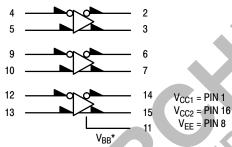
Triple Line Receiver


The MC10116 is a triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (V_{BB}) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10116 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

- $P_D = 85 \text{ mW typ/pkg (No Load)}$
- $t_{pd} = 2.0 \text{ ns typ}$
- t_r , $t_f = 2.0$ ns typ (20%–80%)

LOGIC DIAGRAM

 $^*V_{BB}$ to be used to supply bias to the MC10116 only and bypassed (when used) with 0.01 μF to 0.1 μF capacitor to ground (0 V). V_{BB} can source < 1.0 mA.

When the input pin with the bubble goes positive, the output pin with the bubble goes positive.

DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

CDIP-16 L SUFFIX CASE 620

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

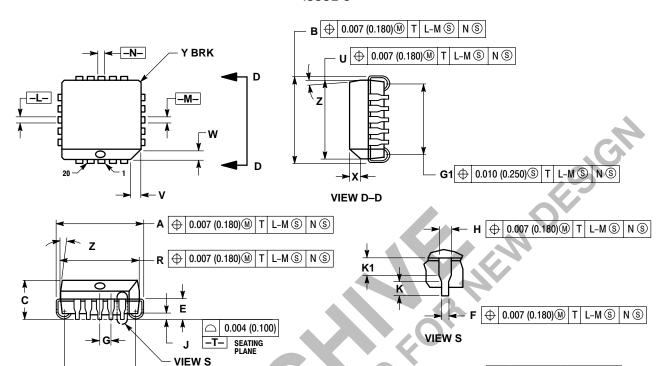
ORDERING INFORMATION

Device	Package	Shipping
MC10116L	CDIP-16	25 Units / Rail
MC10116P	PDIP-16	25 Units / Rail
MC10116FN	PLCC-20	46 Units / Rail

ELECTRICAL CHARACTERISTICS

Input Current	I _E I _{inH} I _{CBO} V _{OH}	Under Test 8 4 4 2	Min	Max 23 150	Min	Тур	21		Max	Un i
Characteristic Symbol Test Min Max Min Typ Max Min Max	I _E I _{inH} I _{CBO} V _{OH}	8 4 4 2		23 150	Min		21	Min		
Input Current	I _{inH} I _{CBO} V _{OH}	4 4 2	-1.060	150		17			23	mA
Coutput Voltage	I _{CBO} V _{OH}	4 2	-1.060				OF			
Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 Threshold Voltage Logic 1 V _{OHA} 2 -1.080 -0.980 -0.980 -0.910 -0.910 Threshold Voltage Logic 0 V _{OLA} 2 -1.080 -0.980 -0.980 -0.910 -0.910 Threshold Voltage Logic 0 V _{OLA} 2 -1.685 -1.655 -1.630 -1.595 Reference Voltage V _{BB} 11 -1.420 -1.280 -1.350 -1.230 -1.295 -1.150 Switching Times (50Ω Load) 1 1.0 3.1 1.0 2.0 2.9 1.0 3.3 1.4-2- 2 1.0 3.1 1.0 2.0 2.9 1.0 3.3 1.4-3- 3 1.0 3.1 1.0 2.0	V _{OH}	2	-1.060	1.5			95		95	μΑσ
3			-1.060				1.0		1.0	μAd
Threshold Voltage Logic 1 V _{OHA} 2 -1.890 -1.675 -1.850 -1.850 -1.825 -1.615 Threshold Voltage Logic 1 V _{OHA} 2 -1.080 3 -1.080 -0.980 -0.980 -0.9910 Threshold Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 -1.655 -1.630 -1.630 -1.595 -1.595 Reference Voltage V _{BB} 11 -1.420 -1.280 -1.350 -1.230 -1.295 -1.150 Switching Times (50Ω Load) Propagation Delay t ₄₊₂₊ 2 1.0 3.1 1.0 2.0 2.9 1.0 3.3 t ₄₋₃₊ 3 1.0 3.1 1.0 2.0 2.9 1.0 3.3 Rise Time (20 to 80%) t ₂₊ 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 Fall Time (20 to 80%) t ₂₋ 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 Fall Time (20 to 80%) t ₂₋ 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 Table Voltage Logic 1 V _{OHA} 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 Table Voltage Logic 1 -1.615 -0.9910 -0.99	V _{OL}		-1.060							Vdd
Threshold Voltage Logic 0 V _{OLA} 2 -1.685 -1.655 -										Vd
Reference Voltage V_{BB} 11 -1.420 -1.280 -1.350 -1.230 -1.295 -1.150 Switching Times (50 Ω Load) Propagation Delay t_{4+2+} 2 1.0 3.1 1.0 2.0 2.9 1.0 3.3 t_{4+3-} 3 1.0 3.1 1.0 2.0 2.9 1.0 3.3 Rise Time (20 to 80%) t_{2+} 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 Fall Time (20 to 80%) t_{2-} 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 t_{3-} 3 1.1 3.6 1.1 2.0 3.3 1.1 3.7	V_{OHA}									Vdd
Switching Times $(50\Omega \text{Load})$ Propagation Delay $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OLA}									Vd
Propagation Delay $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{BB}	11	-1.420	-1.280	-1.350		-1.230	-1.295	-1.150	Vd
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										ns
Fall Time (20 to 80%) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t ₄₋₂₋ t ₄₊₃₋	2 3	1.0 1.0	3.1 3.1	1.0 1.0	2.0 2.0	2.9 2.9	1.0 1.0	3.3 3.3	
Fall Time (20 to 80%) t ₂₋ 2 1.1 3.6 1.1 2.0 3.3 1.1 3.7 1.1 3.7 2.0 3.3 1.1 3.7										
t ₃₋ 3 1.1 3.6 1.1 2.0 3.3 1.1 3.7										
	+_	2	11	2.6	1.1	2.0				
CE NOT		CO								
OFINE										

