.58	8.37	8.37	%
240	tstop		3.67	3.67	3.67	3.67	3.67	3.67	3.67	μS
	rate		4.00	4.81	6.01	8.01	8.01	12.01	12.01	%
320	tSTOP		4.78	4.78	4.78	4.78	4.78	4.78	4.78	μS
	rate		5.22	6.26	7.83	10.44	10.44	15.66	15.66	%
400	tSTOP		5.89	5.89	5.89	5.89	5.89	5.89	5.89	μS
	rate		6.43	7.72	9.65	12.86	12.86	19.30	19.30	%
480	tSTOP		7.00	7.00	7.00	7.00	7.00	7.00	7.00	μS
	rate		7.65	9.18	11.47	15.29	15.29	22.94	22.94	%
560	tstop		8.11	8.11	8.11	8.11	8.11	8.11	8.11	μS
	rate		8.86	10.63	13.29	17.72	17.72	26.58	26.58	%
640	tstop		9.22	9.22	9.22	9.22	9.22	9.22	9.22	μS
	rate		10.07	12.09	15.11	20.15	20.15	30.22	30.22	%

SRAM MONOCHROME

		COM	128	160	200	240	320	400	480	
	D		3	3	2	2	2	1	1	Unit
	t_{LP}		91.6	76.3	61.0	45.8	45.8	30.5	30.5	μS
SEG										
128	tSTOP		0.89	0.89	0.89	0.89	0.89	0.89	0.89	μS
	rate		0.99	1.17	1.46	1.94	1.94	2.91	2.91	%
160	tSTOP		1.11	1.11	1.11	1.11	1.11	1.11	1.11	μS
	rate		1.21	1.46	1.82	2.43	2.43	3.64	3.64	%
240	tSTOP		1.67	1.67	1.67	1.67	1.67	1.67	1.67	μS
	rate		1.82	2.18	2.73	3.64	3.64	5.46	5.46	%
320	tSTOP		2.22	2.22	2.22	2.22	2.22	2.22	2.22	μS
	rate		2.43	2.91	3.64	4.85	4.85	7.28	7.28	%
400	tSTOP		2.78	2.78	2.78	2.78	2.78	2.78	2.78	μS
	rate		3.03	3.64	4.55	6.07	6.07	9.10	9.10	%
480	tSTOP		3.33	3.33	3.33	3.33	3.33	3.33	3.33	μS
	rate		3.64	4.37	5.46	7.28	7.28	10.92	10.92	%
560	tSTOP		3.89	3.89	3.89	3.89	3.89	3.89	3.89	μS
	rate		4.25	5.10	6.37	8.50	8.50	12.74	12.74	%
640	tSTOP		4.44	4.44	4.44	4.44	4.44	4.44	4.44	μS
	rate		4.85	5.83	7.28	9.71	9.71	14.56	14.56	%

SRAM 4	GRAY									
		COM	128	160	200	240	320	400	480	
	D		3	3	2	2	2	1	1	Unit
	t _{LP}		91.6	76.3	61.0	45.8	45.8	30.5	30.5	μS
SEG										
128	tSTOP		1.78	1.78	1.78	1.78	1.78	1.78	1.78	μS
	rate		1.94	2.33	2.91	3.88	3.88	5.83	5.83	%
160	tSTOP		2.22	2.22	2.22	2.22	2.22	2.22	2.22	μS
	rate		2.43	2.91	3.64	4.85	4.85	7.28	7.28	%
240	tSTOP		3.33	3.33	3.33	3.33	3.33	3.33	3.33	μS
	rate		3.64	4.37	5.46	7.28	7.28	10.92	10.92	%
320	tSTOP		4.44	4.44	4.44	4.44	4.44	4.44	4.44	μS
	rate		4.85	5.83	7.28	9.71	9.71	14.55	14.56	%
400	tSTOP		5.56	5.56	5.56	5.56	5.56	5.56	5.56	μS
	rate		6.07	7.28	9.10	12.14	12.14	18.20	18.20	%
480	tSTOP		6.67	6.67	6.67	6.67	6.67	6.67	6.67	μS
	rate		7.28	8.74	10.92	14.56	14.56	21.85	21.85	%
560	tSTOP		7.78	7.78	7.78	7.78	7.78	7.78	7.78	μS
	rate		8.50	10.19	12.74	16.99	16.99	25.49	25.49	%
640	tSTOP		8.89	8.89	8.89	8.89	8.89	8.89	8.89	μS
	rate		9.71	11.65	14.56	19.42	19.42	29.13	29.13	%

SRAM 8 GRAY/16 GRAY

		COM	128	160	200	240	320	400	480	_
_	D		3	3	2	2	2	1	1	Unit
	t _{LP}		91.6	76.3	61.0	45.8	45.8	30.5	30.5	μS
SEG										
128	tstop		3.56	3.56	3.56	3.56	3.56	3.56	3.56	μS
	rate		3.88	4.66	5.83	7.77	7.77	11.65	11.65	%
160	tSTOP		4.44	4.44	4.44	4.44	4.44	4.44	4.44	μS
	rate		4.85	5.83	7.28	9.71	9.71	14.56	14.56	%
240	tSTOP		6.67	6.67	6.67	6.67	6.67	6.67	6.67	μS
	rate		7.28	8.74	10.92	14.56	14.56	21.85	21.85	%
320	tSTOP		8.89	8.89	8.89	8.89	8.89	8.89	8.89	μS
	rate		9.71	11.65	14.56	19.42	19.42	29.13	29.13	%
400	tSTOP		11.11	11.11	11.11	11.11	11.11	11.11	11.11	μS
	rate		12.14	14.56	18.20	24.27	24.27	36.41	36.41	%
480	tSTOP		13.33	13.33	13.33	13.33	13.33	13.33	13.33	μS
	rate		14.56	17.48	21.85	29.13	29.13	43.69	43.69	%
560	tSTOP		15.56	15.56	15.56	15.56	15.56	15.56	15.56	μS
	rate		16.99	20.39	25.49	33.98	33.98	50.97	50.97	%
640	tSTOP		17.78	17.78	17.78	17.78	17.78	17.78	17.78	μS
	rate		19.42	23.30	29.13	38.84	38.84	58.25	58.25	%

Over 50%

Table 3.14.11 Possible Panel Size of Panning

- Note 1: The value of the Table 3.14.8 is at $f_C = 36$ [MHz].
- Note 2: Bus occupation time to CPU; t_{STOP} (in the Figure 3.14.11) is the time which CPU reads the memory of transferring with 0 waits.

Note 3: The following equation can calculate t_{LP} listed below.

 $t_{LP} = D/32768$ [s] (e.g.) If the row is 240 and D = 1.5 by the above table

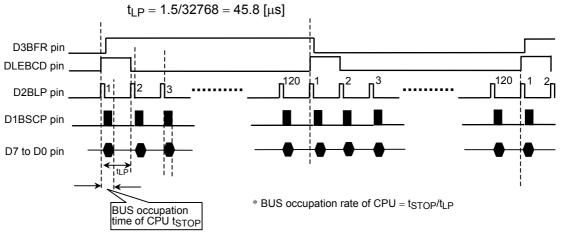


Figure 3.14.11 Bus occupation time to CPU and BUS Occupation Rate of CPU

3.14.4.6 Timing Charts of Interpreting Memory Codes

TMP91C82OA supports diddesseintgmeThoeyy are SRAM wis SDRAM burst modes, and the size of SDRAM is 16M/64 signal sfor the LCD panel3andshamionaft gluir owspeed 3 types of SGR & 2sty & 4 (fory & 8) can be selected. The output o LDO) will be issued for contitutine bruislith giendigle of D1BSC FIFO is no empty. The work louisthmeafted on harigure 3. 14. buffer size 80 bytes. The FIFO LIDEO tschoensa Baastethe fall BaseSCP which is shown 4 and 30 guit 4.31.51 for SRAM and SDR respectively. The FIFO is always reset to the empty In BaseSCP mode (e.g., QOT) or DSICEO WP1i, so equal to BaseSCP, equal to BaseLD7 to LDO and not put one.

To make FIFO work correctolnyd, i **the** if **ts** tankt **e** vision togged by set SFR properly.

(NA8) t C ₩241 £ ₹ L P- L PH

Here, Nisthesegment number, and towsiDs2Ds1LBPScOyAccled, and towsiDs2Ds1LBPScOyAccled, and town is the segment number, and towsiDs2Ds1LBPScOyAccled, and town is the segment number, and towsiDs2Ds1LBPScOyAccled, and town is the segment number, and town is the segment number, and towsiDs2Ds1LBPScOyAccled, and town is the segment number, and the segment number, and town is the segment number, and the segment number number, and the segment number number, and the segment number number number, and the segment number numb

For example, the 366a MHz start Agray, 240 com, 640 SDRAMburst mode, the following table can be obtain mode is impossible and SCPW = base/2/4clock modes of

SCPW	D1BSCP frequency (MHz)	tcw (ns)	(N/8+1) × tcw + T_busdly + T_busfmax (ns)	t _{LP} – t _{LPH} (ns)	Judgment
Base	18	55.6	5166.1	31250	OK
2 clk	9	111.2	9674.4	31250	OK
4 clk	4.5	222.4	18681.6	31250	OK
8 clk	2.25	444.8	36696	31250	ERROR

Note: The speed of BaseSCP mode is equal to 2clk mode in the 8 or 16 GRAY mode.

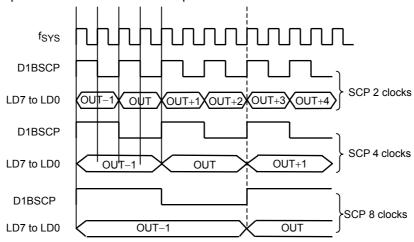
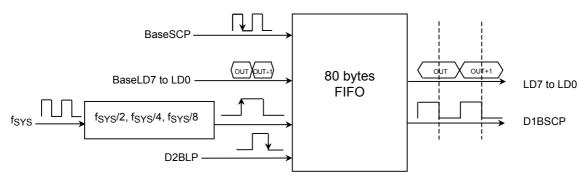



Figure 3.14.12 Timing Diagram for the LCD Panel Access Signals

Note: D1BSCP = BaseSCP and BaseLD7 to LD0 = BaseLD7 to LD0 in BaseSCP mode (e.g., for SCPW [1:0] = 00)

Figure 3.14.13 Timing Diagram for FIFO

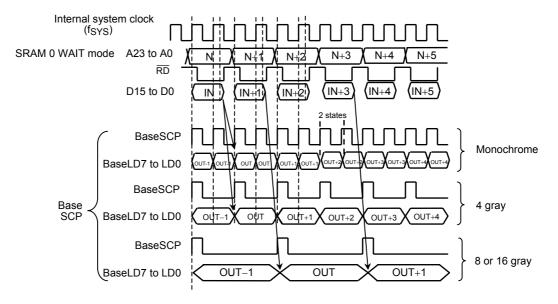


Figure 3.14.14 Timing Diagram for SRAM Mode with BaseSCP

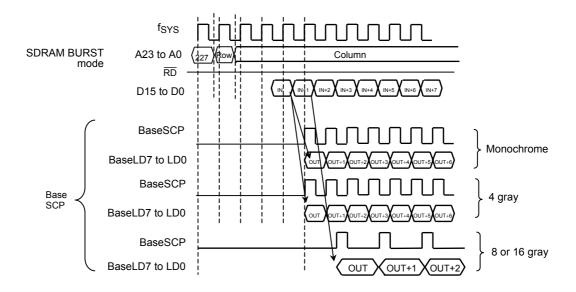
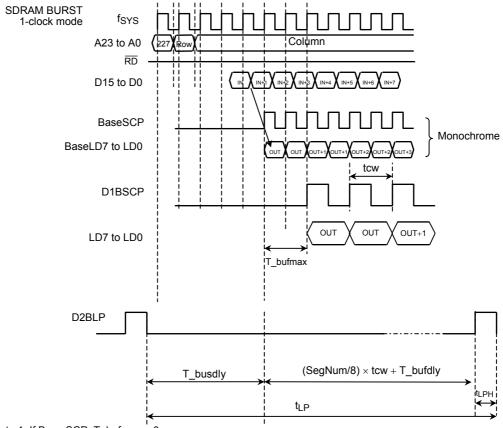
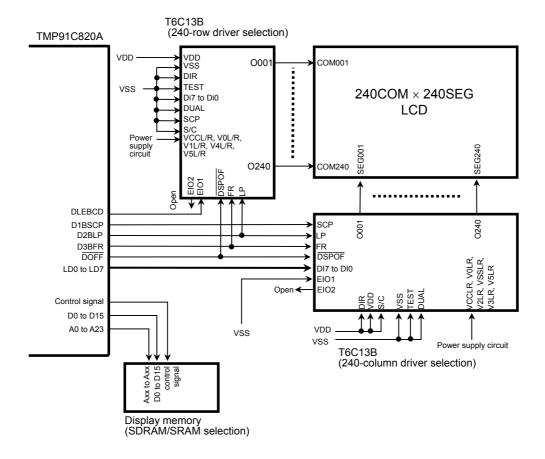



Figure 3.14.15 Timing Diagram for SDRAM BURST Mode with BaseSCP


Note 1: If Base SCP, T_bufmax = 0.

Note 2: If except Base, $T_bufmax \le tcw + 2/fc$

Note 3: T_busdly is about 11 times as long as f_{SYS} period (22/fc).

Figure 3.14.16 Timing Diagram for Maximum FIFO Delay Time

3.14.4.7 Interface Examples at SR Mode

Note 1: Display memory should be 16-bit bus.

Note 2: Other circuit is necessary for LCD drive power supply for LCD driver display.

Figure 3.14.17 Interface Example for Shift Register Type LCD Driver

Note: Because the connection between the line of display RAM data and output bus: LD0:7 is just the mirror reverse, please care of connection. The data LSB of display RAM is output from LD7. In the above figure, LD0 should be connected to DI7 of LCD driver, and LD1 to DI6.

For detail information, please refer to Figure 3.14.5.

3.14.4.8 Sample Program

J R

LD

LD

I NC CP

JR

loop2:

nz, loop1

xi x, 407800H

(xix), wa

wa, 05555H

;**** 2/4 data wri ****** 6**0 ROW

2, xi x

nz, Loop2

LD

• Example: In case of use 224100 CSOENG 4-level gray scale display, This sample program operate correctly, LCD panels ;***** S D R A M S E**** (sdacr), 2bH; Add-MUX enable, 64-Mbi (sdrcr), O1H; Interval refresh LD LD ;***** GLCDC S控**** (Icdmode), 17H; A/Barea off, SDRAM 64 N LD ; SCP width 2 clocks (Icddvm), 11; 11-count DVMset LD LD (lcdsize), 3-22440,; 90204/0 LD (IcdctI), 20H; Divide frame ON, displ LD (Icdffp), 240 equ;e hcarce frection (91 Hz) LD (Icdgl), O1h ; 4-level gray LD (Icdcm), Oc1H; Cursor ON, black, 2Hz b LD (Icdcw), 19 = 20 dWo tolst h LD (Icdch), 19 = 20 dHeetisght LD (Icdcp), OOHO; Pixel LD (Icdcpl), OOH; Cursor position LD (Icdcpm), OOH; Cursor address LD (Icdcph), 40H; Cursor address (Isarch), 40H; C_areastart address LD LD (Isarcm), OOH; C_areastart address LD (Isarcl), OOH ; C_areastart address ;***** O/4 data wri ********60 ROW LDxi x, 400000H LD wa, 0000H ; Write data O/4 gray data (C LD (xix), wa loop1: I NC 2, xi x ; 400000H t o 4077FFH: 60 R CP xi x, 407800H

; Writedata 2/4 gray data ()

x i x , 4 O F O O O O H t ; o 44 O D E SE O O O H H : 6 O R O W (D o t)

```
;***** 3/4 data wri ***** 60 ROW
         xix, 40F000H
    LD
    LD
         wa, OaaaaH ; Write data 3/4 gray data (1
loop3:
        LD (xix), wa
          2, xi x
    I NC
    CP
          xi x, 416800H
                         ; 40F000Hto 4167FFH: 60R
          nz, loop3
    J R
;**** 4/4 data wri ***** 60 ROW
    LD
          xi x, 416800H
    LD
          wa, OffffH
                         ; Write data 4/4 gray data (
loop4: LD (xix), wa
    I NC
           2, xi x
    CP
          xix, 41e000H t;o 416866H: 60 ROW (Dot)
    J R
          nz, loop4
;**** 4-level gray pal ***te pattern set
         (IgOI), OOH ; O/4grayscalepaletteO
    LD
    LD
          (lg1l), O5H
                         ; 2/4 gray scale palette O
          (lg2l), OeH
    LD
                         ; 3/4 gray scale palette 1
          (Ig3I), OfH; 4/4grayscalepalette1
    LD
;***** DMA, DISPLAY- ®N*start
    LD
          (IcdctI), @sap1Hayo;nDidivideon
```

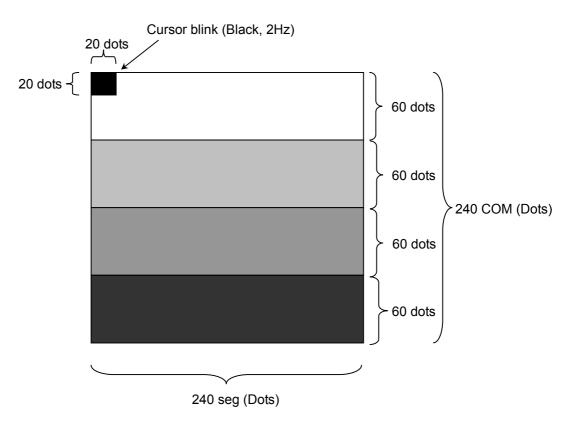


Figure 3.14.18 Display Reference above Sample Program

3.14.5 RAM Built-in Type LCD Driver Control Mode (RAM type)

3.14.5.1 Operation

Data transmission tet. Corbect by enoves lexistruction of After setting mode of operation to SFR, when move in LCDC outputs chipselect signal to LCD driver connection (D1BSCPetc.). Therefore control of data trans LCD size is controlled by instruction of CPU. Therefore this case, and which is chosen determines at the corresponds to LCD deryellow/tieconfhians set ruction of the consequence of the confidence of the confidence

It corresponds to addrpees is CoD of reicvt evor \dot{a} it it hg t iy me of < = "1".

The transmission place address at this time can a 3COOOOH to 3FFFFFH toefoety 64 Abyoes. (RANDOM ACCES See Table 3. 14. 4)

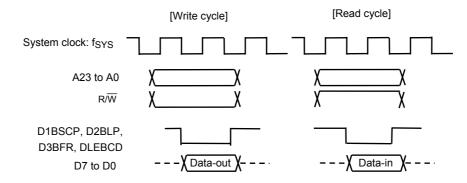
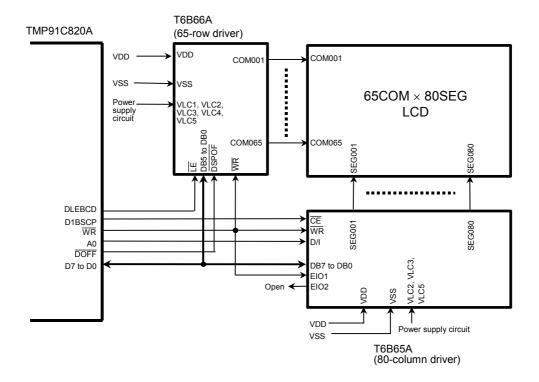



Figure 3.14.19 Example of Access Timing for RAM Built-in Type LCD Driver (Wait = 0)

3.14.5.2 Interface Examples at Internal RAM Mode

Note: Other circuit is necessary for LCD drive power supply for LCD driver display.

Figure 3.14.20 Interface Example for RAM Built-in Type Sequential Access Type LCD DRIVER

3.14.5.3 Sample Program

• Example: Incasexx6550304M82035DEx0Griver.

Assignexternal co CD © 1 alnd vew thoiver to LCDC4. This example used LD insot fricost to but this centath on g sed bu of micro DMA in transmitting of display data.

