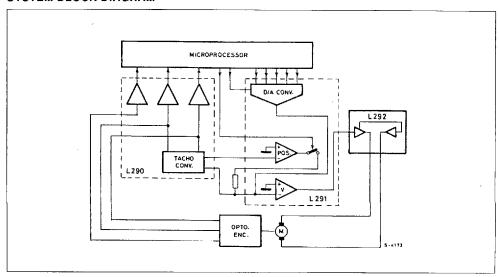

5 BIT - D/A CONVERTER AND POSITION AMPLIFIER

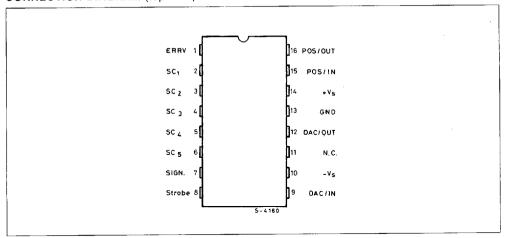
- 5 BIT D/A CONVERTER (1/2 LSB MAX LINEA-RITY ERROR);
- ERROR AMPLIFIER :
- POSITION AMPLIFIER.

DESCRIPTION

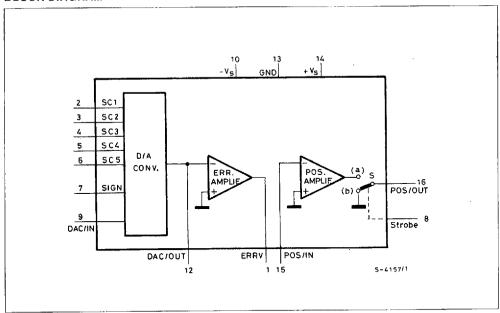
The L291, a monolithic LSI circuit in a 16-lead dual in-line plastic package, is intended for use with the L290 and L292 to form a complete 3 chip DC motor positioning system for applications such as carriage/daisy-wheel position control in typewriters.


The L290/291/292 system can be directly controlled by a microprocessor.

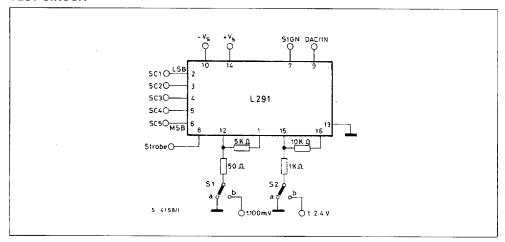
ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vs	Supply Voltage	± 15	V
P _{tot}	Total Power Dissipation T _{amb} = 70°C	1	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	·c

SYSTEM BLOCK DIAGRAM



October 1991


CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

TEST CIRCUIT

THERMAL DATA

R _{th j-amb}	Thermal Resistance Junction-ambient	Max	80	°C/W
	L			

ELECTRICAL CHARACTERISTICS (refer to the circuit, S1 and S2 in (a), $V_s=\pm~12~V$, $T_{amb}=25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		± 10		± 15	٧
ld	Quiescient Drain Current			6.5	10	mA

POSITION AMPLIFIER

V_{strobe}	Enable Voltage Level	V _L (S in (a)) *	0	0.8	٧
		V _H (S in (b)) *	2.4	+ Vs	V
Vos	Output Offset Voltage (pin 16)	$V_{strobe} = V_L$; $G_v = 20 \text{ dB}$		± 50	m∨
lb	Input Bias Current (pin 15)	V _{strobe} = V _L		0.3	μА
Vo	Output Voltage Swing (pin 16)	$V_{strobe} = V_L$; S2 in(b); $V_s = \pm 10.8 \text{ V}$	± 9		٧
VR	Residual Output Voltage (pin 16)	V _{strobe} = V _H		± 20	mV

^{*} See block diagram and the note for Position Amplifier.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
1 -		1			<u> </u>	

