

LTC1347

5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown

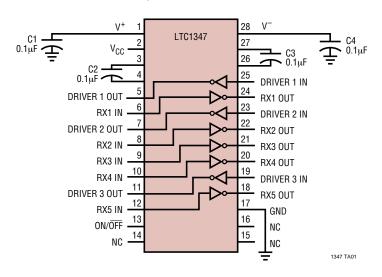
FEATURES

- Low Supply Current: 300μA
- Five Receivers Kept Alive in Shutdown
- ESD Protection Over ±10kV
- Operates from a Single 5V Supply
- Uses Small Capacitors: 0.1µF
- Operates to 120kBaud
- Three-State Outputs Are High Impedance When Off
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1137A and LT1237
- Flowthrough Architecture

APPLICATIONS

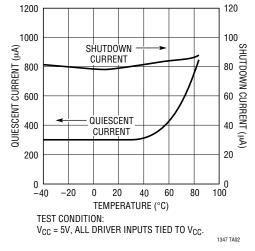
- Notebook Computers
- Palmtop Computers

DESCRIPTION


The LTC[®]1347 is a 3-driver/5-receiver RS232 transceiver with very low supply current. In the no load condition, the supply current is only 300μ A. The charge pump only requires four 0.1 μ F capacitors.

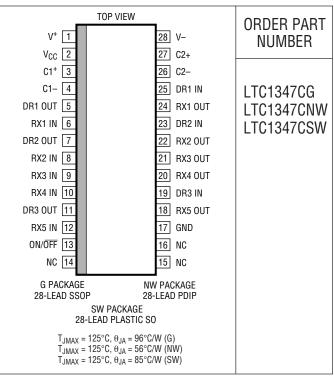
In Shutdown mode, all five receivers are kept alive and the supply current is 80μ A. All RS232 outputs assume a high impedance state in Shutdown and with the power off.

The LTC1347 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120kbaud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage, and can survive multiple $\pm 10kV$ ESD strikes.


T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

3-Drivers/5-Receivers with Shutdown


Quiescent and Shutdown Supply Current vs Temperature

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V Input Voltage
Driver $-0.3V$ to V _{CC} + 0.3V
Rec <u>eiv</u> er – 25V to 25V
On/\overline{Off} Pin $-0.3V$ to V_{CC} + 0.3V
Output Voltage
Driver 25V to 25V
Receiver $-0.3V$ to V _{CC} + 0.3V
Short-Circuit Duration
V ⁺
V ⁻
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range 0°C to 70°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1 µF, unless otherwise noted.

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND	Positive Negative	•	5.0 -5.0	7.0 -6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V V
Logic Input Current	V _{IN} = 5V V _{IN} = 0V		•			5 -5	μΑ μΑ
Output Short-Circuit Current	$V_{OUT} = 0V$			±9	±12		mA
Output Leakage Current	Shutdown, $V_{OUT} = \pm 20V$ (Note 3)			±10	±500	μA	
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V V
Hysteresis				0.1	0.4	1.0	V
Input Resistance	$V_{IN} = \pm 10V$			3	5	7	kΩ
Output Voltage	Output Low, I _{OUT} = -1.6mA (V _{CC} = Output High, I _{OUT} = 160μA (V _{CC} = 5	,	•	3.5	0.2 4.8	0.4	V V
Output Short-Circuit Current	Sinking Current, $V_{OUT} = V_{CC}$ Sourcing Current, $V_{OUT} = 0V$			-15 10	-40 20		mA mA

PACKAGE/ORDER INFORMATION

1347fa

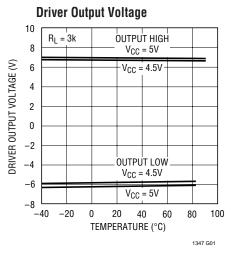
DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

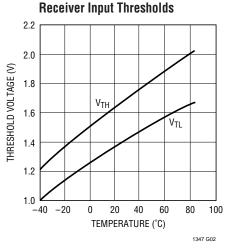
temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu$ F, unless otherwise noted.

