

SMP100MC

TRISIL™ FOR TELECOM EQUIPMENT PROTECTION

FEATURES

Bidirectional crowbar protectionVoltage: range from 120V to 270V

■ Low V_{BO} / V_R ratio

■ Micro capacitance from 20pF to 30pF @ 50V

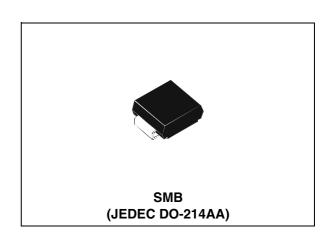
Low leakage current : I_R = 2µA max
 Holding current: I_H = 150 mA min
 Repetitive peak pulse current : I_{PP} = 100 A (10/1000µs)

MAIN APPLICATIONS

Any sensitive equipment requiring protection against lightning strikes and power crossing.

These devices are dedicated to central office protection as they comply with the most stressfull standards.

Their Micro Capacitance make them suitable for ADSL2+ and low end VDSL.


DESCRIPTION

The SMP100MC is a series of micro capacitance transient surge arrestors designed for the protection of high debit rate communication equipment. Its micro capacitance avoids any distortion of the signal and is compatible with digital transmission line cards (ADSL, VDSL, ISDN...).

Compatible with Cooper Bussmann fuse: TCP 1.25A.

BENEFITS

Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. They are used to help equipment to meet main standards such as UL60950, IEC950 / CSA C22.2 and UL1459. They have UL94 V0 approved resin. SMB package is JEDEC registered (DO-214AA). Trisils comply with the following standards GR-1089 Core, ITU-T-K20/K21, VDE0433, VDE0878, IEC61000-4-5 and FCC part 68.

Table 1: Order Codes

Part Number	Marking
SMP100MC-120	ML12
SMP100MC-140	ML14
SMP100MC-160	ML16
SMP100MC-200	ML20
SMP100MC-230	ML23
SMP100MC-270	ML27

Figure 1: Schematic Diagram

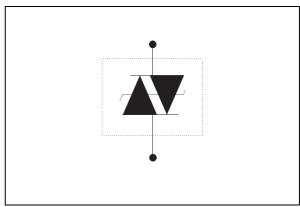


Table 2: In compliance with the following standards

STANDARD	Peak Surge Voltage (V)	Waveform Voltage	Required peak current (A)	Current waveform	Minimum serial resistor to meet standard (Ω)
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 100	2/10 μs 10/1000 μs	0
GR-1089 Core Second level	5000	2/10 µs	500	2/10 µs	0
GR-1089 Core Intra-building	1500	2/10 μs	100	2/10 μs	0
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	0
ITU-T-K20 (IEC61000-4-2)	8000 15000	1/60 ns	ESD contact ESD air di		0
VDE0433	4000 2000	10/700 μs	100 50 5/310 μs		0
VDE0878	4000 2000	1.2/50 µs	100 50	1/20 µs	0
IEC61000-4-5	4000 4000	10/700 μs 1.2/50 μs	100 100	5/310 μs 8/20 μs	0
FCC Part 68, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 100	10/160 μs 10/560 μs	0
FCC Part 68, lightning surge type B	1000	9/720 µs	25	5/320 µs	0

Table 3: Absolute Ratings $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit	
Ірр	Repetitive peak pulse current	10/1000 µs 8/20 µs 10/560 µs 5/310 µs 10/160 µs 1/20 µs 2/10 µs	100 400 140 150 200 400 500	Α
I _{FS}	Fail-safe mode : maximum current (note 1)	5	kA	
I _{TSM}	Non repetitive surge peak on-state current (sinusoidal)	t = 0.2 s t = 1 s t = 2 s t = 15 mn	18 9 7 4	А
l ² t	I ² t value for fusing	t = 16.6 ms t = 20 ms	20 21	A ² s
T _{stg} T _j	Storage temperature range Maximum junction temperature	-55 to 150 150	°C	
T _L	Maximum lead temperature for soldering during 10 s.		260	°C