ELECTRICAL CHARACTERISTICS (continued)


				TEST VOLTAGE VALUES (Volts)						
@ Test Temperature				V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	V _{EE}	
-30°C			-0.890	-1.890	-1.205	-1.500	From	-5.2		
	+25°C			-0.810	-1.850	-1.105	-1.475	Pin	-5.2	
+85°C			-0.700	-1.825	-1.035	-1.440	11	− 5.2		
Pin Under					TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
Characteri	Characteristic			V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{BB}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain C	Current	ΙE	8		4, 9, 12			5, 10, 13	8	1, 16
Input Current		I _{inH}	4	4	9, 12			5, 10, 13	8	1, 16
		I _{CBO}	4		9, 12			5, 10, 13	8,4	1, 16
Output Voltage	Logic 1	V _{OH}	2 3	4 9, 12	9, 12 4			5, 10, 13 5, 10, 13	8	1, 16 1, 16
Output Voltage	Logic 0	V _{OL}	2 3	9, 12 4	4 9, 12			5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Threshold Voltage	Logic 1	V _{OHA}	2 3	9, 12	9, 12	4	4	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Threshold Voltage	Logic 0	V _{OLA}	2 3	9, 12	9, 12	4	4	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Reference Voltage		V_{BB}	11					5, 10, 13	8	1, 16
Switching Times	(50Ω Load)					Pulse In	Pulse Out		-3.2 V	+2.0 V
Propagation Delay		t ₄₊₂₊ t ₄₋₂₋ t ₄₊₃₋ t ₄₋₃₊	2 2 3 3			4 4 4 4	2 2 3 3	5, 10, 13 5, 10, 13 5, 10, 13 5, 10, 13	8 8 8	1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊ t ₃₊	2 3			4 4	2 3	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16
Fall Time	(20 to 80%)	t ₂₋ t ₃₋	2 3		O	4 4	2 3	5, 10, 13 5, 10, 13	8 8	1, 16 1, 16

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to –2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

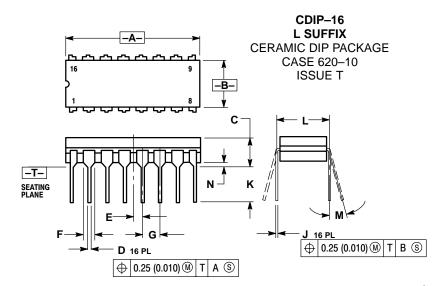
NOTES:

G1 ⊕ 0.010 (0.250)③ T L-M ⑤ N ⑤

OF MICE. NOT PERSON

- IOTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.


 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

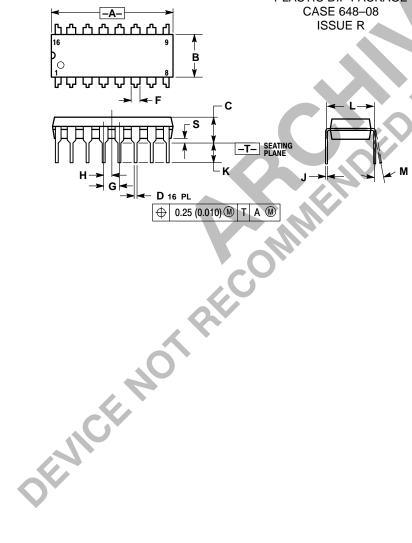
 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y		0.020		0.50
Z	2°	10°	2°	10 °
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	

PACKAGE DIMENSIONS

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION LTO CENTER OF LEAD WHEN CONTROLLING DIMENSION LTO CENTER OF LEAD WHEN

- FORMED PARALLEL

 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC
 BODY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.240 0.295		7.49	
C		0.200		5.08	
D	0.015	0.020	0.39 0.50		
E	0.050	BSC	1.27 BSC		
F	0.055 0.065		1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.008 0.015		0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62 BSC		
M	0 °	0° 15°		15°	
N	0.020 0.040		0.51	1.01	

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.250 0.270		6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.