

Dual Channel, 14-Bit, 10 MSPS A/D Converter with Analog Input Signal Conditioning

PRELIMINARY TECHNICAL DATA

AD10410

For current information contact (336) 605-4385

PERFORMANCE FEATURES

Dual, 10 MSPS minimum sample rate

- Channel-channel matching, +/- .1% gain error
- Channel-channel isolation, >80dB
- DC-Coupled Signal conditioning included Selectable Bipolar Input Voltage Range

(+/- 0.5V, +/- 1.0V, +/- 2.0V)

Gain flatness up to Nyquist: < 0.2dB 85dB Spurious-Free Dynamic Range

Straight binary output format

3.3 / 5V CMOS-Compatible Output Levels

.75W Per Channel

Industrial and Military Grade

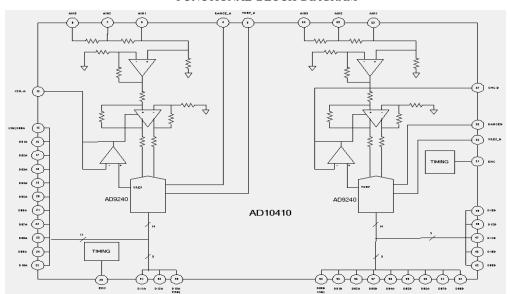
APPLICATIONS

Phased Array Receivers
Communications Receivers
FLIR Processing
Secure Communications
GPS Anti-Jamming Receivers
Multichannel. Multimode Receivers

PRODUCT DESCRIPTION

The AD10410 is a full channel ADC solution with on-module signal conditioning for improved dynamic performance and fully matched channel-to-channel performance. The module includes two wide dynamic range AD9240 ADCs. Each AD9240 has a dc-coupled amplifier front end including a low distortion, high bandwidth amplifier, providing a high input impedance and gain, and driving a single to differential

amplifier. The AD9240s have on-chip track-and- hold cirucutry and utilize an innovative multipass architecture to achieve 14-bit, 10MSPS performance. The AD10410 uses innovative high-density circuit design and laser-trimmed thin-film resistor networks to achieve exceptional matching and performance while still maintaining excellent isolation, and providing for significant board area savings.


The AD10410 operates with +/- 5.0V for the Analog signal conditioning with a separate +5.0V/3.3V supply for the digital output phase. Each channel is completely independent allowing operation with independent Encode and Analog Inputs. The AD10410 also offers the user a choice of Analog Input Signal ranges to further minimize additional external signal conditioning, while still remaining general-purpose.

The AD10410 is packaged in a 68-lead Ceramic Gull Wing Package, footprint compatible with the earlier generation AD10242 (12-bit, 40 MSPS) and AD10265 (12-bit, 65MSPS). Manufacturing is done on Analog Devices, Inc. Mil-38534 Qualified Manufacturers Line (QML) and components are available up to Class-H (-55 to 125C).

PRODUCT HIGHLIGHTS

- 1. Guaranteed sample rate of 10 MSPS.
- 2. Input amplitude options, user configurable.
- 3. Input signal conditioning included; both channels matched for gain.
- 4. Fully tested/characterized performance for full channel.
- 5. Footprint compatible family; 68-pin LCC.

FUNCTIONAL BLOCK DIAGRAM

Rev. Pr A

This information applies to a product which is in development. Specifications are subject to change without notice. Contact factory for most recent information. Analog Devices Sensitive Material - not to be reproduced or distributed without permission.

AD10410

Electrical Characteristics (AV $_{CC}$ =5V; AV $_{EE}$ =-5V; DV $_{CC}$ =+3.3V applies to each ADC unless otherwise noted