In case of store 650 bytes transfer data to LCD driver.

```
; ***** Setting exter***** terminal
          (pdcr), 19至for LCDC1: D1BSCP,
                    ; LEfor LCDL1: DLEBCD,
                    ; Setti Droof for
; **** Setting f & **** LCDC
    LD
          (Icdmode),SODelct RAMmode
    LD
          (IcdctI), OOH = Q (MSNedu)Lu@Dntial access mod
; ***** Setting for mode of * 12** DCO/LCDRO
          (Icdc1I), xxngins Settction for LCDC1
    LD
          (Icdc4I), xxngins Setttion for LCDC4
;***** Setting for micro DMA ****** NTTC (ch O)
    LD
          a. 08H
                       : Source address I NC mode
    LDC
          dmamO, a
    LD
          wa, 650
                        := 650nt
    LDC
          dmacO, wa
    LD
          x wa , 1000H
                        : Souf OO ald dress
    LDC
          dmasO, xwa
                        ; Dest⊨គā1Ho(nL@Ō)CO⊭$s
    LD
          xwa, Ofe1H
    LDC
          dmadO, xwa
    LD
          (intetcO1), O6H = 6 | NTTCO | evel
    ΕI
    LD
          (dmab), O1H; Burst mode
          (dmar), O1H; Soft start
    LD
```

3.15 Melody/Alarm Generator (MLD)

TMP91C82OA incorporate somell and my ffum ctii com, almoth of whi from the MLDALM pin. Fi voey okliensol long TfEiRReLAPT is generate by counter, which is used for all arm generator.

Features are as follows.

Mel ody generator

The melody function generates signals of any frequelow-speed clock (32.768 kHz) and outputs the signals. By connecting a loued, speelakery bounts can easily sound.

Alarmgenerator

The Alarm function geneorfates remingulate Afionrohs having a metroped frequency (4096 Hz) deterohodinoe colk b (y3t2h e716 & wk. Hzp) e eAnd this able to invert by setting a value to a register.

By connecting a loud speaker outside, alarm tone can Five kind of fixed cythlz #5(12 Hlz #2 Kltz) 64 NTERRUPT be geusing a counter which is used for alarm generator.

Special mode

It is assigned <TA3LCRETA3MtLbDiet>Catrnbdit1, of EMCCRO (OOE7hex). These bits are used when you want to operate without low-frequency clock (X\$eN,tXeOeT)woAbfits set clock is supplied each LCDC and MELODY circuit. If y (Generate by timer 3) is soll@FLOEX each bluiC*DC tensme, you sho set 32kHz timer 3frequoeorkcAyC & poetcoleftiacial tion character

This section is constituted as follows.

- 3. 15. 1 Block Diagram
- 3.15.2 Control Registers
- 3.15.3 Operational Description
 - 3. 15. 3. 1 Melody Generator
 - 3. 15. 3. 2 AlarmGenerator

3.15.1 Block Diagram

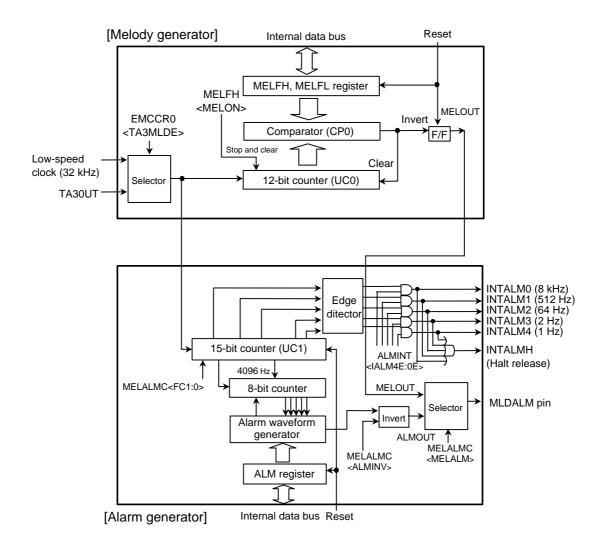


Figure 3.15.1 MLD Block Diagram

3.15.2 Control Registers

ALM R Register

ALM (0330H)

	7	6	5	4	3	2	1	0			
Bit symbol	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1			
Read/Write		R/W									
After reset		0									
Function		Setting alarm pattern									

MELALMC Register

MELALMO (0331H)

		7	6	5	4	3	2	1	0
1C	Bit symbol	FC1	FC0	ALMINV	=	=	=	=	MELALM
	Read/Write	R	W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset		0	0	0	0	0	0	0
	Function	Free-run co 00: Hold 01: Restart 10: Clear 11: Clear ar	unter control	Alarm waveform invert 1: Invert		Write	e "0".		Output waveform select 0: Alarm 1: Melody

Note 1: MELALMC<FC1> is read always 0.

Note 2: When setting MELALMC register except <FC1:0> during the free-run counter is running, <FC1:0> is kept 01.

MELFL Register

MELFL (0332H)

	7	6	5	4	3	2	1	0				
Bit symbol	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0				
Read/Write		R/W										
After reset		0										
Function		Setting melody frequency (Lower 8 bits)										

MELFH Register

MELFH (0333H)

	7	6	5	4	3	2	1	0	
Bit symbol	MELON				ML11	ML10	ML9	ML8	
Read/Write	R/W					R/V	V		
After reset	0				0				
Function	Control melody counter 0: Stop and clear 1: Start				Setting	melody frequ	ency (Upper	4 bits)	

ALMINT Register

ALMINT (0334H)

	7	6	5	4	3	2	1	0		
Bit symbol				IALM4E	IALM3E	IALM2E	IALM1E	IALM0E		
Read/Write			R/W	R/W						
After reset			0	0						
Function			Write "0".	1: Interrupt enable for INTALM4 to INTALM0						

3.15.3 Operational Description

3.15.3.1 Melody Generator

The melody function geammeyr farteex guseingcrya (4s Hozf to 5461 H. low-speed clock (32.768 kHz) and outputs the signal By connecting a loued, speelaks dry toom tested neasily sound

(Operation)

At first, MELALMChMDeAtLoMbe set as 1 in order to swaveform as output waveform from MLDALM. Then melobe set to 12-bit register MELFH, MELFL.

Followings are setti unlgaetxiaompobé maneldocaty ocut put fred

(Formula for calculating of melody waveform frequat \$2.768 [kHz]

melodyoutput wwa_vo@ff1203207668N(2)

setting value for fine By Ap 4 by f2 N

(Noti€1e.t oN 4095 (OO1H to FFFH), Ois not ac

(Example program)

In case of outputting a musical scale (440 Hz)

LD (MELALMC), 11X00001B; Select melody way

LD (MELFL), 23H = 1638M + 2 = 4305 = 223H

LD (MELFH), 80H; Start to generate wa

(Ref: Basic musical scale setting table)

Scale	Frequency	Register			
Scale	[Hz]	Value: N			
С	264	03CH			
D	297	035H			
Е	330	030H			
F	352	02DH			
G	396	027H			
Α	440	023H			
В	495	01FH			
С	528	01DH			

3.15.3.2 Alarm Generator

The alarm function genee frates reiwg kntefkommod shaving am frequency 4096 Hz det beomis pedebolyct book (32.768 kHz waveform is reversible by setting a value to a regis By connecting aloud speaker outside, alarm tone c Five kind of fixed blayclosek (21, Hz/1, 22Hz, 8 kHz) INTER generated by using in scossed of low hall almong enerator.

(Operation)

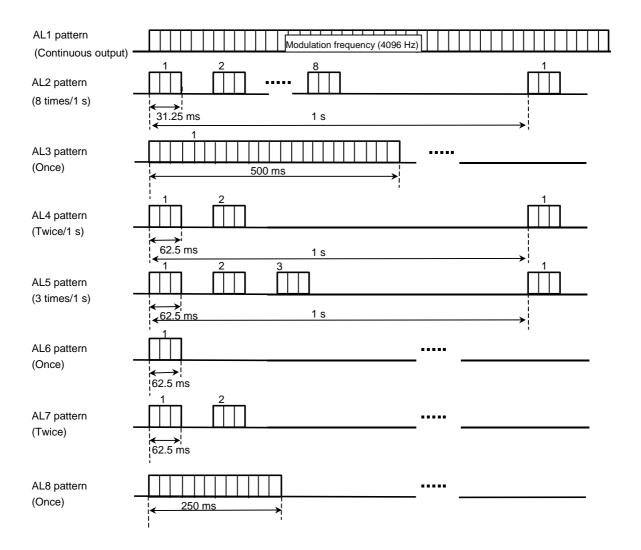
At first, MELALMCh ME LeAtLoMb e set as Oin order to waveform as output waveform from MLDALM. Then al on 8-bit register of ALMI Toin MLDAyL MC < AC1: O> regi
<ALMI NV> be set as invtehretse Byyas Leutersi, nogounter star al arm waveform.

Followings are example program, setting value of each setting value.

(Setting value of alar mpattern)

<u>setti iig v</u>	ar ac or ar ar
Setting Value for ALM Register	Alarm Waveform
00H	0 fixed
01H	AL1 pattern
02H	AL2 pattern
04H	AL3 pattern
08H	AL4 pattern
10H	AL5 pattern
20H	AL6pattern
40H	AL7 pattern
80H	AL8 pattern
Other	Undefined
	(Do not set.)

(Exampleprogram)


In case of outputtteirmg(A3L12 p255 ms/8 times/1s)

_D (MELALMC), COH ; Set output al armwav

; Free-run counter start

LD (ALM), O2H; Set AL2pattern, star

Example: Waveformof alarmpattern for each settii

3.16 SDRAM Controller (SDRAMC)

TMP91C82OA includes SDRAdMhosourptproorltlsed awtha access by CPU The features are as follows.

(1) Support SDRAM

16- or 64- or 128-xMb6ibtixSED&RABBA(NKs), not support DDR

- (2) Automaticinitialize function
 - All BANK pre-charge command generate
 - Moderegsiesttgeernerate
 - 8timesautorefresh
- (3) Access mode

	CPU Access	LCDC Access	
Burst length	1 word	Full page	
Addressing mode	Sequential	Sequential	
CAS latency (Clock)	2	2	
Write mode	Single write	-	

- (4) Access cycle
 - CPUaccess (Read/write)

Read cycle: 4 states (222 ns at 36 MHz)

Writecycle: 3states (167 ns at 36 MHz)

Access data width: 8bits/16bits

Burstlength: 1 word only

LCDCburst access (Read only)

Read cycle: 1 state (55 ns at 36 MHz)

Overhead: 4states (222ns at 36 MHz)

Access data width: 16 bits only

Burstlength: Full page only

- (5) Refreshcycleautogenerate
 - Autorefreshisgenerated during another area acc
 - Refreshintervalisprogrammable.
 - Selfrefreshis supported

Notes:

- Display data has to set from the head of each page.
- Program is not operated on SDRAM.
- Following condition is set by setting Chip select controller CS1.
 - WAIT setting: 0 WAIT setting only
 - Bus width: 8/16 bit only
 - Memory area: Optional

TOSHIBA

3.16.1 Control Registers

Figure 3. 16. 1 shows the SPRAMCSeont inglines iestegiste operation of SDRAMC.

SDRAM Access Control Register

SDACR (04F0H)

	7	6	5	4	3	2	1	0
Bit symbol	SDINI	SWRC	-	-	SMUXE	SMUXW1	SMUXW0	SMAC
Read/Write	R/W	R/W	R/W	R/W	R/W	R.	W	R/W
After reset	0	0	1	0	0	0	0	0
Function	Auto initialize	Write recovery	Always fixed to "10".		Address mux	SDRAM select 00: 16 Mbits 10: 128 Mbits		SDRAM cotroller
	0: Disable	0: 1 clock			0: Disable	01: 64 Mbits	11: Reserved	0: Disable
	1: Enable	1: 2 clock			1: Enable			1: Enable

SDRAM Refresh Control Register

SDRCR (04F1H)

	7	6	5	4	3	2	1	0
Bit symbol	SFRC	SRS2	SRS1	SRS0	-			SRC
Read/Write	R/W	R/W			R/W			R/W
After reset	0	0	0	0	0			0
Function	Self refresh 0: Exit 1: Entry			Always write "0".			Auto refresh 0: Disable 1: Enable	

Figure 3.16.1 SDRAMC Control Registers

Selfrefresh operation is controlled by setting SDF become Entry by writing "t10" StDARCHR < BFRAC 10, t 6 & 10 frefresh Exit.

TMP91C820A

TOSHIBA

3.16.2 Operation Description

(1) Memory access control

Access control block is enab # 1e. wAnneon tShDAnCDRAMACOntsignals (SDCS, SDRAS, SSDDCDADM, SSDWED, QM, SDCLK and SDC are output during the time CPU or LCDC accesses CS1 a

In the access cycle, at plutes or onwitto plument and dress the A12 pin. The enable/disable setting of address mul <SMUXE>. And multiplex width is decided by setting memory size. The relation between multiplex width a

	7								
SDRAM	TN								
Address	Column	Column Row Address							
Pin Name	Address	16 Mbits	64 Mbits	128 Mbits	← Memory size				
_	A0	A0	A0	A0					
A0	A1	A9	A9	A10					
A1	A2	A10	A10	A11					
A2	A3	A11	A11	A12					
А3	A4	A12	A12	A13					
A4	A5	A13	A13	A14					
A5	A6	A14	A14	A15					
A6	A7	A15	A15 A16						
A7	A8	A16	A16	A17					
A8	A9	A17	A17	A18					
A9	A10	A18	A18	A19					
A10	A11	A19	A19	A20					
A11	A12		A20	A21					
BS0	A13	A20	A21	A22					
BS1	A14	_	A22	A23					
	Effective column a								

Table 3.16.1 Address Mutiplex

TMP91C820A address pin name

Effective column address

SDRAMaccess by CPU is performed by the 1 word bur SDRAMaccess by LociDroeidshove it page burst mode.

SDRAMaccess cycle is shown in Figure 3. 16. 2 to F

The read cycle by CPU is the 4-state fixation, a fixation.

In the burst read cycle etogyils Of DeCr, særtnou ppe a pre-chararefresh cycle are automatically inserted in CPU

Note: In SDRAM access cycle, WAIT setup by the CS/WAIT controller (CS1) is disregarded. The wait setting of CS1 should be 0 waits.

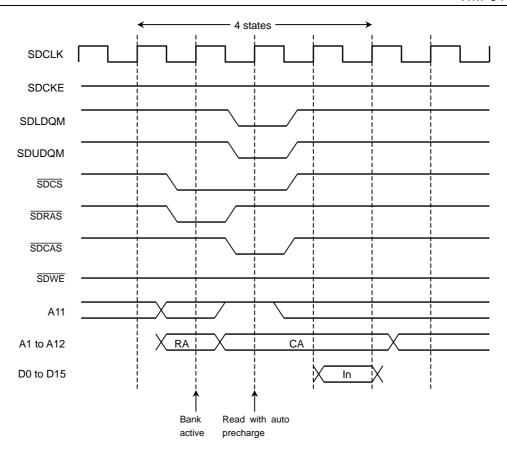


Figure 3.16.2 SDRAM Access Timing (CPU read)

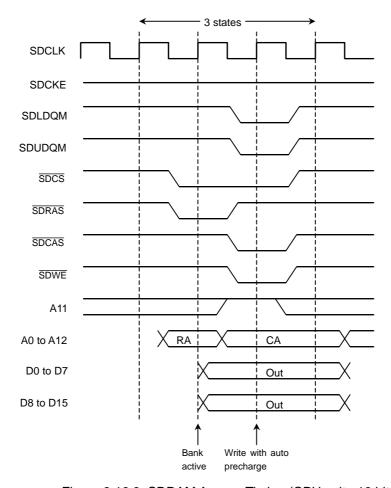


Figure 3.16.3 SDRAM Access Timing (CPU write 16 bits)

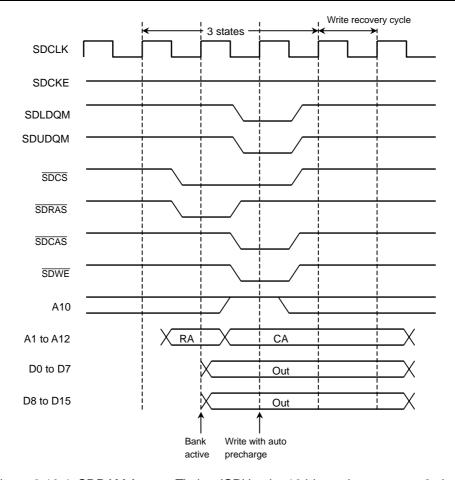


Figure 3.16.4 SDRAM Access Timing (CPU write 16 bits, write recovery: 2 clocks)

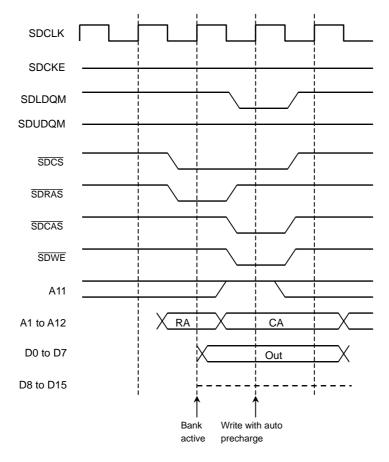


Figure 3.16.5 SDRAM Access Timing (CPU lower byte write)

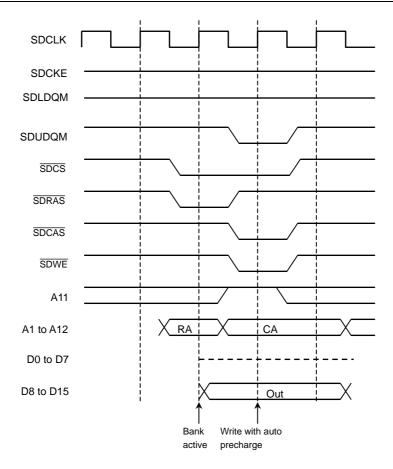


Figure 3.16.6 SDRAM Access Timing (CPU upper byte write)

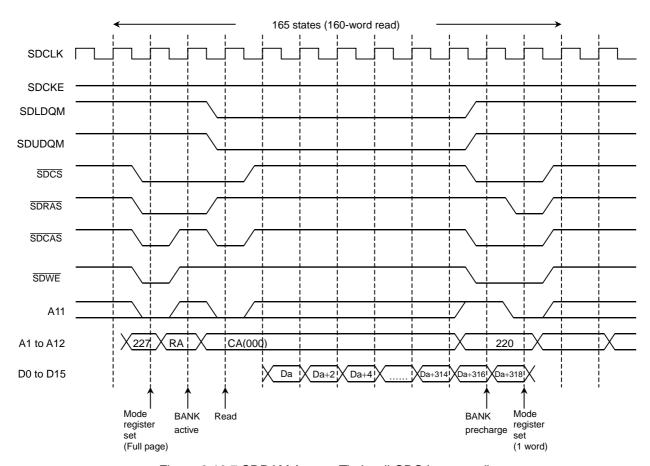


Figure 3.16.7 SDRAM Access Timing (LCDC burst read)

(2) Refresh control

TMP91C82OA can generaytea aruetformeasthi ocaylcll e require maintenance of SDRAM.

Refreshment i nterva**与DaGRSeO:u2**>bfyrom the 78sta312statµsst(041µ弱a3t36MHz).

By setting SDRCR<SRC> to 1, a refresh cycle is gene <SRO: 2>.

The generating timing oble a ormes sries tho cay codess cycle SDRAMarea (CS1) after the interval setup by < SRSO:

The refresh cycle is shown in Figure 3. 16. 8. Moreoshown in Table 3. 16. 2.

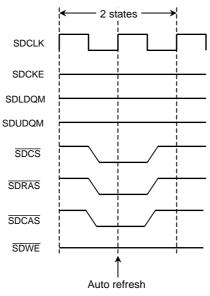


Figure 3.16.8 Refresh Cycle

Table 3.16.2 Auto Refresh Cycle Insertion Interval

(Unit: µs)

<srs2:0> setting</srs2:0>			Insertion	Frequency (f _{SYS})						
SRS2	SRS1	SRS0	interval (State)	5 MHz	6.25 MHz	8 MHz	10 MHz	12.5 MHz	18MHz	
0	0	0	78	15.6	12.5	9.8	7.8	6.2	4.3	
0	0	1	97	19.4	15.5	12.1	9.7	7.8	5.4	
0	1	0	124	24.8	19.8	15.5	12.4	9.9	6.9	
0	1	1	156	31.2	25.0	19.5	15.6	12.5	8.7	
1	0	0	195	39.0	31.2	24.4	19.5	15.6	10.8	
1	0	1	210	42.0	33.6	26.3	21.0	16.8	11.7	
1	1	0	247	49.4	39.5	30.9	24.7	19.8	13.7	
1	1	1	312	62.4	49.9	39.0	31.2	25.0	17.3	

It does not generate eimmtt **eluväh gret**fieebsuhms taccess t LCDC.

The interval refreshment demand generated in the Whenit returns to CPU and ceers/salcyrcelfer, esch cycle is generated.

