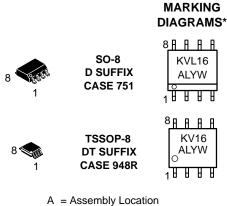
## **3.3V ECL** Differential Receiver

The MC100LVEL16 is a differential receiver. The device is functionally equivalent to the EL16 device, operating from a 3.3 V supply. The LVEL16 exhibits a wider  $V_{IHCMR}$  range than its EL16 counterpart. With output transition times and propagation delays comparable to the EL16 the LVEL16 is ideally suited for interfacing with high frequency sources at 3.3 V supplies.

Under open input conditions, the Q input will be pulled down to  $V_{EE}$  and the  $\overline{Q}$  input will be biased to  $V_{CC}/2$ . This condition will force the Q output low.


The V<sub>BB</sub> pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V<sub>BB</sub> as a switching reference voltage. V<sub>BB</sub> may also rebias AC coupled inputs. When used, decouple V<sub>BB</sub> and V<sub>CC</sub> via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V<sub>BB</sub> should be left open.

- 300 ps Propagation Delay
- High Bandwidth Output Transitions
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:  $V_{CC} = 3.0$  V to 3.8 V with  $V_{EE} = 0$  V
- NECL Mode Operating Range: V<sub>CC</sub> = 0 V with V<sub>EE</sub> = -3.0 V to -3.8 V
- Internal Input Pulldown Resistors on D, Pullup and Pulldown Resistors on D
- Q Output will Default LOW with Inputs Open or at VEE



### **ON Semiconductor®**

http://onsemi.com



A = Assembly Location L = Wafer Lot Y = Year W = Work Week

\*For additional marking information, refer to Application Note AND8002/D.

#### **ORDERING INFORMATION**

| Device          | Package | Shipping <sup>†</sup> |
|-----------------|---------|-----------------------|
| MC100LVEL16D    | SO-8    | 98 Units / Rail       |
| MC100LVEL16DR2  | SO-8    | 2500 Tape &<br>Reel   |
| MC100LVEL16DT   | TSSOP-8 | 98 Units / Rail       |
| MC100LVEL16DTR2 | TSSOP-8 | 2500 Tape &<br>Reel   |



Figure 1. Logic Diagram and Pinout Assignment

†For additional tape and reel information, refer to Brochure BRD8011/D.

### **PIN DESCRIPTION**

1

| PIN             | FUNCTION                 |
|-----------------|--------------------------|
| D, D            | ECL Data Inputs          |
| Q, <u>Q</u>     | ECL Data Outputs         |
| V <sub>BB</sub> | Reference Voltage Output |
| V <sub>CC</sub> | Positive Supply          |
| V <sub>EE</sub> | Negative Supply          |
| NC              | No Connect               |

### ATTRIBUTES

| Characterist                      | Value                                                     |                             |
|-----------------------------------|-----------------------------------------------------------|-----------------------------|
| Internal Input Pulldown Resistor  |                                                           | 75 kΩ                       |
| Internal Input Pullup Resistor    |                                                           | 75 kΩ                       |
| ESD Protection                    | Human Body Model<br>Machine Model<br>Charged Device Model | > 4 KV<br>> 400 V<br>> 2 kV |
| Moisture Sensitivity (Note 1)     |                                                           | Level 1                     |
| Flammability Rating               | Oxygen Index: 28 to 34                                    | UL 94 V-0 @ 0.125 in        |
| Transistor Count                  |                                                           | 79                          |
| Meets or Exceeds JEDEC Spec EIA/J | IESD78 IC Latchup Test                                    |                             |

