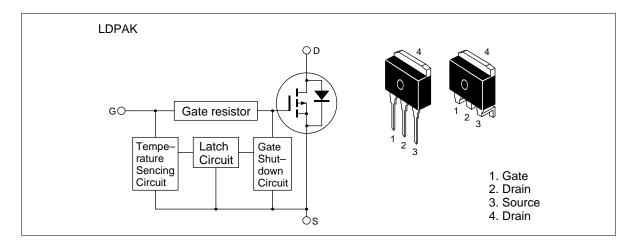
Silicon N Channel MOS FET Series Power Switching

HITACHI


ADE-208-677A (Z) 2nd. Edition July 2000

This FET has the over temperature shut-down capability sensing to the junction temperature. This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc.

Features

- Logic level operation (4 to 6 V Gate drive)
- High endurance capability against to the short circuit
- Built-in the over temperature shut-down circuit
- Latch type shut–down operation (Need 0 voltage recovery)

Outline

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit	
Drain to source voltage	V _{DSS}	60	V	
Gate to source voltage	V _{GSS}	16	V	
Gate to source voltage	V _{GSS}	-2.8	V	
Drain current	I _D	20	А	
Drain peak current	Note1 D(pulse)	40	А	
Body-drain diode reverse drain current	I _{DR}	20	А	
Channel dissipation	Pch Note2	50	W	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	-55 to +150	°C	

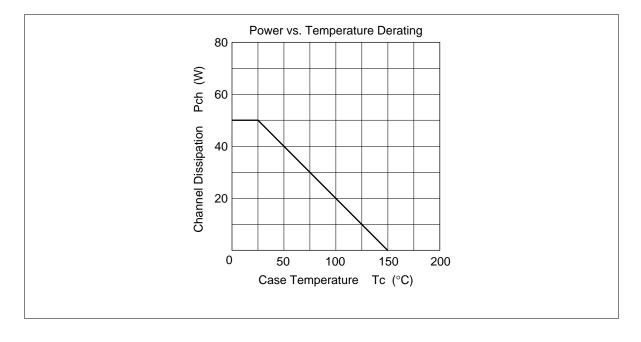
Note: 1. PW \leq 10µs, duty cycle \leq 1 %

2. Value at Ta = 25°C

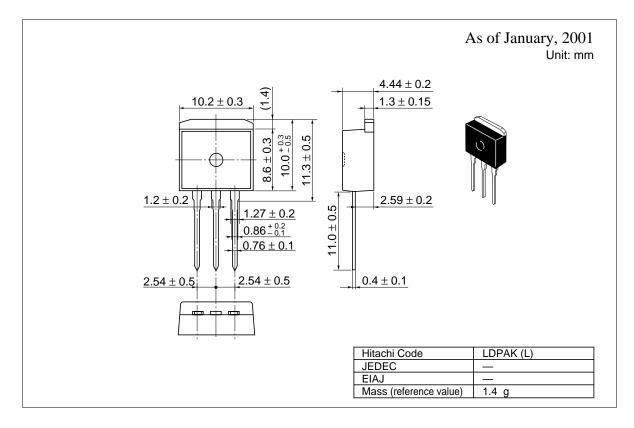
Typical Operation Characteristics

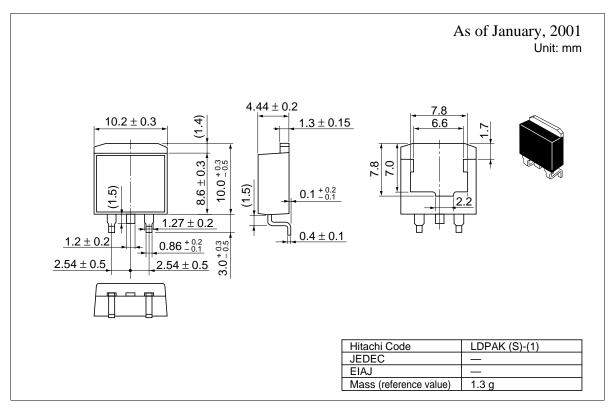
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage	V _{IH}	3.5	_	_	V	
	V _{IL}		—	1.2	V	
Input current	I _{IH1}		—	100	μA	$Vi = 8V, V_{DS} = 0$
(Gate non shut down)	I _{IH2}		—	50	μA	$Vi = 3.5V, V_{DS} = 0$
	I _{IL}		—	1	μA	$Vi = 1.2V, V_{DS} = 0$
Input current	I IH(sd)1		0.8	_	mA	$Vi = 8V, V_{DS} = 0$
(Gate shut down)	I _{IH(sd)2}		0.35	—	mA	$Vi = 3.5V, V_{DS} = 0$
Shut down temperature	T_{sd}		175	_	°C	Channel temperature
Gate operation voltage	V _{op}	3.5	—	13	V	