Furthermore, TMP91C82OA cenfingeshersytee.sEhleftimirrefreshcycleis shown in Figure 3. 16. 9.

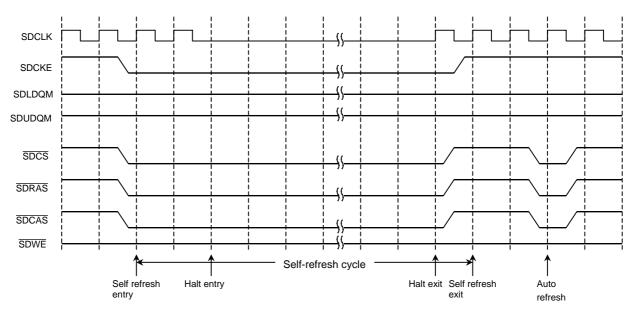


Figure 3.16.9 Self Refresh Cycle

Note 1: SDCLK is output in the IDLE2 mode. Therefore if you stop SDCLK, change PF6 pin to output port before the HALT instruction.

Note 2: Pin condition under the IDLE1/STOP mode depends on the setting of SYSCR2<DRVE>. SDCKE doesn't depend on it but outputs low level.

If SDRCR<SFRC> is set to 1, the self-refresh cycle

The self refreshment mode is used when using the swhich an internal clock is to pisuc Breifconr (eSHTADPT IDLE1) refreshment in the state of enable, please set SDRC

Release of a self refr**eah** lcyy peefformwetoolomyatiel ease i mode.

It inserts automaticahme on af neeseaf refreshmen

returns to the interval refreshment mode.

(Note: When HALT instruction is cancelled by a reset, the I/O registers are initialized, therefore, refresh is not performed.).

Please do not place the command which accesses SDR which sets 1 to SDRCR < SFBORCR & SER & et o il no gmake sure HALT instruction comes after NOP or some instruction

(3) SDRAMInitialize

TMP91C82OA can generate the cycle of the following power-supplyinjection to SDRAM. The cycle is shown

- 1. Precharge of all banks
- 2. Theinitial configuration to a mode register
- 3. Therefresh cycle of 8 cycles

The above mentioned cycle is generated by setting. Time after SDACR<SDINI > is set to 1 until an initichanges wiwith of obmonands.

While performing this cycle, operation (Aninstru CPU is stopped.

In addition, even before performing an initializa SDRAM control signal and an address signal (A1 to A1

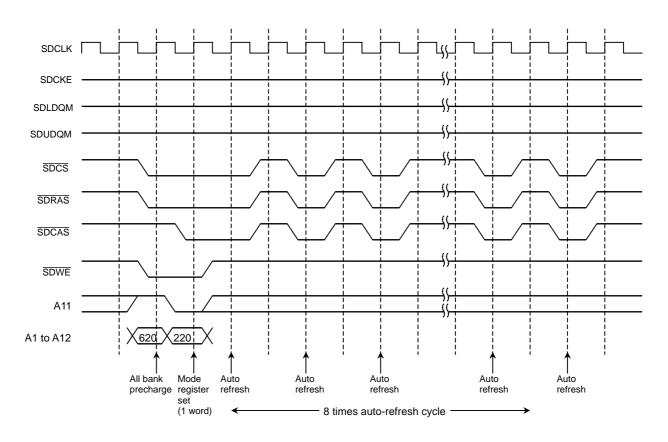


Figure 3.16.10 Initialize Cycle

(4) Connection example

The example of connection with SDRAMis shown in Fi

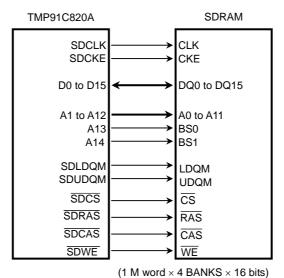


Figure 3.16.11 Connection with SDRAM

(5) Li mi tati on poi nt to use SDRAM

There are some points to notice when using SDRAMC. under below and take care.

1) WAITaccess

When using SDRAM, it is added some limitation of a Under the N-WAIT setting of this MCU, it is prohi (1% refresh interval time; in Auto Refresh function troller).

2) Execution of SDRAM command the foir @ reHALE(\$分) - Entr Initialize, Mode-set)

It requires execution time (a few states) to execute has (SR-Entry, Initialize).

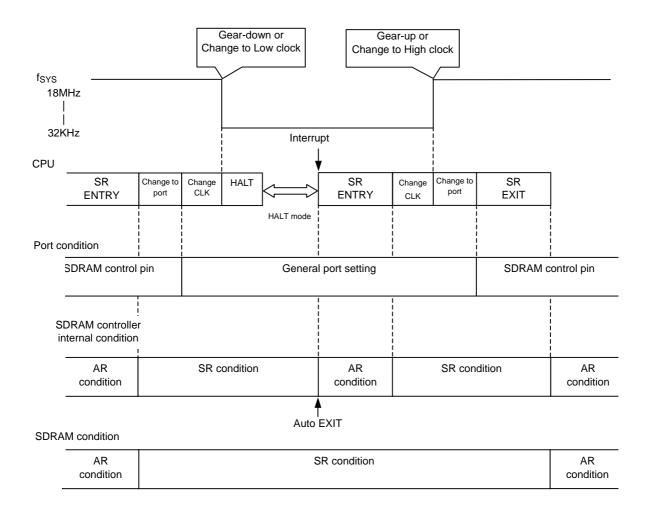
Therefore when executing HALT instruction after insert over 10 bytes NOP as britine til 100 nlssylotæfore HALT i

3) AR (Auto Refresh) interval time

When using SDRAM, CPU clock must be set suitab specification that is minimum operating clock and When using SDRAM under slow mode or down the Clock system with special care for Auto Refreshinter va

And please set Auto Refarfetschri and deirnvog 11 Obistnetes to Auto Refresh interval time, because it might not SDRAM by stopping Auto Refresh.

(Example of calculation)


Condition:

fsγ⊊ 18MHz, SDRAMspecification of distributed A 4096 times / 64 ms

 4) Auto Exit problem when exiting from Self Refres When using Self Refresh function together with changing clock, it might not be suit specificatineleasing Self Refresh function (Auto Exit func HALT mode.

Following figure shows example for avoid this pr

(Outline concept to control)

^{*}The target ports to change are SDCKE pin and SDCS pin.

^{*}The method of Self refresh Entry includes the condition 4).

 $^{^{\}star}$ SR : Self refresh , AR : Auto refresh

3.17 16-Bit Timer/Event Counters (TMRB)

The TMP91C82OA incorporates one multifunctional 16-which have the following operation modes:

- Interval timer mode
- Event counter mode

Timer/event counter conusnitsetrs, otfwao 1166—bbiitt utpincer regist with a double-buffer strue crteugries) t, ears 1,6 t bwiotcoampta una tors, controller, aptairmolear of obnitor-of II oircuit.

Timer/event countbeyrains1donbtyrtoeldoendtrol SFR.

This chapter consists of the following items:

- 3. 17. 1 Block Diagram
- 3.17.2 Operation
- 3.17.3 SFRs
- 3.17.4 Operationin Each Mode
 - (1) 16-bittimer mode
 - (2) 16-bit programmable pulse generation (PPG) ou

Spec	Channel	TMRB0
External	External clock/capture trigger input pins	None
pins	Timer flip-flop output pins	TB0OUT0 (also used as PB6)
	Timer run register	TB0RUN (0180H)
	Timer mode register	TB0MOD (0182H)
	Timer flip-flop control register	TB0FFCR (0183H)
		TB0RG0L (0188H)
055	Timer register	TB0RG0H (0189H)
SFR (Address)	Timer register	TB0RG1L (018AH)
(/ (dd/ 000)		TB0RG1H (018BH)
		TB0CP0L (018CH)
	Capture register	TB0CP0H (018DH)
	Capitile legistel	TB0CP1L (018EH)
		TB0CP1H (018FH)

Table 3.17.1 Pins and SFR of TMRB0

3.17.1 Block Diagram

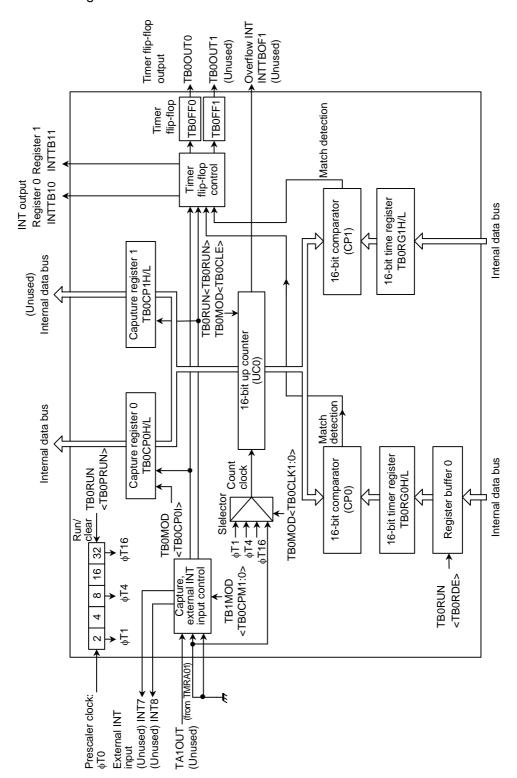


Figure 3.17.1 Block Diagram of TMRB0

3.17.2 Operation

(1) Prescaler

The 5-bit prescaler geheck fees filmer Bourtone of Opscale is divided clock (Divided by 4) from selected clock of clock gear. This prescaler can be started or sto Counting starts when <TBORUN> is set to 1; the prescoperation when <TBORUN> is set to 0.

Table 3.17.2 Prescaler Clock Resolution

at fc = 16 MHz, fs = 32.768 kHz

System	Prescaler Clock	Clock Gear	Prescaler Clock Resolution				
Clock Selection <sysck></sysck>	Selection <prck1:0></prck1:0>	Value <gear2:0></gear2:0>	φΤ1	фТ4	фТ16		
1 (fs)		XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 μs)		
		000 (fc)	fc/2 ³ (0.5 μs)	fc/2 ⁵ (2.0 μs)	fc/2 ⁷ (8.0 μs)		
	00	001 (fc/2)	fc/2 ⁴ (1.0 μs)	fc/2 ⁶ (4.0 μs)	fc/2 ⁸ (16 μs)		
	(f _{FPH})	010 (fc/4)	fc/2 ⁵ (2.0 μs)	fc/2 ⁷ (8.0 μs)	fc/2 ⁹ (32 μs)		
0 (fc)		011 (fc/8)	fc/2 ⁶ (4.0 μs)	fc/2 ⁸ (16 μs)	fc/2 ¹⁰ (64 μs)		
		100 (fc/16)	fc/2 ⁷ (8.0 μs)	fc/2 ⁹ (32 μs)	fc/2 ¹¹ (128 μs)		
	10 (fc/16 clock)	XXX	fc/2 ⁷ (8.0 μs)	fc/2 ⁹ (32 μs)	fc/2 ¹¹ (128 μs)		

xxx: Don't care

(2) Upcounter (UCO)

UCOis a 16-bit binary counter which counts uppuls by TBOMODQCIEK 1: O>.

Any one of the prescal of the Brown of the prescal of the Brown of the prescal of the Brown of the Bol Nopin can be selected as the input clearing of the brown the brown the Borun of the

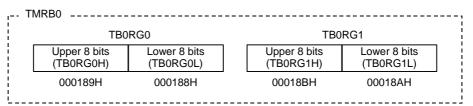
When clearing is enable @, wt he wpcobented wo zeroe value matches the value in the timer register TBORG disabled using TBOMOD<TBOCLE>.

If clearing is disample ed, tesas auf m teer running count A timer overflowinterrupt (INTTBOFO) is generate

(3) Timer r(eTgBIOsRtGeOrasnd TBORG1)

These two 16-bit registers are used to set the intercounter UCO matches the mear Irue egs est en, the comparators ignal will go active.

Setting data fæmblotohweppteimer registers is needed 2-byte data transfer instruction or using 1-byte lower 8 bits and upper 8 bits in order.

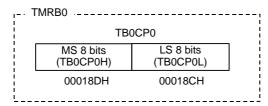

The TBORGOti mer registers than a catclorue block if is paired buffer. The value set in TBORUN<TBORDE> determine structure is enabled or disabled:=Dt in a dienabled whe <TBORDE1>

When the double buffer is enabled, data is transfer timer register when the values in the up counter (UC match.

After a reset, TBORGO and TiBORGO fathee ulned be fit timer is after a reset, data should be written to it before ha

On a reset <TBORDE > is binistable in getchecolouble buffe double buffer, write data to the timer register, se the register buffer as shown below.

The addresses of the timer registers are as follows



The timer registers are write-only registers and thus cannot be read.

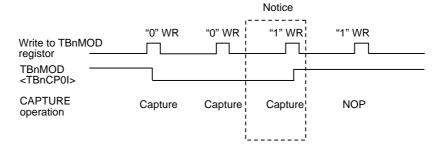
(4) Captureregisters (TBOCPOH/L)

These 16-bit registers are used to latch the values Datain the capture regidsaters as bijotus. d Foerrex ample, udataload instruction or two 1-byte dataload instruction of two 1-byte dataload instruction of two 1-byte.

The addresses of the capture registers are as follows:

The capture registers are read-only registers and thus cannot be written to.

(5) Capture input control


This circuit controls the timing to latch the value of the value in the up-counter can be loaded into a continuous whenever Ois written to TBOMOD<TBOCPOLS, the currel loaded into capture register TBOCPOLIT is necessationed (e.g., TBORUN<TBOPRUN> must be held at a value

CPO and CP1 are 16-bit commponance the synaphic in not he up co

(6) Comparators (CPOand CP1)

with the value set in TBORGO or TBORG1 respectively match is detected, the comparator generates an in respectively).

Note: As described above, whenever 0 is written to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0. However, note that the current value in the up counter is also loaded into capture register TB0CP0 when 1 is written to TB0MOD<TB0CP0I> while this bit is holding 0.

(7) Timer flip-flops (TBOFFO and TBOFF1)

These flip-flops are inverted by the match detect the latch signals to the capture registers. Inverse each element usi no CDOFF CTRS-OTEB T1, TBOEOT1>.

After a reset the value of TBOFFO is undefined. I <TBOFFOC1: O> or <TBOFF1C1: O>, TBOFFO will be invecapture registers, the value of TBOFFO will be set t registers, those was about the set to O.

The values of TBOFFO can be output via the timer ou shared with PB6). Timer output should be specified

3.17.3 SFRs

TMRB0 Run Register

TB0RUN (0180H)

	7	6	5	4	3	2	1	0		
Bit symbol	TB0RDE	-			I2TB0	TB0PRUN		TB0RUN		
Read/Write	R/W	R/W			R/W	R/W R/W				
After reset	0	0			0	0		0		
Function	Double buffer 0: Disable	Always fixed to "0".			IDLE2 0: Stop 1: Operate	16-Bit timer run/stop control 0: Stop and clear 1: Run (Count up)				
	1: Enable	Count operation 0 Stop and clea								

I2TB0: Operation during IDLE2 mode TB0PRUN: Operation of prescaler

TB0RUN: Operation of TMRB0

Count

Note: The 1, 4 and 5 of TB0RUN are read as undefined value.

Figure 3.17.2 Register for TMRB

TMRB0 Mode Register 5 3 6 4 0 TB0MOD Bit symbol TB0CP01 TB0CLE TB0CLK1 TB0CLK0 (0182H) Read/Write R/W W* R/W R/W R/W After reset 0 0 0 1 0 **Prohibit** read-Function Always fixed to "0". Execute Always fixed to "0". Control up TMRB0 source clock modifysoftware counter 00: Reserved write 01: φT1 capture 0: Disable 0: Execute clearing 1: Enable 11: _{\$\phi\$T16\$} 1: Undefined clearing TMRB0 source clock 00 Reserved 01 φΤ1 φ**T**4 10 φT16 Up counter clear control 0 Disable TB0RG1 clearing on match with TB0RG1 Software capture The value in the up counter is captured to TB0CP0. Undefined (Note)

Note: As described above, whenever 0 is written to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0. However, note that the current value in the up counter is also loaded into capture register TB0CP0 when 1 is written to TB0MOD<TB0CP0I> while this bit is holding 0.

Figure 3.17.3 Register for TMRB

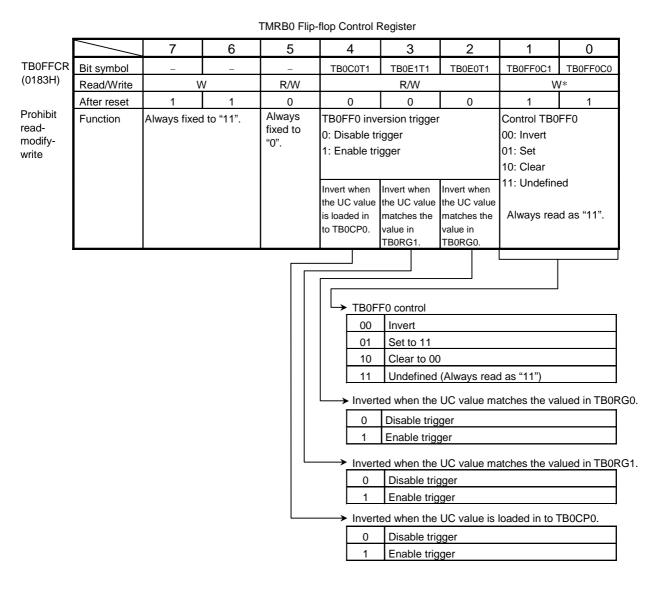


Figure 3.17.4 Register for TMRB

3.17.4 Operation in Each Mode

(1) 16-bittimer mode

Generatinginterrupts at fixed intervals

In this example, the interologetge NTeTaOte disase ixedi interval timbe is ismeetrime gister TBORG1.

		7	6	5	4	3	2	1	0	
TB0RUN	\leftarrow	0	0	Χ	Χ	_	0	Χ	0	Stop TMRB0.
INTETB01	\leftarrow	Χ	1	0	0	Χ	0	0	0	Enable INTTB01 and set interrupt level 4. Disable INTTB00.
TB0FFCR	\leftarrow	1	1	0	0	0	0	1	1	Disable the trigger.
TB0MOD	\leftarrow	0	0	1	0	0	1	*	*	Select internal clock for input and
						(** =	= 01	, 10,	11)	disable the capture function.
TB0RG1	\leftarrow	*	*	*	*	*	*	*	*	Set the interval time (16 bits).
		*	*	*	*	*	*	*	*	
TB0RUN	\leftarrow	0	0	Χ	Χ	_	1	Χ	1	Start TMRB0.

X: Don't care, -: No change

(2) 16-bit programmable pulse generation (PPG) output Square wave pulses camby generounded and dutyration pulse may be either lowactive or high active.

The PPG mode is obtained by inversion of the timer enabled by the match of the up counter UCO with time and to be output to TBOOUTH (TBORGE); et in TBORG1)

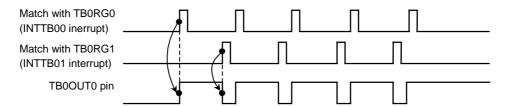


Figure 3.17.5 Programmable Pulse Generation (PPG) Output Waveforms

When the TBORGO double butfinfies micosden at bhleev dail nue of regovill be shifted into wii BtOrRTGBORTGM at Torhis feature fa handling of low-duty waves.

