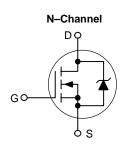
Preferred Device

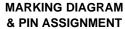
Power MOSFET 27 Amps, 100 Volts N-Channel TO-220

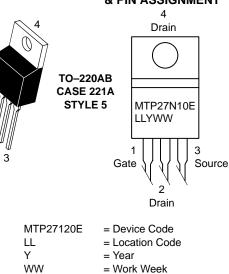
This Power MOSFET is designed to withstand high energy in the avalanche and commutation modes. The energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- IDSS and VDS(on) Specified at Elevated Temperature

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Drain-to-Source Voltage	VDSS	100	Vdc
Drain-to-Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	100	Vdc
Gate–to–Source Voltage – Continuous – Non–Repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	± 20 ± 40	Vdc Vpk
Drain Current – Continuous @ 25°C – Continuous @ 100°C – Single Pulse (t _p ≤ 10 μs)	I _D I _D IDM	27 17 95	Adc Apk
Total Power Dissipation @ 25°C Derate above 25°C	PD	104 0.83	Watts W/°C
Operating and Storage Temperature Range	TJ, T _{stg}	–55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 75 \text{ Vdc}, V_{GS} = 10 \text{ Vdc},$ $I_L = 27 \text{ Apk}, L = 0.3 \text{ mH}, R_G = 25 \Omega$)	EAS	109	mJ
Thermal Resistance – Junction to Case – Junction to Ambient	R _θ JC R _θ JA	1.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C



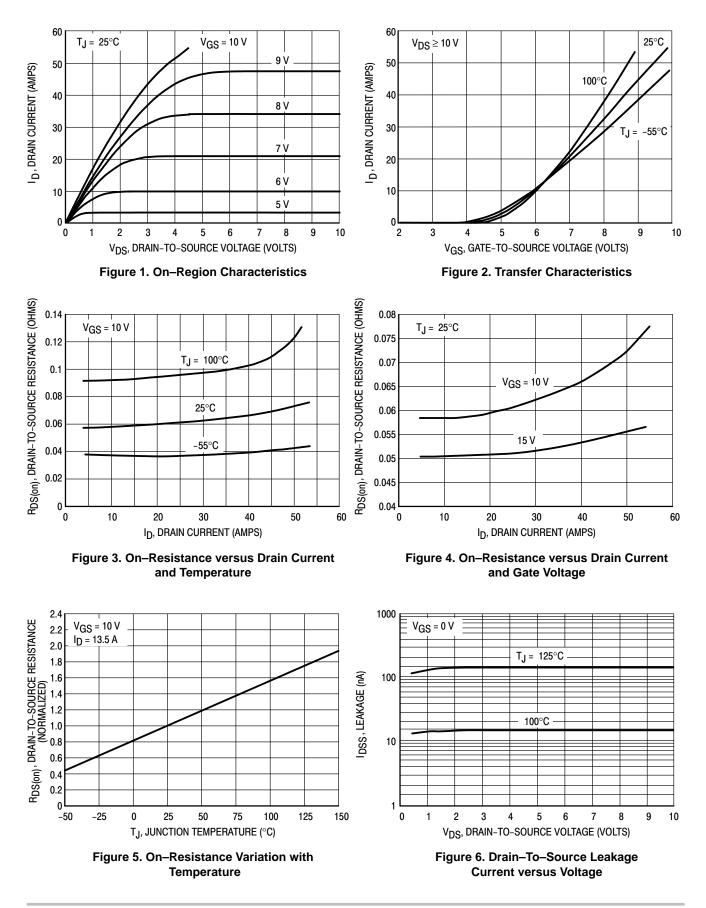

ON Semiconductor[™]