Note 1: in fail safe mode, the device acts as a short circuit

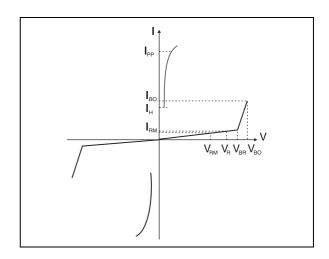

2/10

Table 4: Thermal Resistances

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient (with recommended footprint)	100	°C/W
R _{th(j-l)}	Junction to leads	20	°C/W

Table 5: Electrical Characteristics $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter			
V _{RM}	Stand-off voltage			
V _{BR}	Breakdown voltage			
V _{BO}	Breakover voltage			
I _{RM}	Leakage current			
I _{PP}	Peak pulse current			
I _{BO}	Breakover current			
lΗ	Holding current			
V _R	Continuous reverse voltage			
I _R	Leakage current at V _R			
С	Capacitance			

	I _{RM} @	V _{RM}	I _R @	V _R	Dynamic V _{BO}		ntic @ I _{BO}	I _H	С	С
Types	ma	ax.	max.		max.	max.	max.	min.	typ.	typ.
			no	te1	note 2	not	e 3	note 4	note 5	note 6
	μA	V	μA	V	V	V	mA	mA	pF	pF
SMP100MC-120*		108		120	155	150			30	60
SMP100MC-140*		126		140	180	175			30	60
SMP100MC-160	2	144	5	160	205	200	800	150	25	50
SMP100MC-200	۷	180	3	200	255	250	800	130	20	45
SMP100MC-230		207		230	295	285			20	40
SMP100MC-270		243		270	345	335			20	40

Note 1: IR measured at VR guarantee VBR min \geq VR

Note 2: see functional test circuit 1

Note 3: see test circuit 2

 $\label{eq:Note 4: see functional holding current test circuit 3} % \begin{subarray}{ll} Note 5: $V_R = 50V$ bias, $V_{RMS} = 1V$, $F = 1MHz$ \\ Note 6: $V_R = 2V$ bias, $V_{RMS} = 1V$, $F = 1MHz$ \\ \end{subarray}$

<u> 577</u>

^{*} in development

Figure 2: Pulse waveform

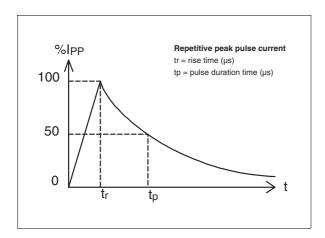


Figure 4: On-state voltage versus on-state current (typical values)

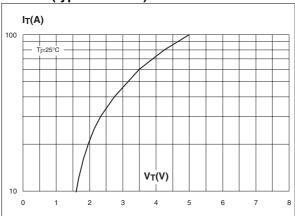


Figure 6: Relative variation of breakover voltage versus junction temperature

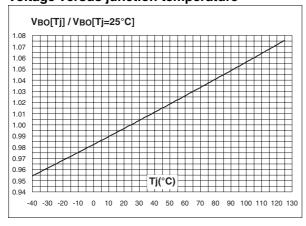


Figure 3: Non repetitive surge peak on-state current versus overload duration

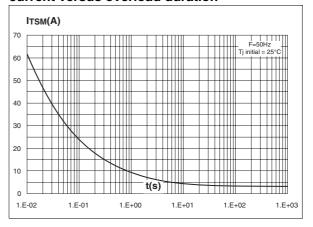


Figure 5: Relative variation of holding current versus junction temperature

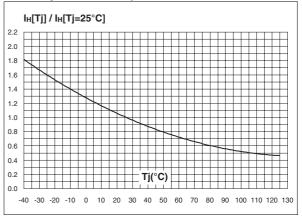
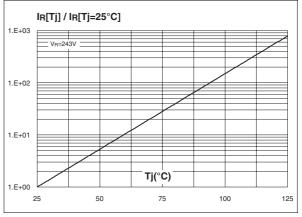



Figure 7: Relative variation of leakage current versus junction temperature (typical values)

4/10

Figure 8: Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4, SCu=35 μ m, recommended pad layout)