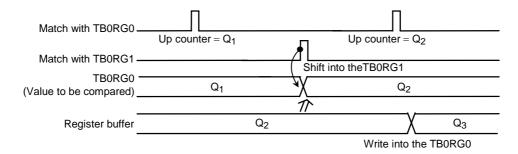


Figure 3.17.6 Operation of Register Buffer

The following block diagramillustrates this mode

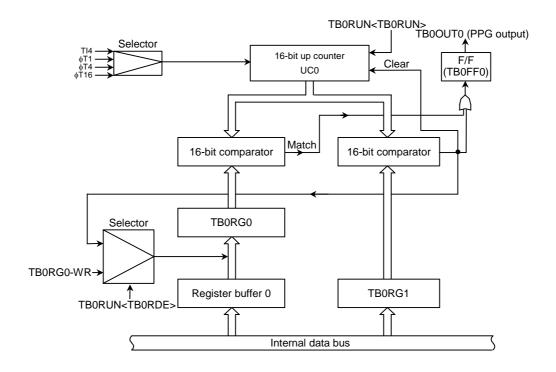
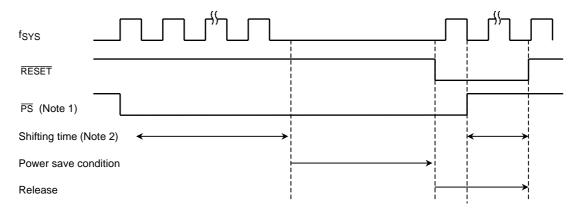


Figure 3.17.7 Block Diagram of 16-Bit Mode

The following example shows how to set 16-bit PPGo


```
TB0RUN
                                                        Disable the TB0RG0 double buffer and stop TMRB0.
TB0RG0
                                                        Set the duty ratio (16 bits).
TB0RG1
                                                        Set the frequency (16 bits).
TB0RUN
                                                        Enable the TB0RG0 double buffer.
                         Χ
                                         X 0
                                                        (The duty and frequency are changed on an INTTB01
                                                        interrupt.)
TB0FFCR
                                                        Set the mode to invert TB0FF0 at the match with
              \leftarrow X \quad X \quad 0
                                                        TB0RG0/TB0RG1. Set TB0FF0 to 0.
TB0MOD
                                 0
                                                        Select the internal clock as the input clock and disable
                     0
                             0
                                     1
                                                        the capture function.
                               (** = 01, 10, 11)
PBCR
                                                        Set PB6 to function as TB0OUT0.
PBFC
                                      Χ
                      1
                                                        Start TMRB0.
TB0RUN
                         Χ
                                         Χ
```

X: Don't care, -: No change

3.18 Hardware Standby Function

TMP91C82OA have hardware standby circuit that is ableed protect from program runaway by supplying power voltage of battery using.

It can be shifted to "PSPspoinrolitoi" on no"wby feivæled Figure 3. 18. 1 shows ttirmainns oj tli engroafmPS fcondition below. PS mode can release only external system reset.

Note 1: \overline{PS} pin is effective after RESET because SYSCR2<PSENV> to 0. If you use as \overline{NMI} pin, please write SYSCR2<PSENV> to 1.

Note 2: Shifting time is 2 to 10 clock times of fSYS.

Figure 3.18.1 Hardware Standby Timing Diagram

Table 3.18.1 Power Save Mode Conditions of Each HALT Mode

Note: Settings of SYSCR2<DRVE> and <SELDRV> at HALT mode are effective as well as PS condition.

4. Electrical Characteristics

4.1 Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	Vcc	-0.5 to 4.0	V
Input voltage	VIN	-0.5 to Vcc + 0.5	V
Output current	IOL	2	
Output current	IOH	-2	mA
Output current (Total)	ΣΙΟL	80	IIIA
Output current (Total)	ΣΙΟΗ	-80	
Power dissipation (Ta = 85°C)	PD	600	mW
Soldering temperature (10 s)	TSOLDER	260	
Storage temperature	TSTG	-65 to 150	°C
Operating temperature	TOPR	-20 to 70	

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

	Parameter	Symbol	Cond	dition	Min	Тур.	Max	Unit
	wer supply voltage	vcc	fc = 4 to 27 MHz	fs = 30 to 34 kHz	2.7	-	3.6	V
	/CC = DVCC) /SS = DVSS = 0 V)	VCC	fc = 4 to 36 MHz	115 = 30 to 34 kmz	3.0	-	3.6	V
	D0 to D15	VIL	$V_{CC} \ge 2.7 \text{ V}$			-	0.6	
roltage	P52 to P7 (except PB3, P9)	VIL1	V _{CC} ≥ 2.7 V			-	0.3 Vcc	
Input low voltage	RESET, NMI, PB3 (INT0), P9	VIL2	$V_{CC} \ge 2.7 \text{ V}$		-0.3	-	0.25 Vcc	
<u>du</u>	AM0 to AM1	VIL3	$V_{CC} \ge 2.7 \text{ V}$			=	0.3	
	X1	VIL4	$V_{CC} \ge 2.7 \text{ V}$			=	0.2 Vcc	V
	D0 to D15	VIH	$3.6 \text{ V} \ge \text{V}_{CC} \ge 2.7$	' V	2.0	-		V
Input high voltage	P52 to P7 (except PB3, P9)	VIH1	$V_{CC} \ge 2.7 \text{ V}$		0.7 Vcc	-		
r high	RESET, NMI, PB3 (INT0), P9	VIH2	$V_{CC} \ge 2.7 \text{ V}$		0.75 Vcc	-	Vcc + 0.3	
Inpu	AM0 to AM1	VIH3	$V_{CC} \ge 2.7 \text{ V}$		Vcc - 0.3	-		
	X1	VIH4	$V_{CC} \ge 2.7 \text{ V}$		0.8 Vcc			
Ou	tput low voltage	VOL	IOL = 1.6 mA		_	-	0.45	V
Ou	tput high voltage	VOH	$IOH = -400 \mu A$		2.4	-	-	V

Note: Typical values are for when $Ta = 25^{\circ}C$ and Vcc = 3.0 V unless otherwise noted.

DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note 1)	Max	Unit
Input leakage current	ILI	0.0 ≤ VIN≤ Vcc	-	0.02	±5	^
Output leakage current	ILO	0.2≤ VIN≤ Vcc - 0.2	-	0.05	±10	μА
Power down voltage (at STOP, RAM back up)	VSTOP	VIL2 = 0.2Vcc, VIH2 = 0.8Vcc	1.8	-	3.6	V
RESET pull-up resistor	RRST	$3.6 \text{ V} \ge \text{V}_{CC} \ge 2.7 \text{ V}$	100	-	400	kΩ
Pin capacitance	CIO	fc = 1 MHz	-	-	10	pF
Schmitt width RESET, NMI, INTO, KIO to KI7	VTH	V _{CC} ≥ 2.7 V	0.4	1.0	-	٧
Programmable pull-up resistor	RKH	$3.6~\text{V} \geq \text{V}_{CC} \geq 2.7~\text{V}$	100	-	400	kΩ
NORMAL (Note 2)			-	23.0	35.0	
IDLE2		Vcc = 3.6 V fc = 36M Hz	-	16.0	23.0	mA
IDLE1		10 - 30101112	-	1.6	3.0	
SLOW (Note 2)	Icc		-	23.0	45.0	
IDLE2		Vcc = 3.6 V fs = 32.768 kHz	_	14.0	35.0	μΑ
IDLE1		10 - 02.7 00 KHZ	_	6.0	25.0	
STOP		Vcc = 3.6 V	_	0.2	15.0	μΑ

Note 1: Typical values are for when $Ta = 25^{\circ}C$ and Vcc = 3.0 V unless otherwise noted.

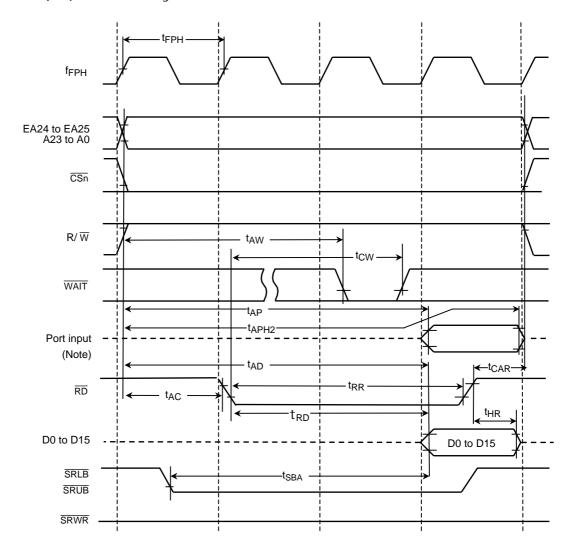
Note 2: Icc measurement conditions (NORMAL, SLOW):

All functions are operational; output pins are open and input pins are fixed. CL = 30 pF loaded on data and address bus.

4.3 AC Characteristics

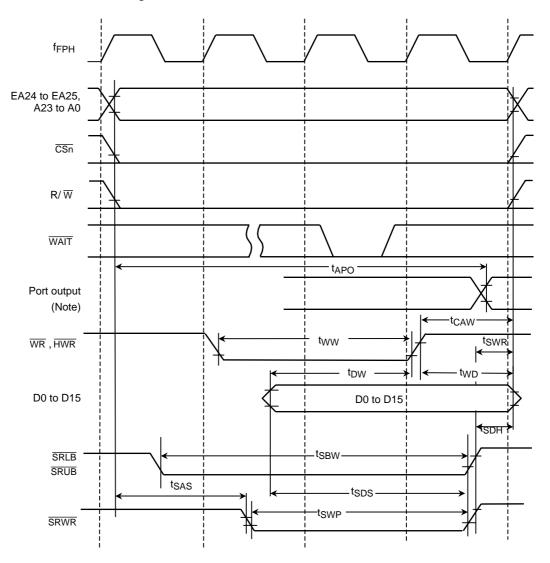
 $\label{eq:Vcc} \begin{aligned} \text{Vcc} &= 2.7 \text{ to } 3.6 \text{ V case of } f_{FPH} = 27 \text{ MHz} \\ \text{Vcc} &= 3.0 \text{ to } 3.6 \text{ V case of } f_{FPH} = 36 \text{ MHz} \end{aligned}$

No.	Symbol	Parameter	Varia	able		= 27 Hz	f _{FPH} = 36 MHz		Unit
			Min	Max	Min	Max	Min	Max	
1	t _{FPH}	f _{FPH} period (= x)	27.7	31250	37		27.7		ns
2	t _{AC}	A0 to A23 valid $\rightarrow \overline{RD} / \overline{WR} \text{ fall}$	x – 23		14		4.7		ns
3	tCAR	$\overline{\text{RD}} \text{ rise} \rightarrow \text{A0 to A23 hold}$	0.5x -13		5.5		0.85		ns
4	t _{CAW}	$\overline{\text{WR}} \text{ rise} \rightarrow \text{A0 to A23 hold}$	x – 13		24		14.7		ns
5	t _{AD}	A0 to A23 valid \rightarrow D0 to D15 input		3.5x - 24		105.5		72.95	ns
6	t _{RD}	\overline{RD} fall \rightarrow D0 to D15 input		2.5x - 24		68.5		45.25	ns
7	t _{RR}	RD low width	2.5x - 15		77.5		54.25		ns
8	t _{HR}	\overline{RD} rise \rightarrow D0 to D15 hold	0		0		0		ns
9	t _{WW}	WR low width	2x - 15		59		40.4		ns
10	t _{DW}	D0 to D15 valid $\rightarrow \overline{WR}$ rise	1.5x - 35		20.5		5.5		ns
11	t _{WD}	$\overline{\text{WR}}$ rise \rightarrow D0 to D15 hold	x – 25		12		2.7		ns
12	t _{SBA}	Data byte control access time for SRAM		3x - 39		72		44.1	ns
13	tswp	Write pulse width for SRAM	2x - 15		59		40.4		ns
14	t _{SBW}	Data byte control to end of write for SRAM	3x - 25		86		58.1		ns
15	tsas	Address setup time for SRAM	1.5x - 35		20.5		6.55		ns
16	tswr	Write recovery time for SRAM	0.5x - 13		5.5		0.85		ns
17	t _{SDS}	Data setup time for SRAM	2x - 35		39		20.4		ns
18	tSDH	Data hold time for SRAM	0.5x - 13		5.5		0.85		ns
19	t _{AW}	A0 to A23 valid \rightarrow WAIT input (1 + N) wait		3.5x - 60	•	69.5		36.95	ns
20	t _{CW}	\overline{RD} / \overline{WR} fall \rightarrow \overline{WAIT} hold (1 + N) wait	2.5x + 0		92.5		69.25		ns
21	t _{APH}	A0 to A23 valid \rightarrow PORT input		3.5x - 89		40.5		7.95	ns
22	t _{APH2}	A0 to A23 valid → PORT hold	3.5x		129.5		96.95		ns
23	t _{APO}	A0 to A23 valid \rightarrow PORT valid		3.5x + 60		189.5		156.9	ns


ACmeasuring conditions

• Output LeveO: 7HV gdb, OLO3W c∈5@þF

• Input LeveD: PMgb=CLdwcc


Note: Symbol x in the above table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting or the selection of high-/low-frequency oscillator.

(1) Readcycle

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

(2) Writecycle

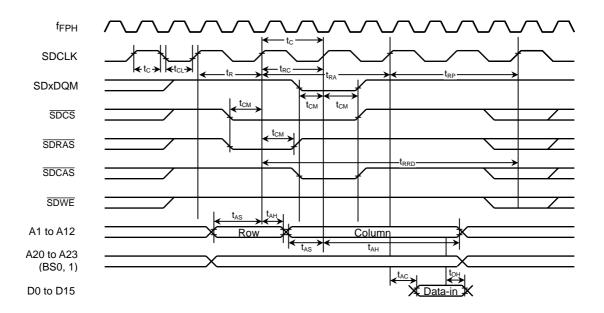
Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as $\overline{\text{WR}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 SDRAM Controller AC Electrical Characteristics

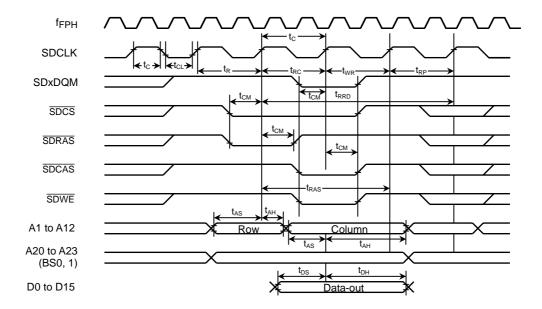
 $\label{eq:Vcc} \begin{aligned} \text{Vcc} &= 2.7 \text{ to } 3.6 \text{ V case of } f_{\text{FPH}} = 27 \text{ MHz} \\ \text{Vcc} &= 3.0 \text{ to } 3.6 \text{ V case of } f_{\text{FPH}} = 36 \text{ MHz} \end{aligned}$

Na	Cymbol	Dorometer	Varia	able	27 I	ИНz	36 1	ИНz	Unit
INO.	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
1	t _{RC}	Ref/active to ref/active command period	4X		148		27.7		ns
2	t _{RAS}	Active to precharge command period	4X	12210	148	12210	111.1	12210	ns
3	t _{RCD}	Active to read/write command delay time	2X		74		55.6		ns
4	t _{RP}	Precharge to active command period	2X		74		55.6		ns
5	t _{RRD}	Active to active command period	6X		222		166.7		ns
6	t _{WR}	Write recovery time (CL* = 2)	2X		74		55.6		ns
7	t _{WR2}	Write recovery time	3X		111		83		
8	t _{CK}	CLK cycle time (CL* = 2)	2X		74		55.6		ns
9	tCH	CLK high level width	1X-15		22		12.8		ns
10	t _{CL}	CLK low level width	1X-15		22		12.8		ns
11	t _{AC}	Access time from CLK (CL* = 2)		1X-25		12		2.8	ns
12	tOH	Output data hold time	0		0		0		ns
13	t _{DS}	Data-in setup time	2X-35		39		20.6		ns
14	t _{DH}	Data-in hold time	2.5X-20		72		49.4		ns
15	t _{AS}	Address setup time	1.5X-35		20		6.7		ns
16	t _{AH}	Address hold time	0.5X-13		5		0.9		ns
17	tcks	CKE setup time	1X-15		22		12.8		ns
18	t _{CMS}	Command setup time	1X-15		22		12.8		ns
19	t _{CMH}	Command hold time	1X-15		22		12.8		ns
20	t _{RSC}	Mode register set cycle time	2X		74		55.6		ns

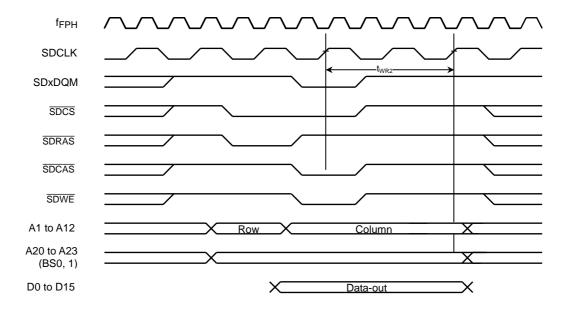
^{*} CL is CAS latency.

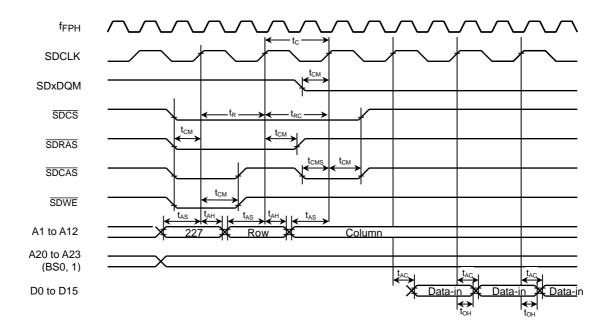

AC measuring conditions

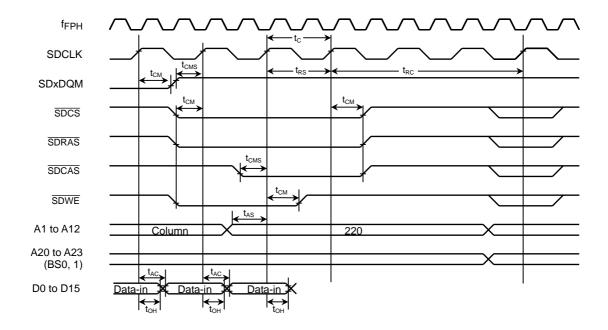
• Outputlev=e01.:7HVlogd=;OLo3vWc=;500.pF

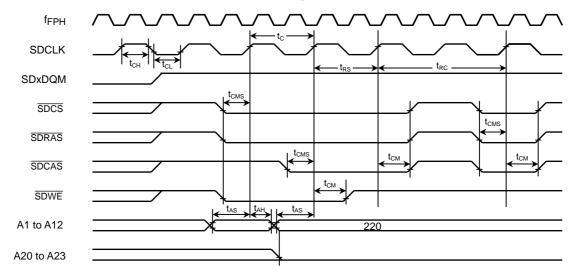

• Inputlev ⊕ Φ.: 9-Wiggt, OLdw/cc

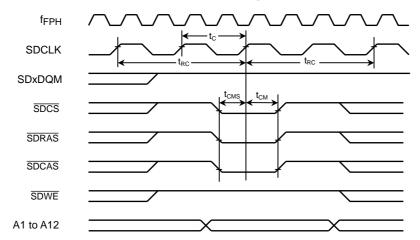
Note: Symbol x in the above table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting or the selection of high-/low-frequency oscillator.

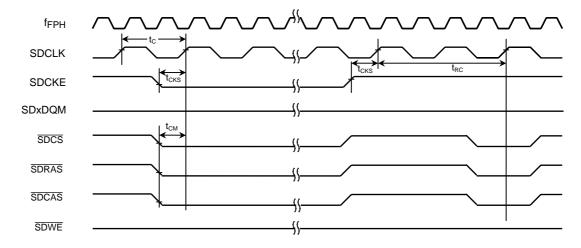

• SDRAMreadgi(MPU access)


SDRAMwritetiming(CPUaccess)


SDRAM write timic org s(sCPW rai terecivery enable)


• SDRAMburstreadtiming (Head of burst cycle)


• SDRAMburstreadtiming (End of burst cycle)


• SDRAMinitialize timing

• SDRAMrefreshtiming

• SDRAMself-refreshtiming

4.5 AD Conversion Characteristics

AVcc = Vcc, AVss = Vss

Symbol	Parameter	Condition	Min	Тур.	Max	Unit
VREFH	Analog reference voltage (+)		Vcc – 0.2 V	Vcc	Vcc	
VREFL	Analog reference voltage (-)		Vss	Vss	Vss + 0.2 V	V
VAIN	Analog input voltage range		V _{REFL}		V _{REFH}	
IREF (VREFL = 0V)	Analog current for analog reference voltage <vrefon> = 1</vrefon>	VCC = 2.7 V to 3.6 V		0.94	1.20	mA
, ,	<vrefon> = 0</vrefon>			0.02	5.0	μА
_	Error (Not including quantizing errors)			±1.0	±4.0	LSB

Note 1: 1 LSB = (VREFH - VREFL)/1024 [V].

Note 2: The operation above is guaranteed for $f_{FPH} \ge 4$ MHz.

Note 3: The value of lcc includes the current which flows through the AVCC pin.