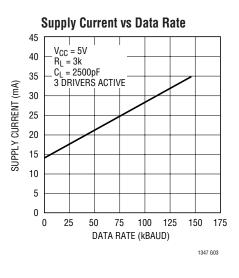
PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power Supply Generator						
V ⁺ Output Voltage	I _{OUT} = 0mA			8.0		V
	I _{OUT} = 12mA			7.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA			-8.0		V
	$I_{OUT} = -12mA$			-7.0		V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
Power Supply						
V _{CC} Supply Current	No Load (All Drivers V _{IN} = 5V)(Note 2)	•		0.6	1.1	mA
	No Load (All Drivers $V_{IN} = 0V$) (Note 2)	•		0.8	1.3	mA
	Shutdown (Note 3)	•		80.0	120.0	μA
On/Off Threshold Low		•		1.4	0.8	V
On/Off Threshold High		•	2.0	1.4		V

AC CHARACTERISTICS

The • denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless otherwise noted.

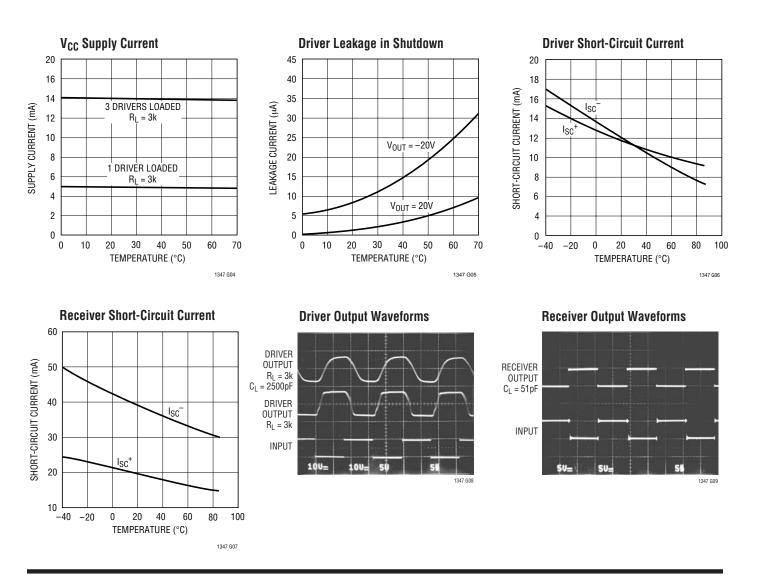

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Slew Rate	R _L = 3k, C _L = 51pF			8	30	V/µs
	$R_{L} = 3k, C_{L} = 2500pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to RS232)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(RS232 to TTL)	t _{LHR} (Figure 2)	•		0.2	0.8	μS


Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.


Note 2: Supply current is measured with driver and receiver outputs unloaded.

Note 3: Supply current and leakage current measurements in Shutdown are performed with $V_{ON/OFF} = 0V$.

TYPICAL PERFORMANCE CHARACTERISTICS



TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. Supply current is typically 80 μ A in the Shutdown mode. This pin should be decoupled with a 0.1 μ F ceramic capacitor.

GND: Ground Pin.

ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode with all receivers kept alive, and the supply current is 80μ A. All driver outputs are in high impedance state. This pin cannot float.

V⁺: Positive Supply Output (RS232 Drivers). V⁺ \approx 2V_{CC} – 1V. This pin requires an external capacitor C = 0.1µF for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V⁺ and V⁻ pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V^- \cong -(2V_{CC} - 1.5V)$. This pin requires an external capacitor C = 0.1µF for charge storage.

C1⁺, C1⁻, C2⁺, C2⁻: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu$ F: one from C1⁺ to C1⁻, and another from C2⁺ to C2⁻. To maintain

PIN FUNCTIONS

charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

DRIVER IN: RS232 Driver Input Pins. Inputs are TTL/ CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in Shutdown mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10kV$ for human body model discharges. **RX IN:** Receiver Inputs. These pins can be forced to $\pm 25V$ without damage. The receiver inputs are protected against ESD to $\pm 10kV$ for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. All receivers are kept alive in Shutdown.