1. Refer to Application Note AND8003/D for additional information.

### MAXIMUM RATINGS (Note 2)

| Symbol               | Parameter                                          | Condition 1                                    | Condition 2                                                           | Rating            | Units        |
|----------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------------|--------------|
| V <sub>CC</sub>      | PECL Mode Power Supply                             | $V_{EE} = 0 V$                                 |                                                                       | 8 to 0            | V            |
| $V_{EE}$             | NECL Mode Power Supply                             | $V_{CC} = 0 V$                                 |                                                                       | -8 to 0           | V            |
| VI                   | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$ | 6 to 0<br>-6 to 0 | V<br>V       |
| l <sub>out</sub>     | Output Current                                     | Continuous<br>Surge                            |                                                                       | 50<br>100         | mA<br>mA     |
| I <sub>BB</sub>      | V <sub>BB</sub> Sink/Source                        |                                                |                                                                       | ± 0.5             | mA           |
| T <sub>A</sub>       | Operating Temperature Range                        |                                                |                                                                       | -40 to +85        | °C           |
| T <sub>stg</sub>     | Storage Temperature Range                          |                                                |                                                                       | -65 to +150       | °C           |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 LFPM<br>500 LFPM                             | SO-8<br>SO-8                                                          | 190<br>130        | °C/W<br>°C/W |
| $\theta_{JC}$        | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | SO-8                                                                  | 41 to 44 $\pm$ 5% | °C/W         |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 LFPM<br>500 LFPM                             | TSSOP-8<br>TSSOP-8                                                    | 185<br>140        | °C/W<br>°C/W |
| $\theta_{\text{JC}}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | TSSOP-8                                                               | 41 to 44 $\pm$ 5% | °C/W         |
| T <sub>sol</sub>     | Wave Solder                                        | <2 to 3 sec @ 248°C                            |                                                                       | 265               | °C           |

2. Maximum Ratings are those values beyond which device damage may occur.

Max

24

2420

1680

2420

1825

2.04

2.9

2.9

150

Unit

mΑ

mV

mV

mV

mV V

V

V

μΑ

μΑ

μA

| LVPECL          | DC CHARACTERISTICS $V_{CC} = 3$                                 | .3 V; V <sub>EE</sub> | = 0.0 V ( | Note 3) |      |      |      |      |      |
|-----------------|-----------------------------------------------------------------|-----------------------|-----------|---------|------|------|------|------|------|
|                 |                                                                 |                       | -40 °C    |         |      | 25°C | 85°C |      |      |
| Symbol          | Characteristic                                                  | Min                   | Тур       | Max     | Min  | Тур  | Max  | Min  | Тур  |
| I <sub>EE</sub> | Power Supply Current                                            |                       | 17        | 23      |      | 17   | 23   |      | 18   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 4)                                    | 2215                  | 2295      | 2420    | 2275 | 2345 | 2420 | 2275 | 2345 |
| V <sub>OL</sub> | Output LOW Voltage (Note 4)                                     | 1470                  | 1605      | 1745    | 1490 | 1595 | 1680 | 1490 | 1595 |
| V <sub>IH</sub> | Input HIGH Voltage (Single-Ended)                               | 2135                  |           | 2420    | 2135 |      | 2420 | 2135 |      |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                | 1490                  |           | 1825    | 1490 |      | 1825 | 1490 |      |
| $V_{BB}$        | Output Voltage Reference                                        | 1.92                  |           | 2.04    | 1.92 |      | 2.04 | 1.92 |      |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 5) |                       |           |         |      |      |      |      |      |

1.2

1.5

0.5

-600

D

D

### 

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

2.9

2.9

150

1.1

1.4

0.5

-600

2.9

2.9

150

1.1

1.4

0.5

-600

3. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary  $\pm 0.3$  V. 4. Outputs are terminated through a 50  $\Omega$  resistor to V<sub>CC</sub> - 2 V.

Vpp < 500 mV

Vpp ≧ 500 mV

Input HIGH Current

Input LOW Current

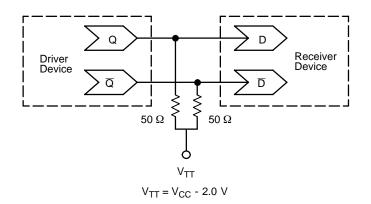
l<sub>H</sub>

 $I_{|L|}$ 

VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 5. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