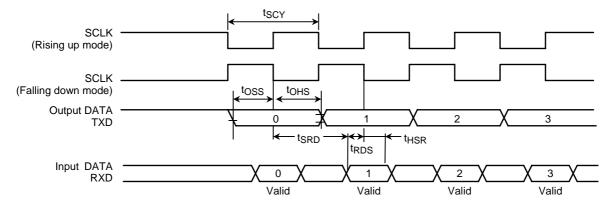
4.6 Serial Channel Timing (I/O internal mode)

(1) SCLKinput mode

 $\label{eq:Vcc} \begin{aligned} \text{Vcc} &= 2.7 \text{ to } 3.6 \text{ V case of } f_{\text{FPH}} = 27 \text{ MHz} \\ \text{Vcc} &= 3.0 \text{ to } 3.6 \text{ V case of } f_{\text{FPH}} = 36 \text{ MHz} \end{aligned}$

Symbol	Parameter	Variab	le	27 N	ЛHz	36 MHz		Unit
Symbol	raiaillelei	Min	Max	Min	Max	Min	Max	Offic
tSCY	SCLK period	16X		0.59		0.44		μS
toss	Output data → SCLK rising/falling edge*	t _{SCY} /2 - 4X-110		38		0		ns
tons	SCLK rising/falling edge* → Output data hold	t _{SCY} /2 + 2X + 0		370		277		ns
t _{HSR}	SCLK rising/falling edge* → Input data hold	3X + 10		121		93		ns
t _{SRD}	SCLK rising/falling edge* → Valid data input		t _{SCY} - 0		592		443	ns
t _{RDS}	SCLK rising/falling edge* → Valid data input	0		0		0		ns

(2) SCLK output mode


Symbol	Parameter	Var	Variable			36 MHz		Unit
Symbol	raidilletei	Min	Max	Min	Max	Min	Max	Oill
tscy	SCLK period	16X	8192X	0.59	303	0.44	227	μS
toss	Output data → SCLK rising/falling edge*	t _{SCY} /2 - 40		256		181		ns
tons	SCLK rising/falling edge* → Output data hold	t _{SCY} /2 - 40		256		181		ns
tHSR	SCLK rising/falling edge* → Input data hold	0		0		0		ns
tSRD	SCLK rising/falling edge∗ → Valid data input		t _{SCY} – 1X – 180		375		235	ns
t _{RDS}	SCLK rising/falling edge* → Valid data input	1X + 180		217		207.7		ns

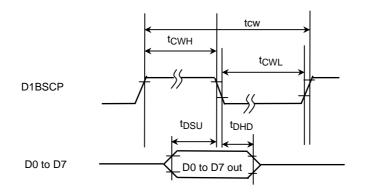
SCLK rising/falling edge*:

The rising edge is used in SCLK rising mode.

The Falling edge is used in SCLK falling mode.

Note: Above table's data values at 27 MHz and 36 MHz are calculated from $t_{SCY} = 16x$ base.

4.7 Event Counter (TA0IN)


Symbol	Parameter	Variable (27 M (Vcc = 2.7	Hz to 3.6 V)	36 N (Vcc = 3.0	Unit	
		Min	Max	Min	Max	Min	Max	01
t _{VCK}	Clock period	8X + 100		396		321		ns
t _{VCKL}	Clock low level width	4X + 40		188		151		ns
t _{VCKH}	Clock high level width	4X + 40		188		151		ns

4.8 Interrupt, Capture

(1) NMI, INTOtol NT3 interrupts

Symbol	Parameter	Variable		27 MI (Vcc = 2.7 t		36 N (Vcc = 3.0	Unit	
		Min	Max	Min	Max	Min	Max	
t _{INTAL}	NMI, INTO to INT3 low level width	4X + 40		188		151		ns
tINTAH	$\overline{\text{NMI}}$, INT0 to INT3 high level width	4X + 40	·	188		151		ns

4.9 LCD Controller SR Mode

Vcc = 2.7 to 3.6 V case of $f_{FPH} = 27$ MHz Vcc = 3.0 to 3.6 V case of $f_{FPH} = 36$ MHz

No.	Symbol	Parameter	Varia	ble		27 MHz tm = 0)	f _{FPH} = 3 (Case:		Unit
			Min	Max	Min	Max	Min	Max	
1	t _{DSU}	Data valid → D1BSCP fall	x - 20 + tm		17		7.7		ns
2	t _{DHD}	D1BSCP fall → Data hold	x – 5 + tm		32		22		ns
3	tcwH	D1SBCP → Clock high width	x - 10 + tm		27		17.7		ns
4	t _{CWL}	D1BSCP → Clock low width	x - 10 + tm		27		17.7		ns
5	t _{CW}	D1BSCP → Clock cycle	2x + 2tm		27		55.4		ns

$$tm = (2^{SCPW} - 1) X$$

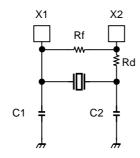
SCPW: Setting of (LCDMODE)<SCPW1:0>

X: 1/f_{FPH}

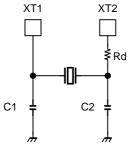
Example: If SCPW = 3 (8 clock mode), f_{FPH} = 36 [MHz]

 $tm = (2^3 - 1) * 1/36 MHz = 194.4 [ns]$

Table 4.9.1 tm at $f_{FPH} = 36 [MHz]$


SCP Width	<scpw1:0></scpw1:0>	tm
Base SCP	00	0 ns
2 clocks	01	27.77 ns
4 clocks	10	83.31 ns
8 clocks	11	194.4 ns

4.10 Recommended Crystal Oscillation Circuit


TMP91C82OA is evaluated by belowoscillator vender. Wuse of this information.

Note: Total loads value of oscillator is sum of external loads (C1 and C2) and floating loads of actual assemble board. There is a possibility of miss operating using C1 and C2 value in below table. When designing board, it should design minimum length pattern around oscillator. And we recommend that oscillator evaluation try on your actual using board.

(1) Connection example

High-frequency oscillator

Low-frequency oscillator

(2) TMP91C82OArecceormanmeinodoessolcillator: Murata Manufactu

Circuit parameter recommended

	Oscillation	Item of Oscillator	Item of Oscillator Parameter of Elements		Running Condition			
MCU	Frequency [MHZ]	Upper: Old Lower: New	C1 [pF]	C2 [pF]	Rf [Ω]	Rd	Voltage of Power [V]	Tc [°C]
	2.00	CSTLS2M00G56-B0	(47)	(47)	Open	0		
	2.50	CSTLS2M50G56-B0	(47)	(47)	Open	0		
TMP91C820A	10.00	CSTS1000MG03 *CSTLS10M0G53-B0	(15)	(15)	Open	0	1.8 to 2.2	-40 to +85
TWP91C620A	12.50	CSA12.5MTZ093 *CSALA12M5T55093-B0	30	30	Open	0	1.0 10 2.2	-40 to +65
	12.50	CST12.0MTW093 *CSTLA12M5T55093-B0	(30)	(30)	Open	0		

	Oscillation	Item of Oscillator	Pa	rameter	of Eleme	ents	Running	Condition
MCU	Frequency [MHz]	Upper: Old Lower: New	C1 [pF]	C2 [pF]	Rf [Ω]	$\operatorname{Rd} olimits_{[\Omega]} olimits$	Voltage of Power [V]	Tc [°C]
	4.00	CSTS0400MG06 *CSTLS4M00G56-B0	(47)	(47)	Open	0		
	6.750	CSTS0675MG06 *CSTLS6M75G56-B0	(47)	(47)	Open	0		
	12.50	CSA12.5MTZ *CSALA12M5T55-B0	30	30	Open	0	07/ 00	10.1 05
TMP91C820A	12.50	CST12.0MTW *CSTLA12M5T55-B0	(30)	(30)	Open	0	2.7 to 3.6	-40 to +85
	20.00	CSALS20M0X53-B0	5	5	Open	0		
	20.00	CSTLS20M0X51-B0	(5)	(5)	Open	0		
	27.00	CSALS27M0X51-B0	Open	Open	10K	0		
	32.00	CSALA32M0X51-B0	3	3	Open	0		

Note: In CST ***type oscillator, capacitance C1, C2 is built in.

 The product numbers and specifications of the resona Ltd. are subject to changena Fioorupp Iteoxa tslate 6 of lent foowing UF http://www.murata.co.jp/search/index.html

5. Table of SFRs

The special function registers (SFRs) include the I/O allocated to the 4-Kbyte address space from OOOOOOHtoOOO

- (1) I/Oports
- (2) I/Oport control
- (3) Interrupt control
- (4) Chipselect/waitcontrol
- (5) Clock gear
- (6) DFM(Clock doubler)
- (7) 8-bittimer
- (8) UART/serial channel
- (9) Clbus/serial interface
- (10) ADconverter
- (11) Watchdog ti mer
- (12) RTC(Real timeclock)
- (13) Mel ody/al armgenerator
- (14) MMU
- (15) LCD controller
- (16) SDRAMcontroller
- (17) 16-bittimer

Table layout

Symbol	Name	Address	7	6			1	0	
					\Box	$ abla_{i}$			→ Bit symbol
						17			→ Read/Write
						7[→ Initial value after reset
						\mathbb{Z}			→ Remarks

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these register.

Example: When setting bitOonly of the register POCR, cannot be used. The LD (Thrmaunsstfleer) used to uwortiitae all Read/write

R/W: Bothread and write are possible.

R: Onlyreadispossible.

W: Onlywriteispossible.

W*: Both read and write are possible (when this bit is r Prohibit RMW: Read-modifayr-exprior the ibrist terduc (t Thoen & X, ADD SBC, INC, DEC, AND, COR, RAEOSR, SSET, CHG, TSET, RLC RL, RR, SLA, SRA, SLL, SRL, RLD and RRD i read-modify-writeinstructions.)

Prohibi*t Rbd\d-modify-writeisprohibited when contro

Table 5.1 SFR Address Map (1/4)

[1], [2] PORT

Address	Name
0000H	P0
1H	P1
2H	P0CR
3H	
4H	P1CR
5H	P1FC
6H	P2
7H	P3
8H	P2CR
9H	P2FC
AH	P3CR
ВН	P3FC
CH	P4
DH	P5
EH	P4CR
FH	P4FC

Address	Name
0010H	P5CR
1H	
2H	P6
3H	P7
4H	
5H	P6FC
6H	P7CR
7H	P7FC
8H	P8
9H	P9
AH	
ВН	P6FC2
CH	P7FC2
DH	P9FC
EH	PA
FH	P7ODE

Address	Name
0020H	
1H	PAFC
2H	PB
3H	PC
4H	PBCR
5H	PBFC
6H	PCCR
7H	PCFC
8H	PCODE
9H	PD
AH	PDFC
ВН	PBODE
СН	PE
DH	PECR
EH	PEFC
FH	

Address	Name
0030H	PF
1H	
2H	PFFC
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

Address	Name
Address	Ivallie
0070H	
1H	
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	PZ
EH	PZCR
FH	PZFC

[3] INTC

Address	Name
H0800	DMA0V
1H	DMA1V
2H	DMA2V
3H	DMA3V
4H	
5H	
6H	
7H	
8H	INTCLR
9H	DMAR
AH	DMAB
ВН	
CH	IIMC
DH	
EH	
FH	

Address	Name
0090H	INTE0AD
1H	INTE12
2H	INTE3ALM4
3H	INTEALM01
4H	INTEALM23
5H	INTETA01
6H	INTETA23
7H	INTERTCKEY
8H	INTES0
9H	INTES1
AH	INTES2LCD
BH	INTETC01
CH	INTETC23
DH	INTEP01
EH	INTESS01
FH	INTESS2

Address	Name
00A0H	INTES3
1H	INTETB0
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
CH	
DH	
EH	
FH	

Note: Do not access to the unnamed addresses (e.g., addresses to which no register has been allocated).

Table 5.2 SFR Address Map (2/4)

[4] CS/WAIT

[+] 00/11/11	
Address	Name
00C0H	B0CS
1H	B1CS
2H	B2CS
3H	B3CS
4H	
5H	
6H	
7H	BEXCS
8H	MSAR0
9H	MAMR0
AH	MSAR1
ВН	MAMR1
CH	MSAR2
DH	MAMR2
EH	MSAR3
FH	MAMR3

	-	
[5], [6] CGEAR, DFM		
Address	Name	
00E0H	SYSCR0	
1H	SYSCR1	
2H	SYSCR2	
3H	EMCCR0	
4H	EMCCR1	
5H	EMCCR2	
6H	EMCCR3	
7H		
8H	DFMCR0	
9H	DFMCR1	
AH		
ВН		
СН		
DH		
EH		
FH		

[7] TMRA

Address	Name
0100H	TA01RUN
1H	
2H	TA0REG
3H	TA1REG
4H	TA01MOD
5H	TA01FFCR
6H	
7H	
8H	TA23RUN
9H	
AH	TA2REG
ВН	TA3REG
CH	TA23MOD
DH	TA3FFCR
EH	
FH	

[8] UART/SIO

Address	Name
0200H	SC0BUF
1H	SC0CR
2H	SC0MOD0
3H	BR0CR
4H	BR0ADD
5H	SC0MOD1
6H	
7H	SIRCR
8H	SC1BUF
9H	SC1CR
AH	SC1MOD0
ВН	BR1CR
СН	BR1ADD
DH	SC1MOD1
EH	
FH	

Address	Name
0210H	SC2BUF
1H	SC2CR
2H	SC2MOD0
3H	BR2CR
4H	BR2ADD
5H	SC2MOD1
6H	
7H	
8H	
9H	
AH	
ВН	
CH	
DH	
EH	
FH	

[9] I2C bus/SIO

[9] 1 C Dus/310	
Address	Name
0240H	SBI0CR1
1H	SBI0DBR
2H	I2C0AR
3H	SBI0CR2/SBI0SR
4H	SBI0BR0
5H	SBI0BR1
6H	
7H	
8H	
9H	
AH	
вн	
CH	
DH	
EH	
FH	

Note: Do not access to the unnamed addresses (e.g., addresses to which no register has been allocated).

Table 5.3 SFR Address Map (3/4)

[10] 10-bit ADC

[10] 10-bit AL	<i>/</i> C
Address	Name
02A0H	ADREG04L
1H	ADREG04H
2H	ADREG15L
3H	ADREG15H
4H	ADREG26L
5H	ADREG26H
6H	ADREG37L
7H	ADREG37H
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

Address	Name
02B0H	ADMOD0
1H	ADMOD1
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

[11] WDT

וטאינוון	
Address	Name
0300H	WDMOD
1H	WDCR
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
CH	
DH	
EH	
FH	

[12] RTC

Address	Name
0320H	SECR
1H	MINR
2H	HOURR
3H	DAYR
4H	DATER
5H	MONTHR
6H	YEARR
7H	PAGER
8H	RESTR
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

[13] MLD

Address	Name
0330H	ALM
1H	MELALMC
2H	MELFL
3H	MELFH
4H	ALMINT
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

[14] MMU

Address	Name
0350H	LOCAL0
1H	LOCAL1
2H	LOCAL2
3H	LOCAL3
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

Note: Do not access to the unnamed addresses (e.g., addresses to which no register has been allocated).

Table 5.4 SFR Address Map (4/4)

[15] LCDC

[10] 2020	
Address	Name
04B0H	LCDMODE
1H	LCDDVM
2H	LCDSIZE
3H	LCDCTL
4H	LCDFFP
5H	LCDGL
6H	LCDCM
7H	LCDCW
8H	LCDCH
9H	LCDCP
AH	LCDCPL
ВН	LCDCPM
CH	LCDCPH
DH	
EH	
FH	

Address	Name
04C0H	LSARAM
1H	LSARAH
2H	LEARAM
3H	LEARAH
4H	LSARBM
5H	LSARBH
6H	LEARBM
7H	LEARBH
8H	LSARCL
9H	LSARCM
AH	LSARCH
ВН	
СН	
DH	
EH	
FH	

Address	Name
04D0H	LG0L
1H	LG0H
2H	LG1L
3H	LG1H
4H	LG2L
5H	LG2H
6H	LG3L
7H	LG3H
8H	LG4L
9H	LG4H
AH	LG5L
ВН	LG5H
CH	LG6L
DH	LG6H
EH	LG7L
FH	LG7H

Address	Name
04E0H	LG8L
1H	LG8H
2H	LG9L
3H	LG9H
4H	LGAL
5H	LGAH
6H	LGBL
7H	LGBH
8H	LGCL
9H	LGCH
AH	LGDL
ВН	LGDH
СН	LGEL
DH	LGEH
EH	LGFL
FH	LGFH

[16] SDRAMC

[10] 0=111	
Address	Name
04F0H	SDACR
1H	SDRCR
2H	
3H	
4H	
5H	
6H	
7H	
8H	
9H	
AH	
ВН	
СН	
DH	
EH	
FH	

[17] TMRB

Address	Name
0180H	TB0RUN
1H	
2H	TB0MOD
3H	TB0FFCR
4H	
5H	
6H	
7H	
8H	TB0RG0L
9H	TB0RG0H
AH	TB0RG1L
ВН	TB0RG1H
СН	TB0CP0L
DH	TB0CP0H
EH	TB0CP1L
FH	TB0CP1H

Note: Do not access to the unnamed addresses (e.g., address to which no register has been allocated).

(1) I/Oports(1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07	P06	P05	P04	P03	P02	P01	P00
P0	PORT0	00H				R	W			
				Data fi	rom external	port (Outpu	ıt latch regis	ter is cleare	d to 0.)	
			P17	P16	P15	P14	P13	P12	P11	P10
P1	PORT1	01H					W			
					rom externa		Ī	1	ī	1
			P27	P26	P25	P24	P23	P22	P21	P20
P2	PORT2	06H					W			
					rom externa			1	1	
P3	DODTO	0711	P37	P36	P35	P34	P33	P32	P31	P30
Po	PORT3	07H		Doto f	rom external		/W	tor in alcoro	d to O)	
			P47	P46	P45	P44	P43	P42	P41	P40
P4	PORT4	0CH	Γ41	F40	F43		F43 	F42	F41	F40
	. 01111	0011		Data fi	rom external			ter is cleare	d to 0.)	
							PZ3	PZ2	PZ1	PZ0
								l .	W	
		7DH	$\overline{}$				Data fron	n external		
PZ	PORTZ	(Prohibit						tput latch	1	1
		RMW*)					1	s set to 1.)		
							0: Pull-up re 1: Pull-up re		-	_
				P56			1. Full-up te	SISTOLOIA		
				R/W		//				
			$\overline{}$	Data from						
				external port						
		0DH		(Output latch						
P5	PORT5	(Prohibit		register is						
		RMW*)		set to 1.)		\	\	\	\	
				0: Pull-up resistor						
				OFF 1: Pull-up						
				resistor						
			P67	ON P66	P65	P64	P63	P62	P61	P60
P6	PORT6	12H	. 0,	1 . 00			/W	. 02		. 55
			1	1	1	1	1	0	1	1
			P77	P76	P75	P74	P73	P72	P71	P70
P7	PORT7	13H					W	1	•	
				Data	a from exterr	nal port (Out	put latch req	gister is set t	to 1.)	
			P87	P86	P85	P84	P83	P82	P81	P80
P8	PORT8	18H					₹			
				r	ī		external port	i	,	
			P97	P96	P95	P94	P93	P92	P91	P90
P9	PORT9	19H					₹			
					I		external port	Ī		
_	D0.5=:	.=	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PA	PORTA	1EH					/W			
							1			

I/Oports (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
				PB6	PB5	PB4	PB3		PB1	PB0	
					R/	W			R/	W	
PB	PORTB 22H			Data from 6	external port set t	` '		Data from external port (Output latch register is set to 1.)			
					PC5	PC4	PC3	PC2	PC1	PC0	
PC	PORTC	23H					R/	W			
					Data	Data from external port (Output latch regi				ster is set to 1.)	
			PD7	PD6		PD4	PD3	PD2	PD1	PD0	
PD	PD PORTD 29H			R/W		R/W					
			1	1		1	1	1	1	1	
			PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
PE	PORTE	2CH				R/	W				
			Data from external port (Output latch register is set to 1.)								
			PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	
PF	PORTF	ORTF 30H		R/W							
			1	1	1	1	1	1	1	1	