http://onsemi.com

27 AMPERES 100 VOLTS RDS(on) = 70 mΩ

ORDERING INFORMATION

Device	Package	Shipping
MTP27N10E	TO-220AB	50 Units/Rail


Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS				T	1	1
Drain–to–Source Breakdown Volta (V _{GS} = 0 Vdc, I _D = 0.25 mAdc) Temperature Coefficient (Positiv		V(BR)DSS	100 -	_ 120		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C}$)			-		10 100	μAdc
Gate-Body Leakage Current (VG	IGSS	_	_	100	nAdc	
ON CHARACTERISTICS (Note 1.)				I		
$ \begin{array}{ll} \mbox{Gate Threshold Voltage} & (Cpk \geq 2.0) \mbox{ (Note 3.)} \\ (V_{DS} = V_{GS}, \mbox{ID} = 250 \ \mu \mbox{Adc}) \\ \mbox{Threshold Temperature Coefficient (Negative)} \end{array} $			2.0	3.1 7.0	4.0 -	Vdc mV/°C
$ Static Drain-to-Source On-Resistance \qquad (Cpk \geq 2.0) \mbox{ (Note 3.)} \\ (V_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 13.5 \mbox{ Adc}) $			_	0.058	0.07	Ohm
$ Drain-to-Source On-Voltage \\ (V_{GS} = 10 \ Vdc, \ I_D = 27 \ Adc) \\ (V_{GS} = 10 \ Vdc, \ I_D = 13.5 \ Adc, \ I_D = 1$	V _{DS(on)}	-		2.3 2.0	Vdc	
Forward Transconductance (VDS	9FS	6.0	11	-	mhos	
DYNAMIC CHARACTERISTICS				1		
Input Capacitance		Ciss	_	1131	1580	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{OSS}	-	468	660	_
Transfer Capacitance	,	C _{rss}	I	186	370	
WITCHING CHARACTERISTICS	(Note 2.)					
Turn–On Delay Time		^t d(on)	-	13	30	ns
Rise Time	(V _{DD} = 50 Vdc, I _D = 27 Adc, V _{GS} = 10 Vdc,	t _r	-	142	280	
Turn–Off Delay Time	$R_{G} = 9.1 \Omega$)	^t d(off)	-	29	60	
Fall Time		t _f	-	59	120	
Gate Charge (See Figure 8)	$(V_{DS} = 80 \text{ Vdc}, I_{D} = 27 \text{ Adc}, V_{GS} = 10 \text{ Vdc})$	QT	-	41	60	nC
		Q ₁	-	9.0	-	-
		Q ₂	_	25	_	
		Q3	_	22	_	
OURCE-DRAIN DIODE CHARAC		5				
Forward On–Voltage	$(I_{S} = 27 \text{ Adc}, \text{ V}_{GS} = 0 \text{ Vdc})$ $(I_{S} = 27 \text{ Adc}, \text{ V}_{GS} = 0 \text{ Vdc}, \text{ T}_{J} = 125^{\circ}\text{C})$	V _{SD}		1.0 0.94	1.5 -	Vdc
Reverse Recovery Time		t _{rr}	-	126	_	ns
		ta	_	98	_	-
	$(I_{S} = 27 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _b	_	28	_	-
Reverse Recovery Stored	dl _S /dt = 100 A/µs)	Q _{RR}	_	0.685	_	μC
Charge		"NN				
NTERNAL PACKAGE INDUCTAN	CE			·	·	
Internal Drain Inductance (Measured from contact screw of (Measured from the drain lead of	LD	_	3.5 4.5	_	nH	
Internal Source Inductance (Measured from the source lead	LS	-	7.5	-	nH	

3. Reflects typical values. $C_{pk} = \left| \frac{Max \ limit - Typ}{3 \ x \ SIGMA} \right|$

TYPICAL ELECTRICAL CHARACTERISTICS

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_G(AV)$) can be made from a rudimentary analysis of the drive circuit so that

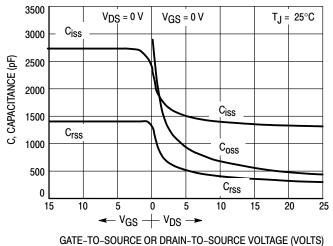
 $t = Q/I_{G(AV)}$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following:

$$\label{eq:tr} \begin{split} t_r &= Q_2 \; x \; R_G / (V_{GG} - V_{GSP}) \\ t_f &= Q_2 \; x \; R_G / V_{GSP} \end{split}$$

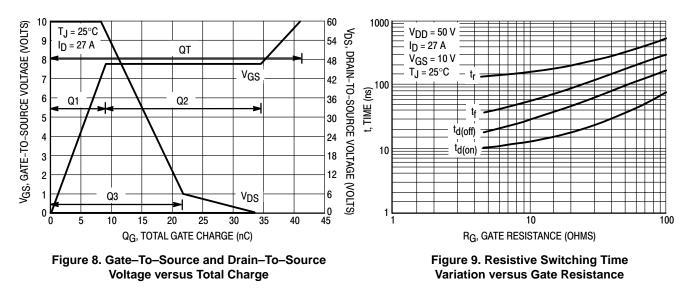
where

 V_{GG} = the gate drive voltage, which varies from zero to V_{GG} R_G = the gate drive resistance


and Q_2 and V_{GSP} are read from the gate charge curve.