Temp	Test Level	Mil Sub- Group	Min	AD10410BZ/QML-H Typ	Max	Units
		5.5.0		14		Bits
Full +25°C Full Full +25°C Full Full	VI I VI V I VI V	1,2,3 1 2.3 1 2,3		Guaranteed ±2.2 ±2.2 ±0.1 ±0.5 ±0.8 ±0.1		%FS %FS %FS %FS %FS
Full Full Full Full Full Full Full Full	I I I IV IV IV V	1,2,3 1,2,3 1,2,3 12 12 12 12	99 198 396 0	±0.5 ±1.0 ±2 100 200 400 4.0 30	101 202 404 7.0	V V V Ω Ω Ω pF MHz
Full Full Full Full	I I I I	1,2,3 1,2,3 1,3,3 1,2,3		+3.5 +1.0 ±10 ±10 5		V V μΑ μΑ pF
Full Full +25°C +25°C +25°C +25°C Full	VI V V V IV IV	4,5,6 12 12 12 12	10	TBD TBD 0.3		MSPS MSPS MSPS MSPS ns ps rms ns ns
+25°C Full	V II	4 5,6		73 73		dB dB
+25°C Full	V II	4 5,6		70 70		dB dB
	Full +25°C Full Full Full Full Full Full Full Ful	Full VI +25°C I Full VI Full VI Full VI Full VI Full I Full I Full I Full IV Full IV Full IV Full IV Full IV Full IV Full I Full	Temp Test Level Sub-Group Full VI 1,2,3 +25°C I 1 Full VI 2.3 Full VI 2,3 Full VI 2,3 Full I 1,2,3 Full I 1,2,3 Full IV 12 Full IV 12 Full IV 12 Full I 1,2,3 Full V 12 +25°C V V +25°C V V +25°C V 4 Full II 5,6	Temp Test Level Sub-Group Min Full +25°C I I 1 1 Full VI +25°C I I 1 I Full VI 2.3 Full V +25°C I I I I Full VI 2.3 Full I I 1.2,3 Full I I 1.2,3 Full I I 1.2,3 Full IV 12 198 Full IV 12 198 Full IV 12 198 Full IV 12 12 198 Full IV 12 12 198 Full I I 1.2,3 Full I I I I 1.2,3 Full I I I I I I I I I I I I I I I I I I	Temp	Temp

TARGET SPECIFICATIONS

AD10410

Electrical Characteristics (AV $_{CC}$ =5V; AV $_{EE}$ =-5V; DV $_{CC}$ =+3.3V applies to each ADC unless otherwise noted)

Parameter	Temp	Test Level	Mil Sub- Group	Min	AD10410BZ/QML-H Typ	Max	Units
SPURIOUS-FREE DYNAMIC RANGE ⁹ Analog Input @ 1MHz Analog Input @ 5MHz	+25°C Full	V II	4 5,6		85 85		dBFS dBFS
Two-tone IMD Rejection ¹⁰ FI, F2@ -7 dBFS	Full	II	4,5,6			-80	dBFS
CHANNEL-TO-CHANNEL ISOLATION ¹¹	+25°C	IV	12		80dB		dB
TRANSIENT RESPONSE	+25°C	V	Ja.		TBD		nS
LINEARITY Differential Non-Linearity (Encode = 20MHz) Intergal Nonlinearity (Encode = 20MHz)	+25°C Full +25°C Full	IV IV V	12 12		TBD TBD TBD TBD		LSB LSB LSB LSB
OVERVOLTAGE RECOVERY TIME ¹² VIN = 2.0 x FS VIN = 4.0 x FS	Full Full	IV IV	12 12		TBD TBD		nS nS
DIGITAL OUTPUTS High Level Output Voltage $(I_{OH}) = 50\mu A)$ Low Level Output Voltage $(I_{OH}) = 0.5mA)$ High Level Output Voltage $(I_{OL}) = 1.6mA)$ Low Level Output Voltage $(I_{OL}) = 50\mu A)$ Output Capacitance	Full Full Full Full	I I I	1,2,3 1,2,3 1,3,3 1,2,3		+4.5 +2.4 +0.4 +0.1 5		V V V V pF
POWER SUPPLY AV _{CC} Supply Voltage I (AV _{CC}) Current AV _{EE} Supply Voltage I (AV _{EE}) Current DV _{CC} Supply Voltage I (DV _{CC}) Current I _{CC} (Total) Supply Current Power Dissipation (Total) Power Supply Rjection Ratio (PSRR) Pass Band Ripple to 10MHz	Full Full Full Full Full Full Full Full	VI V VI V I I I I	1,2,3 1,2,3 7,8 12	4.75 3.0	+5.0 TBD -5.0 TBD 3.3V TBD TBD 1.5	5.25 5.25 0.02 0.2	V mA V mA W %FSR/%Vs dB

TARGET SPECIFICATIONS

AD10410

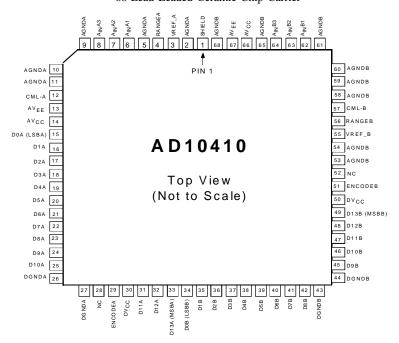
Electrical Characteristics (AV $_{CC}$ =5V; AV $_{EE}$ =-5V; DV $_{CC}$ =+3.3V applies to each ADC unless otherwise noted)