D/A CONVERTER

I ref	Current Reference Input Range (pin 9)			0.3		1.2	mA
Vos	Current Reference Offset Voltage (pin 9)	I _{ref} = 0.3 to 1.2 mA All Inputs High				± 20	mV
Ь	Output Current Range (pin 12)					1.4	mA
lo		I _{ret} = 0.722 mA SC1 to SC5 = L	SIGN = L(I _{o1})	- 1.358	- 1.4	-1.442	- mA
		SC1 to SC5 = L	SIGN = H(I ₀₂)	+ 1.358	+ 1.4	+ 1.442	111/4
Δl _o		l ₀₁ + l ₀₂		- 21		+ 21	μΑ
	Linearity Error	I _{ref} = 0.722 mA				1.61	%FS
los	Pin 12 Output Offset Current (including Error Amplifier bias current)	All Inputs High				± 0.4	μА
VL	Low Voltage Level (digital inputs)	SC1 = LSB		0		0.8	٧
V _H	High Voltage Level (digital inputs)	SC5 = MSB		2.4		+ Vs	٧
ΙL	Digital Inputs Current (low state)		V _L = 0.4V			- 50	μА
lμ	Digital Inputs Current (high state)		V _H = + V _s			1	μА

ERROR AMPLIFIER

Vos	Output Offset Voltage (pin 1)	$I_{ref} = 0.5 \text{ mA}$; All Inputs High $G_v = 40 \text{ dB}$		± 200	mV
l _o	Output Current (pin 1)			± 5	mA
Vo	Output Voltage Swing (pin 1)	All Inputs High S1 in (b) ; R _L = 10 KΩ	± 7.4	± 8.4	Vp

D/A CONVERTER

The L291 contains a 5-bit D/A converter accepting a binary code and generating a bipolar output current, the polarity of which depends on the SIGN input. The amplitude of the output current is a multiple of a reference current I_{ref}.

The maximum output current is

$$I_{FS} = \pm \frac{31}{16} I_{ref}$$

The following table shows the value of I_0 for different input codes. Note that the input bits are active low.

	D	Output Current				
SIGN	SC5 MSB	SC4	SC3	SC2	SC1 LSB	l _o
L	L	L	L	L	L	- 31 I _{ref}
L	н	н	Н	н	L	$-\frac{1}{16}I_{ref}$
X	н	н	н	н	н	0
Н	н	н	н	Н	L	+ 1/16 l _{ref}
н .	L	L	L	L	L	+ $\frac{31}{16}$ I _{ref}

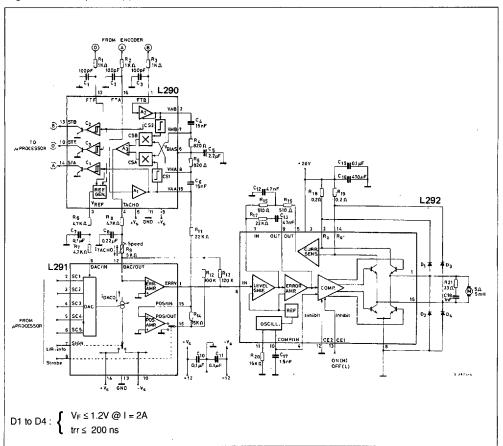
X = indifferent

L = low

H = high

This D/A converter has a maximum linearity error equal to \pm 1/2 LSB (or \pm 1.61% Full Scale); that guarantees its monotonicity.

ERROR AMPLIFIER


In order to have a good stability, the Error Amplifier must work with a closed loop gain greater or equal than 20 dB.

POSITION AMPLIFIER

It is inserted by means of the strobe signal, TTL and microprocessor compatible. Its output is connected to pin 16 when $V_{\text{strobe}} = \text{Low}$; pin 16 is grounded for $V_{\text{strobe}} = \text{High}$.

SYSTEM DESCRIPTION: refer to the L292 data sheet.

Figure 1: Complete Application Circuit.