During the turn–on and turn–off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

 $t_{d(on)} = R_G C_{iss} In [V_{GG}/(V_{GG} - V_{GSP})]$ $t_{d(off)} = R_G C_{iss} In (V_{GG}/V_{GSP})$ The capacitance (C_{1SS}) is read from the capacitance curve at a voltage corresponding to the off–state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on–state when calculating $t_{d(off)}$.


At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

,

Figure 7. Capacitance Variation

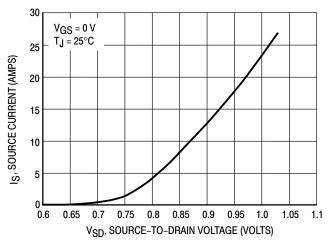
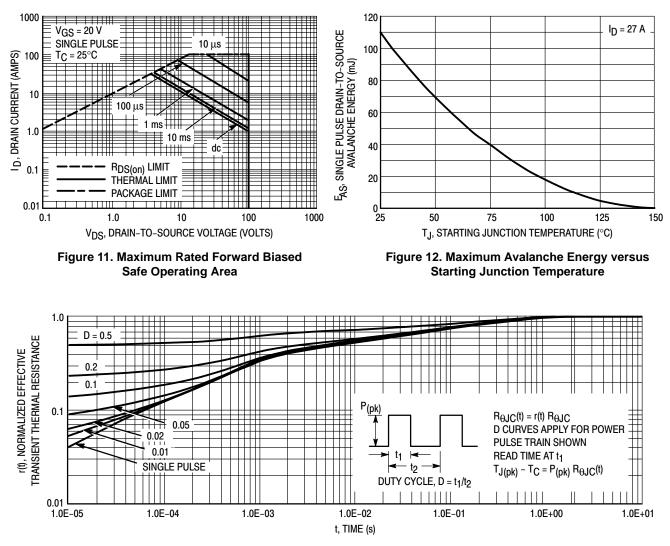


Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA


The Forward Biased Safe Operating Area curves define the maximum simultaneous drain–to–source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance–General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (IDM) nor rated voltage (VDSS) is exceeded and the transition time (t_r , t_f) do not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed (TJ(MAX) – TC)/(R θ JC).

A Power MOSFET designated E–FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E–FETs can withstand the stress of drain–to–source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.

SAFE OPERATING AREA

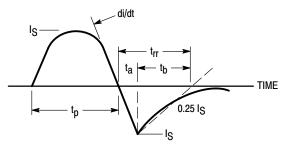
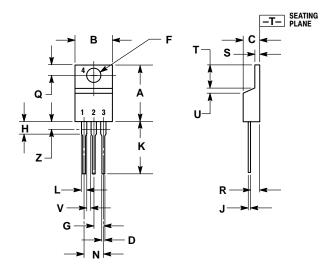



Figure 14. Diode Reverse Recovery Waveform

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB CASE 221A-09 **ISSUE AA**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

B C D F G H J K	MIN 0.570 0.380 0.160 0.025 0.142 0.095 0.110 0.018	MAX 0.620 0.405 0.190 0.035 0.147 0.105 0.155	MIN 14.48 9.66 4.07 0.64 3.61 2.42	MAX 15.75 10.28 4.82 0.88 3.73 2.66
B C D F G H J K	0.380 0.160 0.025 0.142 0.095 0.110	0.405 0.190 0.035 0.147 0.105	9.66 4.07 0.64 3.61	10.28 4.82 0.88 3.73
C D F G H J K	0.160 0.025 0.142 0.095 0.110	0.190 0.035 0.147 0.105	4.07 0.64 3.61	4.82 0.88 3.73
D F G H J K	0.025 0.142 0.095 0.110	0.035 0.147 0.105	0.64 3.61	0.88 3.73
F G H J K	0.142 0.095 0.110	0.147 0.105	3.61	3.73
G H J K	0.095 0.110	0.105		
H J K	0.110		2.42	2.66
J K		0 155		2.00
K	0.018		2.80	3.93
		0.025	0.46	0.64
	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
- Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.