(2) I/Oport control (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C
P0CR	PORT0	02H	W							
FUCK	control	(Prohibit RMW)	0	0	0	0	0	0	0	0
		,				0: Input	1: Output			
		0.41.1	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	PORT1	04H (Prohibit				\	N			
1 1010	control	RMW)	0	0	0	0	0	0	0	0
		,				0: Input	1: Output			
		05H	P17F	P16F	P15F	P14F	P13F	P12F	P11F	P10F
P1FC	PORT1	(Prohibit				\	N			
0	function	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
		ŕ				ort, 1: Data	bus (D15 to			
		08H	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
P2CR	PORT2	(Prohibit				\	N			
	control	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
				1	1	0: Input	1: Output	1	1	
	PORT2	09H (Prohibit	P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
P2FC				T	T		N	T	T	
	function	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
				T			s bus (A23 t		T	
		0AH	P37C	P36C	P35C	P34C	P33C	P32C	P31C	P30C
P3CR	PORT3	(Prohibit		T	T		N	T	T	
	control	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
				ı	ı	0: Input	1: Output	ı	ı	
		0BH	P37F	P36F	P35F	P34F	P33F	P32F	P31F	P30F
P3FC	PORT3	(Prohibit		T	T		N	T	T	
	function	`RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
				T			ss bus (A15		T	
		0EH	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
P4CR	PORT4	4 (Drobibit					N			0/4
	control		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
	ļ		D.1==	D.4.0=	D.4	0: Input	1: Output	D.40=	D4:-	D.10=
		0FH	P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F
P4FC	PORT4 function	(Prohibit	0/4	0/4	0/4		N O/4	0/4	0/4	0/4
	TUNCTION	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
	l				U: PC	ρπ, 1: Addre	ess bus (A7 to	D AU)		

I/Oport control (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
PZCR	PORTZ control	7EH (Prohibit RMW)					PZ3C	PZ2C		
							١	W		
							0	0		
							0: Input	1: Output		
P5CR	PORT5 control	10H (Prohibit RMW)		P56C						
				W						
				0						
				0: Input						
				1: Output						
PZFC	PORTZ function	7FH (Prohibit RMW)					PZ3F	PZ2F	PZ1F	PZ0F
								V	N	
								(0	
							0: Port	0: Port	0: Port	0: Port
							1: <u>R/W,</u>	1: HWR	1: WR	1: RD
							SRWE			
P6FC	PORT6 function	15H (Prohibit RMW)	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
			W							
						(1	i	1	i
			0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: SRUB	1: SRLB	1: EA25	1: EA24	1: CS3	1: CS2	1: CS1	1: CS0
P6FC2	PORT6 function 2	1BH (Prohibit RMW)	P67F2	P66F2	P65F2	P64F2	-	P62F2	P61F2	-
			W							
						· · · · · · ·) 	1	1	
			0: <p67f></p67f>	0: <p66f></p66f>	0: <p65f></p65f>	0: <p64f></p64f>	Always	0: <p62f></p62f>	0: <p61f></p61f>	Always
			1: CS2E	1: CS2D	1: CS2C	1: CS2B	fixed to "0".	1: CS2A	1: SDCS	fixed to "0".
P7CR	PORT7 control	16H (Prohibit RMW)	P77C	P76C	P75C	P74C	P73C	P72C	P71C	P70C
			W							
			0							
						0: Input	1: Output			
			P77F	P76F	P75F	P74F	P73F	P72F	P71F	P70F
P7FC	PORT7 function	17H (Prohibit RMW)	W							
			0							
			0: Port	MSK logic	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: VEECLK	select				1: SCL	1: SDA/SO	1: SCK
				0: CLK by 1						
				1: CLK by 0						
P7FC2	PORT7 function 2	1CH (Prohibit RMW)	-	-	P75F2	P74F2	P73F2	_	P71F2	P70F2
			W							
				ı	1	•)	1		ı
			Always fixed to	Always fixed to	0: <p75f></p75f>	0: <p74f></p74f>	0: <p73f></p73f>		0: <p71f></p71f>	SIO0/RXD0
			"0".	"0".	1: CSEXA	1: CS2G	1: CS2F	fixed to "0".	1: OPTTX0	PIN SELECT
				•				•		0: RXD0
										(PC1)
										1: OPTRX0
										(P70)

I/Oport control (3/4)

Symbol		Address		6	5	4	3	2	1	0
			-	-				ODEP72	ODEP71	
	PORT7	1FH	,	W				'	N	
P7ODE	open	(Prohibit		0				0	0	
	drain	RMW)	Always f	ixed to "0".				0: 3 sta	tes	
								1: Oper	n drain	
		450	P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F
P9FC	PORT9	1DH (Prohibit				1	N			
1 01 0	function	RMW)					0			
				_	0: Ke	y-in disable	1:Key-in e	nable		
		21H	PA7F	PA6F	PA5F	PA4F	PA3F	PA2F	PA1F	PA0F
PAFC	PORTA	(Prohibit					N			
	function	RMW)					0			
				1	1	1	1: Open-drai	n output	1	1
		24H		PB6C	PB5C	PB4C	PB3C		PB1C	PB0C
PBCR	PORTB	(Prohibit				N				V
	control	RMW)				0)
					0: Input	1: Output			0: Input	1: Output
				PB6F	PB5F	PB4F	PB3F		PB1F	PB0F
	PORTB	25H	$\overline{}$			N				V
PBFC	function	(Prohibit		ļ <u>.</u>	_	0	T)
	Tariction	RMW)		0: Port	0: Port	0: Port	0: Port		0: Port	0: Port
				1: INT3, TB0OUT0	1: INT2 TA3OUT	1: INT1	1: INT0		1: TA1OUT	1: TXD2
										ODEPB0
		•								W
PBODE	PORTB	2BH								0
PBODE	open drain	(Prohibit RMW)								0: CMOS
		1 (((()))								1: Open
										drain
		26H			PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
PCCR	PORTC	(Prohibit					V	٧		
	control	RMW)					(0		
							0: Input	1: Output		T
					PC5F		PC3F	PC2F		PC0F
5050	PORTC	27H			W		•	N		W
PCFC	function	(Prohibit RMW)			0			0		0
		KIVIVV)			0: Port		0: Port	0: Port		0: Port
					1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
			_				ODEPC3			ODEPC0
	PORTC	28H	_				W			W
PCODE	open	(Prohibit					0			0 0. 0.000
	drain	RMW)					0: CMOS 1: Open			0: CMOS 1: Open
							drain			drain

I/Oport control (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			PD7F	PD6F		PD4F	PD3F	PD2F	PD1F	PD0F	
		2AH	V	V				W			
PDFC	PORTD	(Prohibit	C)				0			
	function	RMW)	0: Port	0: Port		0: Port	0: Port	0: Port	0: Port	0: Port	
		,	1:MLDALM	1: ALARM		1: DOFFB	1: DLEBCD	1:D3BFR	1: D2BLP	1: D1BSCP	
				MLDALM							
		0011	PE7C	PE6C	PE5C	PE4C	PE3C	PE2C	PE1C	PE0C	
PECR	PORTE	2DH (Probibit		W							
1 LOIX	control	(Prohibit RMW)				()				
		,				0: Input	1: Output				
		0511	PE7F	PE6F	PE5F	PE4F	PE3F	PE2F	PE1F	PE0F	
PEFC	PORTE	2EH (Prohibit				V	V				
I LI C	function	RMW)				()				
		,			0: Por	t 1: LD7 to	LD0 for LCD	driver			
			-	PF6F	PF5F	PF4F	PF3F	PF2F	PF1F	PF0F	
	PORTF	32H				V	V				
PFFC	function	(Prohibit	0	1			()			
	Turiodon	RMW)	Always	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	
			fixed to "0".	1: SDCLK	1: SDCKE	1: SDUDQM	1: SDLDQM	1: SDWE	1: SDCAS	1: SDRAS	

(3) Interrupt control (1/3)

<u> </u>			·				-	•		-
Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT					T0	
INTE	Interrupt	05::	IADC	IADM2	IADM1	IADM0	IOC _	I0M2	IOM1	I0M0
0AD	enable 0 and AD	90H	R		R/W	ı	R		R/W	
	0 and AD		0	0	0	0	0	0	0	0
			1: INTAD		nterrupt leve	el	1: INT0	I	nterrupt leve	el .
					T2	1			T1	
	Interrupt		I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
INTE12	enable	91H	R		R/W	1	R		R/W	ı
	2/1		0	0	0	0	0	0	0	0
			1: INT2	I	nterrupt leve	el	1: INT1	I	nterrupt leve	el .
				INTA	LM4			IN	T3	
INTE3	Interrupt enable		IA4C	IA4M2	IA4M1	IA4M0	I3C	I3M2	I3M1	I3M0
ALM4	3 and	92H	R		R/W		R		R/W	
	ALM4		0	0	0	0	0	0	0	0
			1:INTALM4	I	nterrupt leve	el	1: INT3	I	nterrupt leve	el .
				INTA	LM1			INTA	ALM0	
INTE	Interrupt		IA1C	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0
ALM01	enable	93H	R		R/W		R		R/W	
7.2	ALM0/1		0	0	0	0	0	0	0	0
			1:INTALM1	I	nterrupt leve	el	1:INTALM0	I	nterrupt leve	el
				INTA	LM3			INTA	ALM2	
INTE	Interrupt		IA3C	IA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0
ALM23	enable	94H	R		R/W		R		R/W	
7.220	ALM2/3		0	0	0	0	0	0	0	0
			1:INTALM3	I	nterrupt leve	el	1:INTALM2	-	nterrupt leve	el
				INTTA1(TMRA1)			INTTA0	(TMRA0)	
	Interrupt enable		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTE TA01	timer A	95H	R		R/W		R		R/W	
17101	1/0		0	0	0	0	0	0	0	0
			1: INTTA1	I	nterrupt leve	el	1: INTTA0	ı	nterrupt leve	el
				INTTA3	(TMRA5)			INTTA2	(TMRA4)	
	Interrupt		ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTE TA23	enable timer A	96H	R		R/W	•	R		R/W	
1723	3/2		0	0	0	0	0	0	0	0
			1: INTTA3	I	nterrupt leve	el	1: INTTA2	I	nterrupt leve	·I
				INT	KEY			INT	RTC	
	Interrupt		IKC	IKM2	IKM1	IKM0	IRC	IRM2	IRM1	IRM0
INTE	enable BTC and	97H	R		R/W		R		R/W	
RTCKEY	RTC and KEY		0	0	0	0	0	0	0	0
			1: INTKEY	ı	nterrupt leve	l .	1: INTRTC	I	nterrupt leve	<u> </u>
		l .		-			1		1	

Interrupt control (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INTTX0						
	Interrupt		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	enable	98H	R		R/W		R		R/W	
	serial 0		0	0	0	0	0	0	0	0
			1: INTTX0	I	nterrupt leve	l	1: INTRX0	!	Interrupt leve	ŀ
				INT	TX1			INT	RX1	
	Interrupt		ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	enable	99H	R		R/W		R		R/W	
	serial 1		0	0	0	0	0	0	0	0
			1: INTTX1	I	nterrupt leve	1	1: INTRX1	I	Interrupt leve	l
				INT	LCD			INT	SBI	
INITEGOL	Interrupt		ILCD2C	ILCDM2	ILCDM1	ILCDM0	ISBIC	ISBIM2	ISBIM1	ISBIM0
INTES2L CD	enable	9AH	R		R/W		R		R/W	
OB	SBI/LCD		0	0	0	0	0	0	0	0
			1: INTLCD	I	nterrupt leve	·	1: INTSBI	I	Interrupt leve	·I
				INT	TC1			INT	TC0	
INTETC	Interrupt enable	9BH	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
01	TC0/1	ЭБП	R		R/W		R		R/W	
	. 5 6/ .		0	0	0	0	0	0	0	0
				INT	TC3			INT	TC2	
INTETC	Interrupt enable	9CH	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
23	TC2/3	9011	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				IN	ΓP1			IN	ГР0	
INTEP01	Interrupt enable	9DH	IP1C	IP1M2	IP1M1	IP1M0	IP0C	IP0M2	IP0M1	IP0M0
INTERUT	PC0/1	9011	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INT	TX2			INT	RX2	
	Interrupt		ITX2C	ITX2M2	ITX2M1	ITX2M0	IRX2C	IRX2M2	IRX2M1	IRX2M0
INTES3	enable	A0H	R		R/W		R		R/W	
	serial 3		0	0	0	0	0	0	0	0
			1: INTTX2	ı	nterrupt leve	l	1: INTRX2		Interrupt leve	ŀ
				INT	ГВ01			INT	TB00	
	Latannat		ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0
INTETB0	Interrupt enable	A1H	R		R/W		R		R/W	
	TMRB0	/ / / / /	0	0	0	0	0	0	0	0
							Interrupt leve	ıl		

Interrupt control (3/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMAOV	DMA 0 request	80H					R	W		
DIVIAUV	vector	0011			0	0	0	0	0	0
							DMA0 st	art vector		
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA 1 request	81H					R	W		
DIVIATV	vector	0111			0	0	0	0	0	0
							DMA1 st	art vector		
					DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA 2 request	82H					R	W		
DIVIAZV	vector	0211			0	0	0	0	0	0
							DMA2 st	art vector		
					DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	DMA 3 request	83H					R	W		
DIVIASV	vector	0311			0	0	0	0	0	0
							DMA3 st	art vector		
		0011			CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	Interrupt clear	88H (Prohibit					\	٧		
INTOLIC	control	RMW)			0	0	0	0	0	0
		,			Clea	rs interrupt r	equest flag	by writing to	DMA start v	rector
	DMA						DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	89H					R/W	R/W	R/W	R/W
Divi, ar	request	0011					0	0	0	0
	register						1	: DMA reque	est in softwa	re
	DMA burnet						DMAB3	DMAB2	DMAB1	DMAB0
DMAB	DMA burst request	8AH					R/W	R/W	R/W	R/W
	register	O/					0	0	0	0
								DMA reques	t on burst m	ode
			_	_	13EDGE	I2EDGE	I1EDGE	10EDGE	IOLE	NMIREE
			W	W	W	W	W	W	W	W
	Interrupt	8CH	0	0	0	0	0	0	0	0
IIMC	input mode	(Prohibit	Always	Always	INT3	INT2	INT1	INT0	INT0	1: Opera-
	control	RMW)	write "0".	write "0".	edge	edge	edge	edge	0: Edge	tion even
					0: Rising	0: Rising	0: Rising	0: Rising	1: Level	on NMI rising
					1: Falling	1: Falling	1: Falling	1: Falling		edge

(4) Chipselect/waitcontrol (1/2)

Symbol	Name	Address	DOE	6	5	4	3	2		0
			B0E		B0OM1	B0OM0	B0BUS	B0W2	B0W1	B0W0
			W		W	W	W	W	W	W
	Block 0	C0H	0		0	0	0	0	0	0
BOUS	CS/WAIT control	(Prohibit	0: Disable		00: ROM/S		Data bus	000: 2 waits		Reserved
	register	`RMW)	1: Enable		01: γ		width	001: 1 wait		3 waits
	3				10: Rese	erved	0: 16 bits	010: (1 + N) waits 110:	4 waits
					11: ^J		1: 8 bits	011: 0 waits	s 111:	8 waits
			B1E		B1OM1	B1OM0	B1BUS	B1W2	B1W1	B1W0
			W		W	W	W	W	W	W
	Block 1	C1H	0		0	0	0	0	0	0
B1CS I	CS/WAIT control	(Prohibit	0: Disable		00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	Reserved
	register	RMW)	1: Enable		01։ ๅ		width	001: 1 wait	101:	3 waits
	Ü				10: Rese	erved	0: 16 bits	010: (1 + N) waits 110:	4 waits
					11: J		1: 8 bits	011: 0 waits	s 111:	8 waits
			B2E	B2M	B2OM1	B2OM0	B2BUS	B2W2	B2W1	B2W0
			W	W	W	W	W	W	W	W
	Block 2 CS/WAIT	C2H	1	0	0	0	0	0	0	0
B2CS I	control	(Prohibit	0: Disable	0: 16 M	00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	Reserved
	register	RMW)	1: Enable	Area	01: ך		width	001: 1 wait	101:	3 waits
				1: Area	10: Rese	erved	0: 16 bits	010: (1 + N) waits 110:	4 waits
				set	11: J		1: 8 bits	011: 0 waits	s 111:	8 waits
			B3E		B3OM1	B3OM0	B3BUS	B3W2	B3W1	B3W0
	5		W		W	W	W	W	W	W
	Block 3 CS/WAIT	СЗН	0		0	0	0	0	0	0
BRIGS	control	(Prohibit	0: Disable		00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	Reserved
	register	RMW)	1: Enable		01։ ๅ		width	001: 1 wait	101:	3 waits
						erved	0: 16 bits	`) waits 110:	
					11: J		1: 8 bits	011: 0 waits		8 waits
							BEXBUS	BEXW2	BEXW1	BEXW0
	External						W	W	W	W
	CS/WAIT	C7H					0	0	0	0
BEXUS	control	(Prohibit RMW)					Data bus	000: 2 waits		Reserved
	register	KIVIVV)					width	001: 1 wait		3 waits
							0: 16 bits	` .) waits 110:	
			000	222	221	222	1: 8 bits	011: 0 waits		8 waits
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSARN	start address	C8H					W			
	register 0		1	1	1	1 Ctort addrsa	1 1	1	1	1
			1/00	1446			s A23 to A16	1	1/4/1 1/5	1.70
	Memory		V20	V19	V18	V17	V16	V15	V14 to V9	V8
N/AN/RO	address mask	C9H				1	W .			
	mask register 0		1	1	1	1	1	1 .	1	1
	3.2.5. 0		_) area size			ress compari		_
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSAR1	start	CAH			I		W	<u> </u>		
	address register 1		1	1	1	1	1	1	1	1
	rogiot o i i			1	;	Start addres	s A23 to A16	3	1	1
	Memory		V21	V20	V19	V18	V17	V16	V15 to V9	V8
$N/\Delta N/R 1$	address	СВН			T	R/	W	,		•
	mask	JD. 1	1	1	1	1	1	1	1	
	register 1									

Chipselect/waitcontrol (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSAR2	start	ССН				R/	W			
WISARZ	address	ССП	1	1	1	1	1	1	1	1
	register 2				;	Start addres	s A23 to A16	6		
	Memory		V22	V21	V20	V19	V18	V17	V16	V15
MAMR2	address	CDH				R/	W			
IVIAIVIRZ	mask	СЫП	1	1	1	1	1	1	1	1
	register 2			CS2	2 area size	0: Er	nable to addr	ess compar	ison	
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSAR3	start	CEH				R/	W			
WISAKS	address	CEIT	1	1	1	1	1	1	1	1
	register 3				;	Start addres	s A23 to A16	6		
	Memory		V22	V21	V20	V19	V18	V17	V16	V15
MAMR3	address	CFH				R/	W			
INITINITS	mask	GFII	1	1	1	1	1	1	1	1
	register 3	egister 3 CS3 area size 0: Enable to address comparison								·

(5) Clock gear (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
						RΛ	N			
			1	1	1	0	0	0	0	0
SYSCRO	System clock control register 0	E0H	High- frequency oscillator (fc) 0: Stopped 1: Oscillation	Low- frequency oscillator (fs) 0: Stopped 1: Oscillation	after release of STOP mode 0: Stopped	Low- frequency oscillator (fs) after release of STOP mode 0: Stopped 1: Oscillation	mode 0: fc 1: fs	Warm-up timer 0 write: Don't care 1 write: Start timer 0 read: End warm up 1 read: Not end warm up	Select presca 00: fFPH 01: Reserved 10: fc/16 11: Reserved	I
							SYSCK	GEAR2	GEAR1	GEAR0
			$\overline{}$					l	/W	
							0	1	0	0
SYSCR1	System clock control register 1	E1H					System clock selection 0: fc 1: fs	High-freque selection (f 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: (Rese 110: (Rese	rved) rved)	lue
			PSENV		WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE
			R/W			i -	R/	W		i -
	System		0		1	0	1	1	0	0
SYSCR2	clock control register 2	E2H	1: Disable 0: Power save mode enable		Warm-up tir 00: Reserve 01: 2 ⁸ input 10: 2 ¹⁴ 11: 2 ¹⁶	ed	00: Reserve 01: STOP n 10: IDLE1 n 11: IDLE2 n	node node	<drive> mode select 1: STOP 0: IDLE</drive>	1: Drive the pin in STOP/ IDLE1 mode

Clock gear (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PROTECT	TA3LCE	AHOLD	TA3MLE	-	EXTIN	DRVOSCH	DRVOSCL
			R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			0	0	0	0	0	0	1	1
EMCCR0	EMC control register 0	E3H	Protection flag 0: OFF 1: ON	LCDC Source clock 0: 32 kHz 1: TA3OUT	Address hold 0: Disable 1: Enable	Melody/ alarm source clock 0: 32 kHz 1: TA3OUT	Write "0".	1: fc is external clock	fc oscillator driver ability 1: Normal 0: Weak	fs oscillator driver ability 1: Normal 0: Weak
EMCCR1	EMC control register 1	E4H	С	he protect O ontinuation v	writes in 1ST	-KEY: EMC	CR1 = 5AH,I	EMCCR2 = A		
EMCCR2	EMC control register 2	E5H	J				,		<i></i>	
				ENFROM	ENDROM	ENPROM		FFLAG	DFLAG	PFLAG
				R/W	R/W	R/W		R/W	R/W	R/W
				0	0	0		0	0	0
EMCCR3	EMC control register 3	E6H		CS1A area detect enable 0: Disable 1: Enable	CS2B-2G area detect Enable 0: Disable 1: Enable	CS2A area detect enable 0: Disable 1: Enable		CS1A write operation flag When readi	1: Writt	en

(6) DFM(Clock doubler)

Symbol	Name	Address		7		6	5	4	3	2	1	0
				ACT1	А	CT0	DLUPFG	DLUPTM				
				R/W	F	R/W	R	R/W				
	DEM			0		0	0	0				
DFMCR0	DFM control	E8H		DFM	LUP	f _{FPH}	Lock-up	Lockup				
Di Morto	register 0	2011	00	STOP	STOP	fosch	flag	time				
			01	RUN	RUN	fosch		0: 2 ^{12/} fosch				
			10	RUN	STOP	f _{DFM}	1: Do not end LUP	1: 2 ^{10/} f _{OSCH}				
			11	RUN	STOP	fosch	end LOP					
				D7		D6	D5	D4	D3	D2	D1	D0
DFMCR1	DFM control	E9H		R/W	F	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DI WORT	register 1	L311		0		0	0	1	0	0	1	1
	Ŭ						Write 0BI	H before star	ting lockup o	operation.		