NOTES

- 1. Gain tests are performed on Ain2 input voltage range.
- 2. Input Capacitance spec. combines AD8037 die capacitance + Ceramic package capacitance.
- Full Power Bandwidth is the frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis is reduced by 3dB.
- 4. All AC specifications tested by driving single ended ENCODE .
- ENCODE driven by single-ended source; ENCODE bypassed to ground through .1 μF capacitor.; see "Encoding the AD10410" for details.
- 6. Minimum and Maximum conversion rates allow for variation in Encode Duty Cycle of 50% ±5%.
- Analog Input signal power at -1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonics removed).
 Encode = 19MSPS.
- 8. Analog Input signal power at -1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 10MSPS.
- 9. Analog Input signal power swept from -1 dBFS to -60 dBFS; SFDR is ratio of converter fullscale to worst spur.
- 10. Both input tones at -7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst 3rd order intermod product. $f1=2.5MHz \pm 100kHz$, $50kHz \le f1-f2 \le 300kHz$.
- 11. Channel to Channel Isolation tested with A channel grounded and a Fullscale signal applied to B channel.
- 12. Input driven to 2x and 4x Ain1 range for > 4 clock cycles. Output recovers inband in specified time with Encode = 10MSPS.
- 13. Outputs are sourcing TBD μA.
- 14. Outputs are sinking TBD μA.

All specifications guaranteed within 100mS of initial power up regardless of sequencing

TEST LEVEL


- I 100% Production Tested
- II 100% Production Tested at +25°C, and sample tested at specified temperatures. AC testing done on sample basis
- III Sample Tested only
- IV Parameter is guaranteed by design and characterization testing
- V Parameter is a typical value only
- VI 100% production tested at temperature at 25°C: sample tested at temperature extremes

Rev. Pr A

PIN FUNCTION DESCRIPTIONS

Pin No.	Name	Function
1	SHIELD	Internal Ground Shield between channels
2,5,9-11	AGNDA	A Channel Analog Ground. A and B grounds should be connected as close to the device as possible
3	VREF_A	A Channel Internal Voltage Reference
6	$A_{IN}A1$	Analog Input for A side ADC (nominally $\pm 0.5V$)
7	$A_{IN}^{IN}A2$	Analog Input for A side ADC (nominally $\pm 1.0V$)
8	$A_{IN}^{IN}A3$	Analog Input for A side ADC (nominally $\pm 2.0V$)
4	RANGEA	
12	CML-A	
13	AV_{EE}	Analog Negative Supply Voltage (nominally -5.0V)
14	AV_{CC}	Analog Positive Supply Voltage (nominally +5.0V)
26,27	DGNDA	A Channel Digital Ground
15-25, 31-33	D0A-D13A	Digital Outputs for ADC A. D0 (LSB)
28	NC	
29	ENCODEA	Data conversion initiated on rising edge of ENCODE input
30	DV_{CC}	Digital Positive Supply Voltage (nominally +5.0V / + 3.3V)
43,44	DGNDB	B Channel Digital Ground
34-42,45-49	D0B-D13B	Digital Outputs for ADC B. D0 (LSB)
53-54,58-61,65,68	AGNDB	B Channal Analog Ground. A and B grounds should be connected as close to the device as possible
50	DV_{CC}	Digital Positive Supply Voltage (nominally +5.0V / + 3.3V)
51	ENCODEB	Data conversion initiated on rising edge of ENCODE input
52	NC	L'L'INI
55	VREF-B	AV -UI A
57	CML-B	
56	RANGEB	B Channel Internal Voltage Reference
62	$A_{IN}B1$	Analog Input for B side ADC (nominally $\pm 0.5V$)
63	$A_{IN}B2$	Analog Input for B side ADC (nominally $\pm 1.0V$)
64	$A_{IN}B3$	Analog Input for B side ADC (nominally $\pm 2.0V$)
66	AV_{CC}	Analog PositiveSupply Voltage (nominally +5.0V)
67	AV_{EE}	Analog Negative Supply Voltage (nominally -5.0V)

PIN CONFIGURATION 68-Lead Leaded Ceramic Chip Carrier

PLANNED GRADES

Model	Temperature Range	Package Description
AD10410BZ SMD/QML-H AD10410/PCB	-40°C to 85°C (Case) -55°C to 125°C (Case)	68-pin Leaded Ceramic Chip Carrier 68-pin Leaded Ceramic Chip Carrier Evaluation Board with AD10410BZ

Rev. Pr A