SWITCHING TIME WAVEFORMS

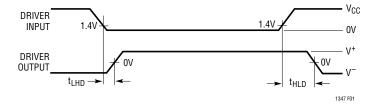


Figure 1. Driver Propagation Delay Timing

Figure 2. Receiver Propagation Delay Timing

6

TEST CIRCUITS

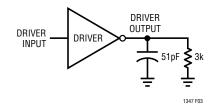


Figure 3. Driver Timing Test Load

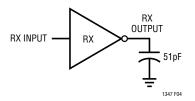


Figure 4. Receiver Timing Test Load

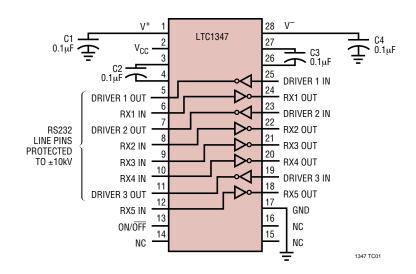
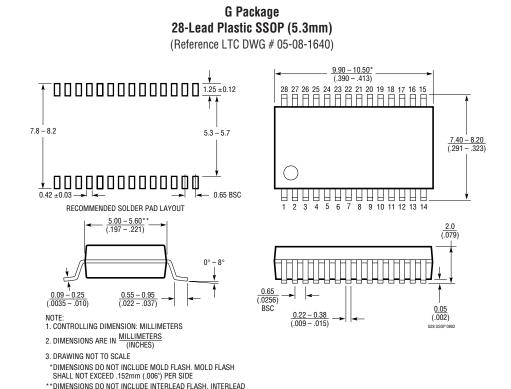
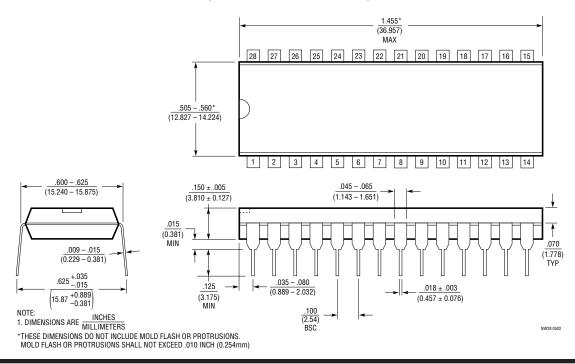
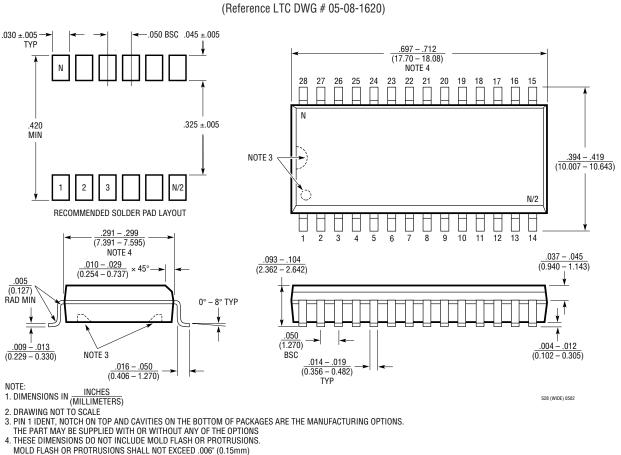



Figure 5. ESD Test Circuit


PACKAGE DESCRIPTION

NW Package 28-Lead PDIP (Wide .600 Inch)

FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE


(Reference LTC DWG # 05-08-1520)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION

SW Package 28-Lead Plastic Small Outline (Wide .300 Inch)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1137A	5V, 3 Driver, 5 Receiver RS232 Transceiver	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300µA Supply Current, 0.2µA in Shutdown
LTC1337	5V, 3 Driver, 5 Receiver RS232 Transceiver	300μA Supply Current, 1μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown

8