(7) 8-bittimer

(7-1) TMRAO1

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			TA0RDE				I2TA01	TA01PRUN	TA1RUN	TA0RUN	
			R/W				R/W	R/W	R/W	R/W	
TA01	Timer		0				0	0	0	0	
RUN	RUN	100H	Double				IDLE2	8-bit timer ru	un/stop contr	ol	
			buffer				0: Stop	0: Stop and	clear		
			0: Disable				1: Operate	1: Run (Cou	ınt up)		
			1: Enable								
	8-bit	102H					=				
TA0REG	timer	(Prohibit					W				
	register 0	RMW)				Und	defined				
	8-bit	103H									
TA1REG	timer	(Prohibit	W								
	register 1	RMW)	Undefined								
			TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0	
	8-bit						R/W		_		
TA01	timer		0	0	0	0	0	0	0	0	
MOD	source	104H	00: 8-bit tim	ner	00: Reserv		00: TA0TRO	}	00: TA0IN p	oin	
	CLK and		01: 16-bit ti	mer	01: 2 ⁶ PWI	M cycle	01: φT1		01: φΤ1		
	mode		10: 8-bit PF	PG .	10: 2 ⁷		10: φT16		10: φΤ4		
			11: 8-bit PV	VM	11: 2 ⁸		11: φT256		11: φT16		
							TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS	
	0 b:t		R/W R/W						W		
	8-bit	105H					1	1	0	0	
TA1FFCR	timer flip-flop	(Prohibit					00: Invert TA	\1FF	1: TA1FF	0: TMRA0	
	control	RMW)					01: Set TA1FF invert 1: TMRA1				
							10: Clear TA	ar TA1FF enable inversion			
						11: Don't care					

(7-2) TMRA23

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			TA2RDE				I2TA23	TA23PRUN	TA3RUN	TA2RUN	
			R/W				R/W	R/W	R/W	R/W	
TA23	Timer		0				0	0	0	0	
RUN	RUN	108H	Double				IDLE2	8-bit timer r	un/stop cont	rol	
			buffer				0: Stop	0: Stop and	clear		
			0: Disable				1: Operate	1: Run (Cou	unt up)		
			1: Enable								
	8-bit	10AH					_				
TA2REG	timer	(Prohibit					W				
	register 0	RMW)		Undefined							
	8-bit	10BH									
TA3REG	timer	(Prohibit	W								
	register 1	RMW)	Undefined								
			TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0	
	8-bit					F	R/W				
TA23	timer		0	0	0	0	0	0	0	0	
MOD	source	10CH	00: 8-bit tim	ner	00: Reserv		00: TA2TR0	3	00: Reserve	ed	
	CLK and mode		01: 16-bit ti		01: 2 ⁶ PWN	/I cycle	01: φΤ1		01: φT1		
	mode		10: 8-bit PF	-	10: 2 ⁷		10: φT16		10: φT4		
			11: 8-bit PV	VM	11: 2 ⁸		11: φT256	1	11: φT16		
							TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS	
	8-bit		R/W R/V								
	timer	10DH					1	1	0	0	
TA3FFCR	flip-flop	(Prohibit					00: Invert Ta	_	1: TA3FF	0: TMRA2	
	control	RMW)						1: Set TA3FF invert 1: TMRA:			
								Clear TA3FF enable inversion			
				11: Don't care							

(8) UART/serial channel (1/3)

(8-1) UART/SI Ochannel O

Symbol		Address	7	6	5	4	3	2	1	0
	Serial	200H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC0BUF	channel 0	(Prohibit			R (I	Receiving)/W	/ (Transmiss	ion)	I .	
	buffer	RMW)				Unde	fined	·		
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R/	W	R (Clea	red to 0 by r	eading)	R/	W
SC0CR	channel 0	201H	Undefined	0	0	0	0	0	0	0
CCCCIX	control	20111	Receiving	Parity	1: Parity		1: Error		0:SCLK0↑	1: Input
			data bit8	0: Odd	enable	Overrun	Parity	Framing	1:SCLK0↓	SCLK0
				1: Even						pin
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
				 	-	·	W	-		-
	Serial		0	0	0	0	0	0	0	0
SC0	channel 0	202H	Transmission data bit8	1: CTS enable	1: Receive enable	1: Wakeup	00: I/O Inte		00: TA0TR	-
MOD0	mode0	20211	data bito	enable	enable	enable	01: UART 7		01: Baud ra	
							10: UART 8		10: Internal	
							II. UAKI S	DIIS	11: Externa	
									SCLK0	
			-	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
						R/	W			
	Baud rate		0	0)	0	0	0	0
BR0CR	control	203H	Always	1: (16-K)/16					iding value.	
			write "0".	divided enable	01: φT2			U t	o F	
				Gridalio	10: φT8					
					11: φT32		DDOKS	DD0K2	DD0K4	DD0K0
	Serial						BR0K3	BR0K2	BR0K1 W	BR0K0
BR0	channel 0	204H		//	//		0	0	0	0
ADD	K setting	20411					0		ate 0 K	U
	register								o F	
			12\$0	FDPX0						
			R/W	R/W						
			0	0						
SC0	Serial		IDLE2	I/O						
MOD1	channel 0	205H	0: Stop	interface						
	mode1		1: Operate	1: Full						
				duplex						
				0: Half duplex						
				uupiex						

(8-2) IrDA

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
			R/W	R/W	R/W	R/W		R	W	
	IrDA		0	0	0	0	0	0	0	0
SIRCR	control	207H	Transmission	Receiving	Transmission	Receiving	Set the effect	tive SIRRxD	pulse width	
	register			data	0: Disable	0: Disable	Pulse width i	more than 2x	\times (Set value	e + 1) + 100 ns
				0: H pulse	1: Enable	1: Enable	Possible: 1 t	o 14		
			1: 1/16	1: L pulse			Not possible	: 0, 15		

UART/serial channel (2/3)

(8-3) UART/SI Ochannel 1

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	208H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC1BUF	channel 1	(Prohibit			R (F	Receiving)/W	/ (Transmiss	ion)		
	buffer	RMW)				Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R/	W	R (Clea	red to 0 by r	eading)	R/	W
SC1CR	channel 1	209H	Undefined	0	0	0	0	0	0	0
	control		Receiving	Parity	1: Parity		1: Error		0: SCLK1↑	1: 1: Input
			data bit8	0: Odd	enable	Overrun	Parity	Framing	1: SCLK1↓	SCLK1 pin
				1: Even						
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
				i			W		ı	
SC1	Serial	00.411	0	0	0	0	0	0	0	0
MOD0	channel 1 mode	20AH	Transmission data bit8	1: CTS enable	1: Receive enable	1: Wakeup enable	00: I/O Interf		00: TA0TRG	
	mode		uala bilo	eriable	eriable	Cilable	01: UART 7		01: Baud rate	-
							10: UART 8 11: UART 9		10: Internal of	Clock TSYS
			_	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
			_	BK IADDL	BRICKI		W	DK 132	BK101	BK130
			0	0	0	0	0	0	0	0
BR1CR	Baud rate	20BH	Always	1: (16-K)/16		0	0		g value	0
	control		write "0".	divided	01: φT2				o F	
				enable	10: φT8					
					11: φT32					
							BR1K3	BR1K2	BR1K1	BR1K0
BR1	Serial							R/	W	
ADD	channel 1 K setting	20CH					0	0	0	0
	register						S		ency divisor	K
								1 t	o F	
			I2S1	FDPX1						
			R/W	R/W						
			0	0						
SC1	Serial		IDLE2	I/O interface						
MOD1	channel 1	20DH	0: Stop	mode						
	mode1		1: Operate	1: Full						
				duplex						
				0: Half						
				duplex						

UART/serial channel (3/3)

(8-4) UART/SIOchannel 2

Symbol		Address	7	6	5	4	3	2	1	0
	Serial	210H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC2BUF	channel 2	(Prohibit			R (F	Receiving)/W	/ (Transmiss	ion)		
	buffer	RMW)				Unde	fined			
			RB8	EVEN	PE	OERR	PERR	FERR	_	-
	Serial		R	R/	W	R (Clea	red to 0 by r	eading)	R/	W
SC2CR	channel 2	211H	Undefined	0	0	0	0	0	0	0
002011	control		Receiving	Parity	1: Parity		1: Error		Always	Always
			data bit8	0: Odd	enable	Overrun	Parity	Framing	write "0".	write "0".
				1: Even						
			TB8	-	RXE	WU	SM1	SM0	SC1	SC0
					T		W		1	I
SC2	Serial		0	0	0	0	0	0	0	0
MOD0	channel 2	212H		Always	1: Receive	1: Wakeup	00: Reserve	d	00: TA0TRG	
	mode		data bit8	write "0".	enable	enable	01: UART 7		01: Baud rate	ŭ
							10: UART 8		10: Internal clo	0.0
							11: UART 9		11: External c	
			-	BR2ADDE	BR2CK1	BR2CK0	BR2S3	BR2S2	BR2S1	BR2S0
					T		W		1	Г
	Baud rate		0	0	0	0	0	0	0	0
BR2CR	control	213H	Always	1: (16-K)/16	'				g value	
			write "0".	divided enable	01: φT2			Οt	o F	
				CHADIC	10: φT8					
					11: φT32				l	
	Serial						BR1K3	BR1K2	BR1K1	BR1K0
BR2	channel 2	04.41.1							W	
ADD	K setting	214H					0	0	0	0
	register						S		ency divisor o F	K
			12S2	FDPX2						
			R/W	R/W						
			0	0						
	Serial		IDLE2	I/O						
SC2	channel 2	215H	0: Stop	interface						
MOD1	mode1		1: Operate	mode						
				1: Full						
				duplex						
				0: Half duplex						
				uupiex						

(9)% bus/serial interface (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0 /SWRMON
		240H (I ² C bus		W		R/W		W	W	R/W
		mode)	0	0	0	0		0	0	0/1
	Serial bus	(Prohibit RMW)	000: 8		0: 2 1: 5	Acknowledge mode 0: Disable		000: 5 00	ne devisor vali 01: 6 010: 7 00: 9 101: 1	7
0010001	interface			11: 7		1: Enable			I1: (Reserved	
SBI0CR1	control		SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0
	register 1		W	W	W	W		W	W	W
		240H	0	0	0	0		0	0	0
		(SIO mode) (Prohibit RMW)	Transfer 0: Stop 1: Start	Transfer 0: Continue 1: Abort	Transfer monotone 00: 8-bit tra	insmit mode		000: 4 00	ne divisor valu 01: 5 010: 0	6
		KIVIVV)	r. Otart	1.710011	receive				11: SCK pin	5
					11: 8-bit red	ceived mode				
SBI0	SBI	241H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	PB0/TB0
DBR	buffer	(Prohibit			F	(Receiving)		ssion)		
	register	RMW)		ſ	ı		defined	ſ	ı	I
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
	1000110	0.401.1	W	W	W	W	W	W	W	W
I2C0AR	I2CBUS address	242H (Prohibit	0	0	0	0	0	0	0	0
1200/11	register	RMW)			Se	etting slave ad	ddress			Address recognition 0: Enable 1: Disable
			MST	TRX	BB	PIN	AL/SBIM1	AAS/SBIM0	AD0/ SWRST	LRB/ SWRST0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
When	Serial bus		0	0	0	1	0	0	0	0
read SBI0SR	interface status register	243H (I ² C bus mode) (Prohibit	0: Slave 1: Master			INTSBI request monitor 0: Request 1: Cancel	Arbitration lost detection monitor 1: Detect	Slave address match detection monitor 1: Detect	GENERAL CALL detection monitor 1: Detect	Lost receive bit monitor 0: 0
When write SBI0CR 2	Serial bus interface control register 2	RMW)			Start/stop condition generation 0: Start condition 1: Stop condition		Serial bus into operating moderating moderating moderating moderates and the series of	de selection e e node	Software rese write "10" and internal reset s generated.	"01", then an
							SIOF/SBIM1	SEF/SBIM2	_	-
							R	R	W	W
When	Serial bus						0	0	0	0
read SBI0SR	interface status register	243H (SIO mode)					Transfer status monitor 0: Stopped 1: Terminated in process	Shift operation status monitor 0: Stopped 1: Terminated in process		
When write SBIOCR 2	Serial bus interface control register 2	(Prohibit RMW)					Serial bus into operating mo 00: Port mod 01: SIO modd 10: I ² C bus m 11: (Reserve	erface de selection e e node	Always write "0".	Always write "0".

l℃bus/serialinterface(2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	I2SBI0						
	Serial bus	244H	W	R/W						
SBI0	interface	(Prohibit	0	0						
BR0	baud rate register 0	RMW)	""	IDLE2 0: Abort 1: Operate						
			P4EN			/				
			P4EN	_						
			W P4EN	W						
SBI0	Serial bus	245H								

(10) ADconverter

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	ADBF	-	_	ITM0	REPEAT	SCAN	ADS
			F	₹	R/W	R/W	R/W	R/W	R/W	R/W
ADMOD0	AD mode	2B0H	0	0	0	0	0	0	0	0
	register 0	,	1: End	1: Busy	Always write "0".	Always write "0".	Interrupt in repeat mode	1: Repeat	1: Scan	1: Start
			VREFON	I2AD			ADTRGE	ADCH2	ADCH1	ADCH0
			R/W	R/W			R/W		R/W	
			0	0			0	0	0	0
ADMOD1	AD mode register 1	2B1H	1: VREF on	IDLE2 0: Abort 1: Operate			1: Enable for external start	011: AN3 AN 100: AN4 AN 101: AN5 AN 110: AN6 AN	$0 \rightarrow AN1$ $0 \rightarrow AN1 \rightarrow A$ $0 \rightarrow AN1 \rightarrow A$ 4	$NN2 \rightarrow AN3$
	AD result		ADR01	ADR00						ADR0RF
AD REG04L	register	2A0H	F	₹						R
REGU4L	0/4 low		Unde	efined						0
4.5	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
AD REG04H	register	2A1H		•	•	F	₹		•	
INLOU4I1	0/4 high					Unde	efined			
AD	AD result		ADR11	ADR10						ADR1RF
REG15L	register	2A2H	F	₹						R
KEG 13L	1/5 low		Unde	efined						0
AD	AD result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
REG15H	register	2A3H				F	₹			
INEO 1311	1/5 high					Unde	efined			
AD	AD result		ADR21	ADR20						ADR2RF
REG26L	register	2A4H	F	२						R
NLO20L	2/6 low		Unde	efined						0
AD	AD result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
REG26H	register	2A5H				F	₹			
KLG2011	2/6 high					Unde	efined			
AD	AD result		ADR31	ADR30						ADR3RF
REG37L	register	2A6H	F	₹						R
NEO3/E	3/7 low		Unde	efined						0
A.D.	AD result		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
AD REG37H	register	2A7H				F	₹			
NEG3/11	3/7 high					Unde	efined			

(11) Watchdog ti mer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0			I2WDT	RESCR	-
			R/W	R/W	R/W			R/W	R/W	R/W
	WDT		1	0	0			0	0	0
WDMOD	WDT mode register	300H	1: WDT enable	00: 2 ¹⁵ /f _S YS 01: 2 ¹⁷ /f _S YS 10: 2 ¹⁹ /f _S YS 11: 2 ²¹ /f _S YS				IDLE2 0: Abort 1: Operate	1: RESET connect internally WDT out to reset pin	Always write "0".
WDCR	WD control	301H (Prohibit RMW)			B1H: W	V - DT disable		DT clear		

(12) RTC(Real timeclock)

Symbol		Address	7	6	5	4	3	2	1	0
Cymbol	ranio	71441000		SE6	SE5	SE4	SE3	SE2	SE1	SE0
	Second		//	020	020	021	R/W	OLL	OL.	020
SECR	register	320H					Undefined			
			"0" is read.	40 s	20 s	10 s	8 s	4 s	2 s	1 s
				MI6	MI5	MI4	MI3	MI2	MI1	MIO
	Minute	00411			I	I	R/W		I	1
MINR	register	321H					Undefined			
			"0" is read.	40 min	20 min	10 min	8 min	4 min	2 min	1min
					HO5	HO4	HO3	HO2	HO1	HO0
	Hour						R	W	•	
HOURR	register	322H					Unde	fined		
	. eg.e.e.		"0" is	read.	20 h (PM/AM)	10 h	8 h	4 h	2 h	1 h
								WE2	WE1	WE0
DAYR	Day	323H							R/W	
DATE	register	32311							Undefined	•
					"0" is read.			W2	W1	W0
					DA5	DA4	DA3	DA2	DA1	DA0
DATER	Date	324H						W		
	register					1	Unde		1	1
			0	0	20 day	10 day	8 day	4 day	2 day	1 day
						MO4	MO3	MO2	MO1	MO0
		325H						R/W		
		DAGEO		"O" :		40	0	Undefined	0	4
MONTHR	Month	PAGE0		"0" is read.		10 month	8 month	4 month	2 month	1 month
MONTHR	register	PAGE1				"0" is read.				0: Indicator for 12 hours
										1: Indicator
			YE7	YE6	YE5	YE4	YE3	YE2	YE1	hours YE0
		326H	167	1 1 20	123		W	164	'L'	ILU
YEARR	Year						efined			
	register	PAGE0	80 year	40 year	20 year	10 year	8 year	4 year	2 year	1 year
		PAGE1	,	, ,		read.	, ,	, ,		ar setting
			INTENA			ADJUST	ENATMR	ENAALM		PAGE
		327H	R/W			W		/W		R/W
PAGER	Page	(Prohibit	0			Undefined	Unde	efined		Undefined
	register	RMW)	INTRTC	"0" is	read.	ADJUST	TIMER	ALARM	"0" is	PAGE
			ENABLE				ENABLE	ENABLE	read.	setting
			DIS1HZ	DIS16HZ	RSTTMR	RSTALM	RE3	RE2	RE1	RE0
	Reset	328H				V	٧			
RESTR	register	(Prohibit		i	<u> </u>	Unde	efined			
	J	RMW)	0: 1 Hz	0: 16 Hz	1: Reset timer	1: Reset alarm		Always	write "0".	