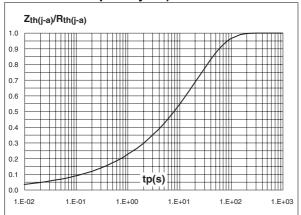
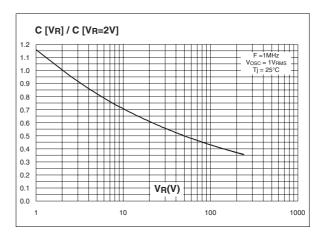
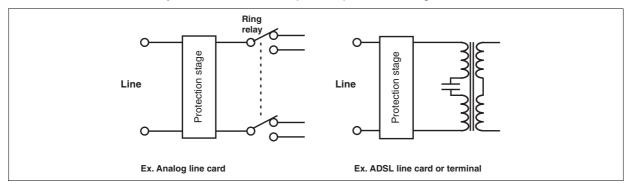
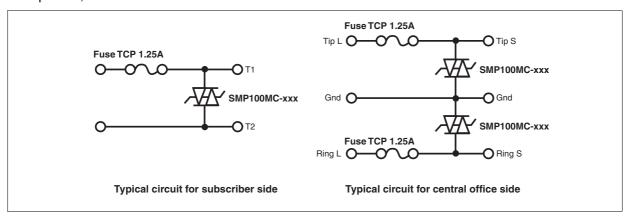
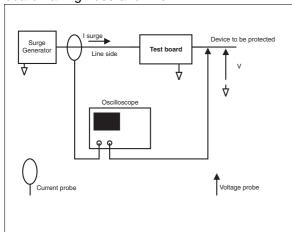




Figure 9: Relative variation of junction capacitance versus reverse voltage applied (typical values)



APPLICATION NOTE

In wireline applications, analog or digital, both central office and subscriber sides have to be protected. This function is assumed by a combined series / parallel protection stage.



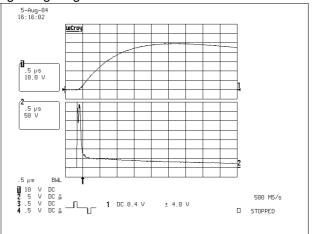
In such a stage, parallel function is assumed by one or several Trisil, and is used to protect against short duration surge (lightning). During this kind of surges the Trisil limits the voltage across the device to be protected at its break over value and then fires. The fuse assumes the series function, and is used to protect the module against long duration or very high current mains disturbances (50/60Hz). It acts by safe circuits opening. Lightning surge and mains disturbance surges are defined by standards like GR1089, FCC part 68, ITU-T K20.

577

Following figure shows the test method of the board having Fuse and Trisil.

These topologies, using SMP100MC from ST and TCP1.25A from Cooper Bussmann, have been functionally validated with a Trisil glued on the PCB. Following example was performed with SMP100MC-270 Trisil. For more information, see Application Note AN2064.

Following curve shows Trisil action while the fuse remains operational.

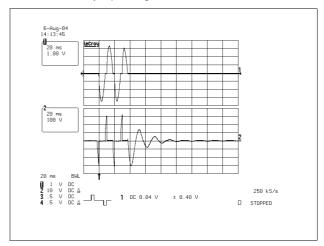

Test conditions:

600V 3A 1.1s (first level), $T_{amb} = 25$ °C

Test result:

Fuse and Trisil OK after test in accordance with GR1089 requirements

Following curve shows the turn on of the Trisil during lightning surge.


Test conditions:

 $2/10\mu s$ + and -2.5 and 5kV 500A (10 pulses of each polarity), $T_{amb}=25^{\circ}C$

Test result:

Fuse and Trisil OK after test in accordance with GR1089 requirements

In case of high current power cross test, the fuse acts like a switch by opening the circuit.

Test conditions:

277V 25A (second level), T_{amb} = 25°C

Test result:

Fuse safety opened and Trisil OK after test in accordance with GR1089 requirements