Electrical Characteristics (Ta = 25°C)

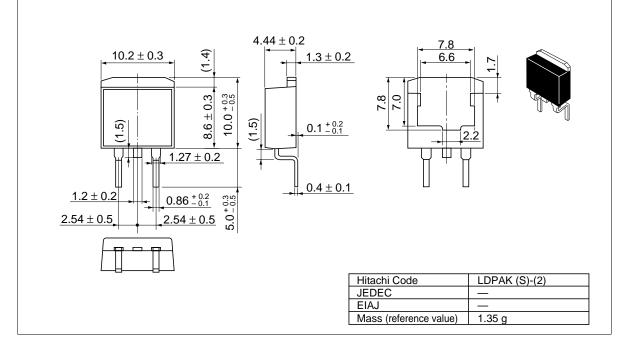

Item	Symbol	Min	Тур	Мах	Unit	Test Conditions
Drain current	I _{D1}	10			А	$V_{GS} = 3.5V, V_{DS} = 2V$
Drain current	I _{D2}	_		10	mA	$V_{GS} = 1.2V, V_{DS} = 2V$
Drain to source breakdown voltage	$V_{(BR)DSS}$	60	—		V	$I_{\rm D}$ = 10mA, $V_{\rm GS}$ = 0
Gate to source breakdown voltage	$V_{(\text{BR})\text{GSS}}$	16	—	—	V	$I_{\rm G} = 100 \mu A, V_{\rm DS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	-2.8	—	—	V	$I_{g} = -100 \mu A, V_{DS} = 0$
Gate to source leak current	I _{GSS1}	_		100	μA	$V_{GS} = 8V, V_{DS} = 0$
	I _{GSS2}	_		50	μA	$V_{GS} = 3.5V, V_{DS} = 0$
	I _{GSS3}	_		1	μA	$V_{GS} = 1.2V, V_{DS} = 0$
	I _{GSS4}			-100	μΑ	$V_{gs} = -2.4V, V_{ds} = 0$
Input current (shut down)	I _{GS(op)1}		0.8		mA	$V_{GS} = 8V, V_{DS} = 0$
	I _{GS(op)2}	—	0.35	_	mA	$V_{GS} = 3.5V, V_{DS} = 0$
Zero gate voltege drain current	I _{DSS}	—	—	250	μA	$V_{\rm DS} = 50 \text{ V}, V_{\rm GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	1.0		2.25	V	$I_{\rm D} = 1$ mA, $V_{\rm DS} = 10$ V
Static drain to source on state resistance	$R_{\text{DS(on)}}$	—	50	65	mΩ	$I_D = 10A$, $V_{GS} = 4V^{Note3}$
Static drain to source on state resistance	$R_{\text{DS(on)}}$		30	43	mΩ	$I_{\rm D}$ = 10A, $V_{\rm GS}$ = 10V ^{Note3}
Forward transfer admittance	y _{fs}	6	12	_	S	$I_{\rm D} = 10$ A, $V_{\rm DS} = 10 V^{\rm Note3}$
Output capacitance	Coss	_	630		pF	$V_{\text{DS}} = 10V$, $V_{\text{GS}} = 0$ f = 1 MHz
Turn-on delay time	t _{d(on)}		7.5		μs	$I_{\rm D} = 5A, V_{\rm GS} = 5V$
Rise time	t,	_	29	_	μs	$R_{L} = 6\Omega$
Turn-off delay time	t _{d(off)}	_	34	_	μs	
Fall time	t _f	_	26		μs	
Body–drain diode forward voltage	V_{DF}	—	1.0	—	V	$I_{F} = 20A, V_{GS} = 0$
Body–drain diode reverse recovery time	t _{rr}	—	110		ns	$I_{F} = 20A, V_{GS} = 0$ diF/ dt =50A/µs
Over load shut down	t _{os1}	_	1.8		ms	$V_{GS} = 5V, V_{DD} = 12V$
operation time Note4	t _{os2}	_	0.7		ms	$V_{GS} = 5V, V_{DD} = 24V$

Note: 3. Pulse test


4. Include the junction temperature rise of the over loaded condition.


• See characteristic curve of HAF2001.

Main Characteristics



Package Dimensions

As of January, 2001 Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACH

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL	NorthAmerica Europe		http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg
	Asia Japan	1	http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel : <886>-(2)-2718-3666 Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg

Hitachi Asia Ltd (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building. Taipei (105), Taiwan Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk

Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0