|                    |                                                                                                 | -40 °C       |       |              | 25°C         |       |              | 85°C         |       |              |          |
|--------------------|-------------------------------------------------------------------------------------------------|--------------|-------|--------------|--------------|-------|--------------|--------------|-------|--------------|----------|
| Symbol             | Characteristic                                                                                  | Min          | Тур   | Max          | Min          | Тур   | Max          | Min          | Тур   | Max          | Unit     |
| I <sub>EE</sub>    | Power Supply Current                                                                            |              | 17    | 23           |              | 17    | 23           |              | 18    | 24           | mA       |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 7)                                                                    | -1085        | -1005 | -880         | -1025        | -955  | -880         | -1025        | -955  | -880         | mV       |
| V <sub>OL</sub>    | Output LOW Voltage (Note 7)                                                                     | -1830        | -1695 | -1555        | -1810        | -1705 | -1620        | -1810        | -1705 | -1620        | mV       |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                               | -1 165       |       | -880         | -1 165       |       | -880         | -1 165       |       | -880         | mV       |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                                | -1810        |       | -1475        | -1810        |       | -1475        | -1810        |       | -1475        | mV       |
| $V_{BB}$           | Output Voltage Reference                                                                        | -1.38        |       | -1.26        | -1.38        |       | -1.26        | -1.38        |       | -1.26        | V        |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 8)<br>Vpp < 500 mV<br>Vpp ≧ 500 mV | -2.1<br>-1.8 |       | -0.4<br>-0.4 | -2.2<br>-1.9 |       | -0.4<br>-0.4 | -2.2<br>-1.9 |       | -0.4<br>-0.4 | v<br>v   |
| I <sub>IH</sub>    | Input HIGH Current                                                                              |              |       | 150          |              |       | 150          |              |       | 150          | μΑ       |
| IIL                | Input LOW Current D<br>D                                                                        | 0.5<br>-600  |       |              | 0.5<br>-600  |       |              | 0.5<br>-600  |       |              | μΑ<br>μΑ |

### LVNECL DC CHARACTERISTICS V<sub>CC</sub> = 0.0 V; V<sub>EE</sub> = -3.3 V (Note 6)


NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or monted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
 6. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary ±0.3 V.

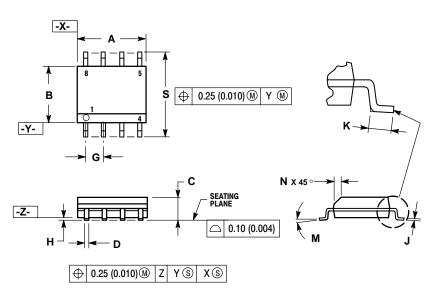
7. Outputs are terminated through a 50  $\Omega$  resistor to V<sub>CC</sub> - 2 V. 8. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

|                                      |                                                             | -40 °C     |            |            | 25°C       |            |            | 85°C       |            |            |      |
|--------------------------------------|-------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| Symbol                               | Characteristic                                              | Min        | Тур        | Max        | Min        | Тур        | Max        | Min        | Тур        | Max        | Unit |
| f <sub>max</sub>                     | Maximum Toggle Frequency                                    |            | 1.75       |            |            | 1.75       |            |            | 1.75       |            | GHz  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay to Output<br>Differential<br>Single-Ended | 150<br>100 | 275<br>275 | 400<br>450 | 225<br>175 | 300<br>300 | 375<br>425 | 240<br>190 | 315<br>315 | 390<br>440 | ps   |
| t <sub>SKEW</sub>                    | Duty Cycle Skew (Differential) (Note 10)                    |            | 5          | 30         |            | 5          | 20         |            | 5          | 20         | ps   |
| t <sub>JITTER</sub>                  | Random Clock Jitter (RMS)                                   |            | 0.7        |            |            | 0.7        |            |            | 0.7        |            | ps   |
| V <sub>PP</sub>                      | Input Swing (Note 11)                                       | 150        |            | 1000       | 150        |            | 1000       | 150        |            | 1000       | mV   |
| t <sub>r</sub><br>t <sub>f</sub>     | Output Rise/Fall Times Q<br>(20% - 80%)                     | 120        | 220        | 320        | 120        | 220        | 320        | 120        | 220        | 320        | ps   |

AC CHARACTERISTICS V<sub>CC</sub>= 3.3 V; V<sub>EE</sub>= 0.0 V or V<sub>CC</sub>= 0.0 V; V<sub>EE</sub>= -3.3 V (Note 9)

9. V<sub>EE</sub> can vary ±0.3 V.
 10. Duty cycle skew is the difference between a t<sub>PLH</sub> and t<sub>PHL</sub> propagation delay through a device.
 11. V<sub>PP(</sub>min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.




### Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)

### **Resource Reference of Application Notes**

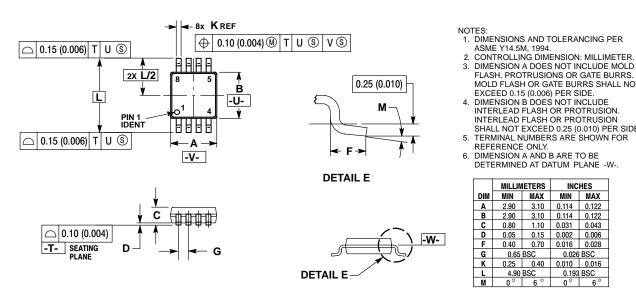
| AN1404  | - | ECLinPS Circuit Performance at Non-Standard $V_{IH}$ Levels |
|---------|---|-------------------------------------------------------------|
| AN1405  | - | ECL Clock Distribution Techniques                           |
| AN1406  | - | Designing with PECL (ECL at +5.0 V)                         |
| AN1503  | - | ECLinPS I/O SPICE Modeling Kit                              |
| AN1504  | - | Metastability and the ECLinPS Family                        |
| AN1560  | - | Low Voltage ECLinPS SPICE Modeling Kit                      |
| AN1568  | - | Interfacing Between LVDS and ECL                            |
| AN1596  | - | ECLinPS Lite Translator ELT Family SPICE I/O Model Kit      |
| AN1650  | - | Using Wire-OR Ties in ECLinPS Designs                       |
| AN1672  | - | The ECL Translator Guide                                    |
| AND8001 | - | Odd Number Counters Design                                  |
| AND8002 | - | Marking and Date Codes                                      |
| AND8020 | - | Termination of ECL Logic Devices                            |
| AND8090 | - | AC Characteristics of ECL Devices                           |
|         |   |                                                             |

### PACKAGE DIMENSIONS

SO-8 D SUFFIX PLASTIC SOIC PACKAGE CASE 751-07 **ISSUE AA** 



NOTES:


- VOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE

- A. MAXIMUM MOLD PROTRUSION 0.15 (0.000) FEAT SIDE.
  SIDE.
  DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D UMENSION AT MAXIMUM MATERIAL CONDITION.
  751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.
  \_\_\_\_\_\_

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 4.80   | 5.00   | 0.189     | 0.197 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| С   | 1.35   | 1.75   | 0.053     | 0.069 |  |
| D   | 0.33   | 0.51   | 0.013     | 0.020 |  |
| G   | 1.27   | 7 BSC  | 0.050 BSC |       |  |
| Н   | 0.10   | 0.25   | 0.004     | 0.010 |  |
| J   | 0.19   | 0.25   | 0.007     | 0.010 |  |
| K   | 0.40   | 1.27   | 0.016     | 0.050 |  |
| M   | 0 °    | 8 °    | 0 °       | 8 °   |  |
| N   | 0.25   | 0.50   | 0.010     | 0.020 |  |
| S   | 5.80   | 6.20   | 0.228     | 0.244 |  |

### PACKAGE DIMENSIONS

**TSSOP-8** DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A



REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. INCHES MILLIMETERS DIM MIN MAX MIN MAX 2.90 3.10 0.114 0.122 А в 2.90 3.10 0.114 0.122 1.10 0.031 0.043 С 0.80 D 0.15 0.002 0.006 0.05 F 0.40 0.70 0.016 0.028 0.65 BSC G 0.026 BSC 0.25 0.40 0.010 0.016 4.90 BSC 0.193 BSC

6

0

0

6

DIMENSIONS AND TOLERANCING PER

CONTROLLING DIMENSION: MILLIMETER.

MOLD FLASH OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.

SHALL NOT EXCEED 0.25 (0.010) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR

INTERLEAD FLASH OR PROTRUSION

ASME Y14.5M. 1994

ON Semiconductor and 🖤 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer

#### PUBLICATION ORDERING INFORMATION

#### Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.