Figure 10: Test circuit 1 for Dynamic I_{BO} and V_{BO} parameters

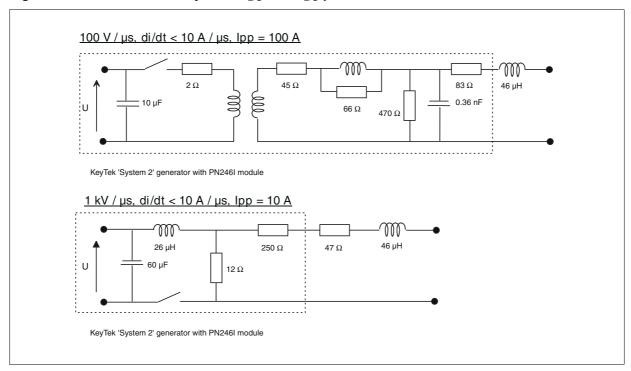


Figure 11: Test circuit 2 for I_{BO} and V_{BO} parameters

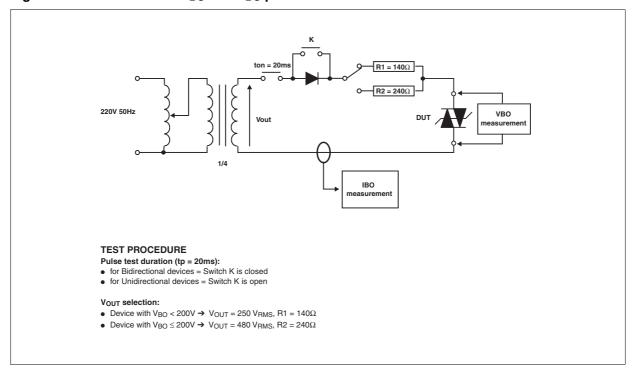


Figure 12: Test circuit 3 for dynamic I_H parameter

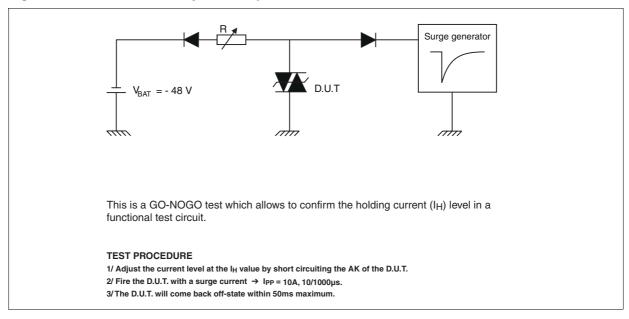


Figure 13: Order Code

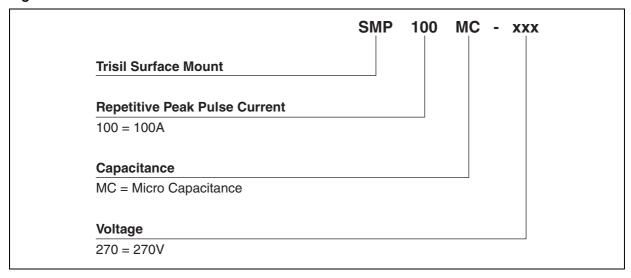
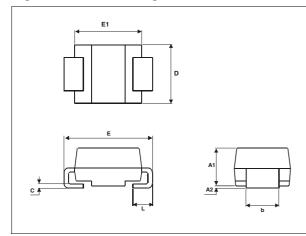
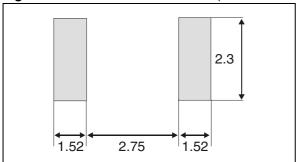




Figure 14: SMB Package Mechanical data

REF.	Millimeters		Inc	hes
•	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.075	0.096
A2	0.05	0.20	0.002	0.008
b	1.95	2.20	0.077	0.087
С	0.15	0.41	0.006	0.016
Е	5.10	5.60	0.201	0.220
E1	4.05	4.60	0.159	0.181
D	3.30	3.95	0.130	0.156
L	0.75	1.60	0.030	0.063

Figure 15: Foot Print Dimensions (in millimeters)

Table 5: Ordering Information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
SMP100MC-120	ML12				
SMP100MC-140	ML14				
SMP100MC-160	ML16	SMB	0.11.0	2500	Tape & reel
SMP100MC-200	ML20	SIVID	0.11 g	2500	Tape & Teel
SMP100MC-230	ML23	1			
SMP100MC-270	ML27	1			

Table 6: Revision History

Date	Revision	Description of Changes
September-2003	0B	First issue.
14-Dec-2004	1	Absolute ratings values, table 3 on page 2, updated.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of compagnies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com