(13) Melody/alarmgenerator

Symbol	Name	Address	7	6	5	4	3	2	1	0
			AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
ALM	Alarm pattern	330H				R/	W			
ALIVI	register	33011				()			
	_					Alarm – P	attern set			
			FC1	FC0	ALMINV	-	-	-	_	MELALM
			R/	W	R/W	R/W	R/W	R/W	R/W	R/W
	Melody/		(0	0	0	0	0	0	0
MEL ALMC	alarm control register	331H	Free-run co control 00: Hold 01: Restart 10: Clear 11: Clear a		Alarm frequency invert 1: Invert		Always	write "0".		Output frequency 0: Alarm 1: Melody
			ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0
MELFL	Melody	332H				R/	W			
WELFL	frequency register-L	332⊓				()			
	,				Melo	dy frequenc	y set (Low 8	bits)		
			MELON				ML11	ML10	ML9	ML8
			R/W					R	W	
			0					()	
MELFH	Melody frequency register-H	333H	Melody counter control 0: Stop and clear 1: Start				Melo	dy frequenc	y set (High 4	4 bits)
					_	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
	Alarm interrupt				R/W			R/W		
ALMINT	enable	334H			0			0		
	register				Always write "0".	INT	ALM4 to INT	ALM0 alarm	interrupt er	nable

(14) MMU

Symbol	Name	Address	7	6	5	4	3	2	1	0
			L0E					L0EA22	L0EA21	L0EA20
	LOCAL0		R/W						R/W	
LOCAL0	control	350H	0						0	
	register		0: Disable					LOCAL0 ar	ea BANK se	İ
			1: Enable							
			L1E					L1EA23	L1EA22	L1EA21
	LOCAL1		R/W						R/W	
LOCAL1	control	351H	0						0	
	register		0: Disable					LOCAL1 ar	ea BANK se	t
			1: Enable							
			L2E					L2EA23	L2EA22	L2EA21
	LOCAL2		R/W						R/W	
LOCAL2	control	352H	0						0	
	register		0: Disable					LOCAL2 ar	ea BANK se	t
			1: Enable							
			L3E			L3EA26	L3EA25	L3EA24	L3EA23	L3EA22
	LOCAL3		R/W					R/W		
LOCAL3	control	353H	0					0		
	register		0: Disable			LOCAL3 ar	ea BANK se	t		
			1: Enable							

(15) LCDcontroller (1/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
9		7 10.0	BAE	AAE	SCPW1	SCPW0	-	BULK	RAMTYPE	MODE
						R.	W	_		_
			0	0	1	0	0	0	0	0
LCD	LCD mode	04B0H	Used by B	Used by A	SCP width	I	Always	SDRAM	Display	Mode
MODE	register	U4DUN	AREA	AREA	00: Base m	ode	write "0".	bank	RAM	selection
	- granar		0: Disable	0: Disable	01: 2 clocks	3		selection	Selection	0: RAM
			1: Enable	1: Enable	10: 4 clocks	5		0: 64 Mbit 1: 128 Mbit	0: SRAM	1: SR
					11: 8 clocks	3		1: 128 MDIT	1: SDRAM	
	Divide		FMN7	FMN6	FMN5	FMN4	FMN3	FMN2	FMN1	FMN0
LCD	Frame	04B1		T	1	R.	W	1	1	1
DVM	register		0	0	0	0	0	0	0	0
				1	_	1	djust function		ı	ı
			COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0
				T	ı		/W	ı	ı	ı
			0	0	0	0	0	0	0	0
	LCD		_		on number fo	or SR type		LCD segme		or SR type
LCD SIZE	size	04B2H	0000: 128	0101: 400			0000: 128	0101: 480		
SIZL	register		0001: 160	0110: 480			0001: 160	0110: 560		
			0010: 200				0010: 240	0111: 640		
			0011: 240 0100: 320				0011: 320 0100: 400			
				: Reserve				: Reserve		
			LCDON	ALL0	FRMON	_	FP9	MMULCD	FP8	START
			2020.1	7.220			/W			0.7
			0	0	0	0	0	0	0	0
			DOFF	Transfer	Divided	Always	Setting	Specify	Setting	Start
	LCD		port	data of	FR mode	write "0".	bit9 for	address	bit8 for	control in
LCDCTL	control	04B3H	0: OFF	exclusive	0: Disable		f _{FP} [9:0]	of LCD	f _{FP} [9:0]	SR type
	register		1: ON	bus for LCD	1: Enable			driver with built-in		
				0:Normal				RAM		0: Stop
				1:All				0: OFF		1: Start
				display				1: ON		
				data 0			_			
	LCD FRAME		FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0
LCD	FREQU-E	04B4H					/W			
FFP	NCY						0			
	register					t _{FP} set valu	e bit7 to bit0		ı	1
									GRAY1	GRAY0
	LCD								R/W	R/W
1.000	gray	0.45511							0	0
LCDGL	level	04B5H							00: Monocl	
	register								01: 4 levels	
									10: 8 levels	
									11: 16 leve	IS

LCDcontroller (2/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			CDE	CCS					CBE1	CBE0	
			R/W				R/W				
	LCD		0	0					0	0	
LCDCM	cursor mode register	04B6H	Cursor 0: OFF 1: ON	Cursor color 0: White 1: Black					Cursor blin 00: Don't b 01: 2 Hz 10: 1 Hz 11: 0.5 Hz		
						CW4	CW3	CW2	CW1	CW0	
	LCD		$\left \cdot \right $					R/W	l	l	
LCDCW	cursor	04B7H				0	0	0	0	0	
LCDCVV	width register	V4B7H				Cursor width (X size) 00000: 1 dot (Min) 11111: 32 dots (Max)					
		04B8H				CW4	CW3	CW2	CW1	CW0	
	LCD							R/W			
LCDCH	cursor height register					0	0	0	0	0	
							Curs 00000: 1 do 11111: 32 d		size)		
	LCD cursor APB register	04B9H					APB 3	APB 2	APB 1	APB 0	
LCDCP								R	W		
LODOI							0	0	0	0	
							Setting bit3	3 to bit0 for o	cursor absolu	ute position	
	LCD		CAP 7	CAP 6	CAP 5	CAP 4	CAP 3	CAP 2	CAP 1	CAP 0	
LCDCPL	cursor	04BAH	R/W								
LODOI L	AP	OFDAIT	0	0	0	0	0	0	0	0	
	register-L				Setting bit	7 to bit0 for c	cursor absolu	ıte position			
	LCD		CAP 15	CAP 14	CAP 13	CAP 12	CAP 11	CAP 10	CAP 9	CAP 8	
LCDCPM	cursor	04BBH				R/	W				
LODGI W	AP register-M		0	0	0	0	0	0	0	0	
					Setting bit1	5 to bit8 for	cursor absol	ute position			
	LCD		CAP 23	CAP 22	CAP 21	CAP 20	CAP 19	CAP 18	CAP 17	CAP 16	
LCDCPH	cursor	04BCH				R/	W				
LODOPH	AP	U4BCH	0	1	0	0	0	0	0	0	
	register-H				Setting bit23	3 to bit16 for	cursor abso	lute position			

LCDcontroller (3/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	A area		SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
LSARAM	start	0.4001.1		•		R	W		•	
LSAKAW	address	04C0H	0	0	0	0	0	0	0	0
	register-M			Setting sta	rt address A	15 to A8 for	the source of	data memory	O in A area. EA9 O in A area. EA9 O in A area. EA17 O in A area. SA9 O in B area. SA17 O in B area. EA17 O in B area. EA17 O in C area. SA9 O in C area. SA17	
	A area		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
ICVDVII	start	04C1H				R	W			
LSARAH	address	040111	0	1	0	0	0	0	0	0
	register-H			Setting sta	rt address A	23 to A16 for	r the source	data memor	y in A area.	
	A area		EA15	EA14	EA13	EA12	EA11	EA10	EA9	EA8
LEARAM	end	04C2H				R	W			
LEARAIVI	address	U4C2H	0	0	0	0	0	0	0	0
	register-M			Setting en	d address A	15 to A8 for	the source c	lata memory	in A area.	
	A area		EA23	EA22	EA21	EA20	EA19	EA18	EA17	EA16
LEARAH	end end	04C3H				R	W			
LLANAII	address	040311	0	1	0	0	0	0	0	0
	register-H			Setting end	d address A2	23 to A16 for	the source	data memor	y in A area.	
	B area	04C4H	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
LSARBM	start address register-M					R	W			
LOAKDIVI			0	0	0	0	0	0	0	0
			Setting start address A15 to A8 for the source data memory in B area.							
	B area start address		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
LSARBH		04C5H				R	W			
LOARDIT			0	1	0	0	0	0	0	0
	register-H			Setting sta	rt address A	23 to A16 for	r the source	data memor	memory in B area.	
	B area end address register-M	04C6H	EA15	EA14	EA13	EA12	EA11	EA10	EA9	EA8
LEARBM						R/	W			
LL, ii (Divi			0	0	0	0	0	0	0	0
				Setting en	d address A	15 to A8 for	the source c	lata memory	in B area.	
	B area end	04C7H	EA23	EA22	EA21	EA20	EA19	EA18	EA17	EA16
LEARBH						R	/W			
	address		0	1	0	0	0	0	0	0
	register-H			Setting end	d address A2	23 to A16 for	the source	data memor	y in B area.	
	C area		SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
LSARCL	start	04C8H		1	1	R/	/W	1	1	
	address register-L		0	0	0	0	0	0	0	0
	register-L			Setting sta	art address A	7 to A0 for	the source d	ata memory	in C area.	
	C area		SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
LSARCM	start	04C9H		1	1		/W	1	1	
	address register-M		0	0	0	0	0	0		0
	register-ivi				rt address A	15 to A8 for	the source of	•	/ in C area.	
	C area		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
LSARCH	start	04CAH		T	ı		/W	ı	1	
	address		0	1	0	0	0	0	0	0
	register-H			Setting star	rt address A2	23 to A16 for	the source	data memor	y in C area.	

LCDcontroller (4/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
LG0L	LCD gray level data setting register-L	04D0H	0	0	0	R/ 0	W 0	0	0	0
LG0H	LCD gray level data setting register-H	04D1H	0	0	0	R/ 0	W 0	0	0	0
LG1L	LCD gray level data setting register-L	04D2H	0	0	0	R/ 0	W 0	0	0	0
LG1H	LCD gray level data setting register-H	04D3H	1	0	0	R/ 0	W 0	0	0	0
LG2L	LCD gray level data setting register-L	04D4H	1	0	0	R/ 0	W 0	0	0	0
LG2H	LCD gray level data setting register-H	04D5H	1	0	0	R/ 0	W 0	0	0	0
LG3L	LCD gray level data setting register-L	04D6H	1	0	0	R/ 0	W 0	0	0	0
LG3H	LCD gray level data setting register-H	04D7H	1	0	0	R/ 0	W 1	0	0	0
LG4L	LCD gray level data setting register-L	04D8H	1	0	0	R/ 0	W 1	0	0	0
LG4H	LCD gray level data setting register-H	04D9H	1	0	0	R/ 0	W 1	0	0	0
LG5L	LCD gray level data setting register-L	04DAH	1	0	0	R/ 0	W 1	0	1	0
LG5H	LCD gray level data setting register-H	04DBH	1	0	0	R/ 0	W 1	0	0	0
LG6L	LCD gray level data setting register-L	04DCH	1	0	0	R/ 0	W 1	0	1	0
LG6H	LCD gray level data setting register-H	04DDH	1	0	0	R/ 0	W 1	0	1	0
LG7L	LCD gray level data setting register-L	04DEH	1	0	1	R/ 0	W 1	0	1	0
LG7H	LCD gray level data setting register-H	04DFH	1	0	0	R/ 0	W 1	0	1	0

LCDcontroller (5/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	LCD gray									
LG8L	level data setting register-L	04E0H	1	0	1	0 R/	W 1	0	1	0
LG8H	LCD gray level data setting register-H	04E1H	1	0	1	R/ 0	W 1	0	1	0
LG9L	LCD gray level data setting register-L	04E2H	0	1	0	R/	W 0	1	0	1
LG9H	LCD gray level data setting register-H	04E3H	1	1	0	R/	W 0	1	0	1
LGAL	LCD gray level data setting register-L	04E4H	1	1	0	R/	W 0	1	0	1
LGAH	LCD gray level data setting register-H	04E5H	1	1	0	R/	W 0	1	0	1
LGBL	LCD gray level data setting register-L	04E6H	1	1	0	R/	W 0	1	0	1
LGBH	LCD gray level data setting register-H	04E7H	1	1	0	R/	W 1	1	0	1
LGCL	LCD gray level data setting register-L	04E8H	1	1	0	R/	W 1	1	0	1
LGCH	LCD gray level data setting register-H	04E9H	1	1	0	R/	W 1	1	0	1
LGDL	LCD gray level data setting register-L	04EAH	1	1	0	R/	W 1	1	0	1
LGDH	LCD gray level data setting register-H	04EBH	1	1	1	R/	W 1	1	0	1
LGEL	LCD gray level data setting register-L	04ECH	1	1	0	R/	W 1	1	0	1
LGEH	LCD gray level data setting register-H	04EDH	1	1	0	R/	W 1	1	0	1
LGFL	LCD gray level data setting register-L	04EEH	1	1	1	R/	W 1	1	1	1
LGFH	LCD gray level data setting register-H	04EFH	1	1	1	R/	W 1	1	1	1

(16) SDRAMcontroller

Symbol	Name	Address	7	6	5	4	3	2	1	0
SDACR a			SDINI	SWRC	-	-	SMUXE	SMUXW1	SMUXW0	SMAC
			R/W	R/W	R/W	R/W		R/W		
	SDRAM		0	0	1	0	0	0	0	0
	address control	04F0H	Auto initialize	Write recovery	Always fixed to "10".		Address mux	SDRAM select 00:16 Mbits 10: 128 Mbits		Access cycle
			0: Disable	0: 1 clock			0: Disable	01: 64 Mbits 11: Reserved		0: Disable
			1: Enable	1: 2 clocks	2 clocks					1: Enable
		04F1H	SFRC	SRS2	SRS1	SRS0	SASFRC			SRC
					R/W					R/W
	CDDAM		0	0	0	0	0			0
SDRCR	SDRAM refresh control		Self refresh 0: Disable 1: Enable	Auto refresh interval 000: 78 states 100: 195 states 001: 97 states 101: 210 states 010: 124 states 110: 249 states		Auto self refresh 0: Disable 1: Enable			Auto refresh 0: Disable 1: Enable	
				011: 156 st	ates 111:3	312 states				

(17) 16-bit timer

Symbol	Name	Address	7	6	5	4	3	2	1	0	
Cymbol	rtaine	7 (44) 000	TB0RDE	_			I2TB0	TB0PRUN		TB0RUN	
			R/W	R/W			R/W	R/W		R/W	
			0	0			0	0		0	
TB0RUN	Timer control	180H	Double	Always			IDLE2		r run/stop co		
	COLLIO		buffer	write "0".			0: Stop	0: Stop and			
			0: Disable				1: Operate	1: Run (Co			
			1: Enable				•	,	1,		
			-	-	TB0CPOI	-	_	TB0CLE	TB0CLK1	TB0CLK0	
			R/	W	W*			R/W			
	16-bit		0	0	1	0	0	0	0	0	
TROMOD	timer source	182H	Always fixe	d to "0".	0: Soft	Always fixe	ed to "0".	1: UC0	Source clo		
TB0MOD	CLK	(Prohibit			capture			clear enable	00: Reserv	ed	
	and	RMW)			1: Undefined			enable	01: φT1		
	mode								10: φT4 11: φT16		
									11. φ1 16		
			_	_	_	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0	
					_		/W	LIBOLOTT		/*	
			1	1	0	0	0	0	0	0	
			Always fixe		Always		vert trigger	1	00: Invert 7		
	16-bit	183H			fixed "0".	0: Trigger	disable		01: Set		
TB0FFCR	timer	(Prohibit				1: Trigger enable			10: Clear		
	flip-flop control	RMW)					T	I	11: Don't c	are	
	control	ŕ				Invert when the UC	Invert when the UC	Invert when the UC	Always rea	d as "11".	
						value is	value	value			
						loaded in to	matches	matches			
						TB0CP0.	the value in TB0RG1.	the value in			
	16-bit						IBUNGI.	TB0RG0.			
TB0RG0L	timer	188H (Prohibit RMW)				,	N				
TBUNGUL	register		Undefined								
	0-L	,				Onde	Silited				
	16-bit timer 189H										
TB0RG0H	register	(Prohibit RMW)	W								
	0-H	KIVIVV)				Unde	efined				
	16-bit	18AH					_				
TB0RG1L	timer register	(Prohibit	W								
	1-L	RMW)	Undefined								
	16-bit	18BH	-								
TB0RG1H	timer register	(Prohibit	W								
	1-H	RMW)	Undefined								
	Capture						_				
TB0CP0L	register	18CH		R							
	0-L					Unde	efined				
	Capture										
TB0CP0H	register	18DH					R				
	0-H					Unde	efined				
	Capture		-								
TB0CP1L	register 1-L	18EH					R				
	1-L					Unde	efined				
TD:05	Capture	40=::					_				
TB0CP1H	register 1-H	18FH					R				
	<u> </u>					Unde	efined				

TOSHIBA TMP91C820A

6. Points of Note and Restrictions

(1) Notation

a. The notation for builas fiohlows nyengjios tkeBristissymbol > (e.g., TAO1RUN < TAODRUNTACORNUNTACORNUNTE for egister TAO1RUN).

b. Read-modify-writeinstructions

An instruction in which the CPU reads data from memo same memory location in one instruction.

Example 1: SET 3,) (TACSHARUNI t 3 of TAO1RUN.

Example 2: INC 1, c(r1e0n014h)t.t.h.eldmataat100H.

Examples of read-modify-writeinstructions on the TL Exchange instruction

EX (mem), R

Arithmeticoperations

```
ADD (mem), R/# ADC (mem), R/# SUB (mem), R/# SBC (mem), R/# INC #3, (mem) DEC #3, (mem)
```

Logicoperations

```
AND (mem), R/# OR (mem), R/#
XOR (mem), R/#
```

Bit manipul ation operations

```
STCF #3/A, (mem) RES #3, (mem)
SET #3, (mem) CHG #3, (mem)
TSET #3, (mem)
```

Rotate and shift operations

```
RLC
     (mem)
                 RRC
                       (mem)
RL
     (mem)
                      (mem)
                 RR
SLA (mem)
                 SRA
                       (mem)
SLL
     (mem)
                 SRL
                       (mem)
RLD
                 RRD
     (mem)
                       (mem)
```

c. fcfpfisfysfindonestate

The clock frequency input ono IdHa Timbe 2clics ckaseled cft & DFMCRO < ACT 1: O > is called fc.

The clock selected by SYSCRPはSTYNSeCcM >oicsk of ar lelqendenficy givdivided by 2siys called f

One cyc\$yesicsfrfeferred to as one state.

- (2) Points of note
 - a. AMO and AM1 pins

This pinis connectred the spot of the VDo not alter the level what ive.

b. EMUO and EMU1

Open pins.

c. Reserved address areas

The TMP91C82OA does not have any reserved areas.

d. Warm-upcounter

The warm-up counter operates redheas & OP envelo if the sy an external oscillatorui Avsabernets tubtt bet iwane ne-qup time elinput of the release request and output of the system of

e. Programmable pull-upresistance

The programmable pull-upresistor can be turned ON/O are set for use as input ports. When the ports are set for turned ON/OFF by a program.

The data registers (e.g., P5) are used to turn the purchase quently read-modify-write instructions are property of the property of the second consequents of the second consequence of the second conse

f. Watchdogtimer

The watchdog timer starts operation immediately af watchdog timer is not to be used, disable it.

g. ADconverter

The string resistor between the VREFH and VREFL pinsoreduce power consumption. When STOP mode is used, diprogrambefore the HALT instruction is executed.

h. CPU (Mi cro DMA)

Only the "LDC cr, r" and "LDC r, cr" instructions caregisters in the CPer(eogreet medgetimesets).

i. Undefined SFR

The value of an undefined bit in an SFR is undefined when

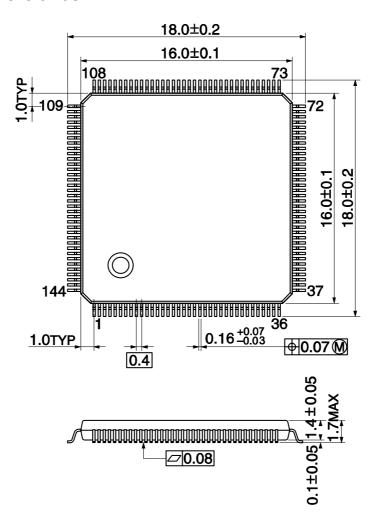
j. POPSRinstruction

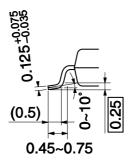
PI ease execute the POPSRi nstructi on duri ng DI condi

k. Releasing the HALT mode by requesting an interruption Usually, interrupts can release all hand, sltNaTtQusto HoINT3, INTKEY, INTRTC, INTALMOto INTALM4) which can re

(for about 5-p) owiktshofDfE1 or STOP mode (IDLE2 is not app (In this case, an interrupt request is kept on hold int

not be able to do so if they are input during the period


If another interrupt is generated after it has shift status can be released wipth oout to dip for the interrupt is that of the interrupt kept nooh thod id nitretreruped with high handled first followed by the other interrupt.


TOSHIBA TMP91C820A

7. Package Dimensions

P-LQFP144-1616-0.40C

Unit: mm

