Preferred Device

Advance Information

Power MOSFET 10 Amps, 400 Volts N-Channel TO-220 and D²PAK

Designed for high voltage, high speed switching applications in power supplies, converters, power motor controls and bridge circuits.

Features

- Higher Current Rating
- Lower R_{DS(on)}
- Lower Capacitances
- Lower Total Gate Charge
- Tighter VSD Specifications
- Avalanche Energy Specified

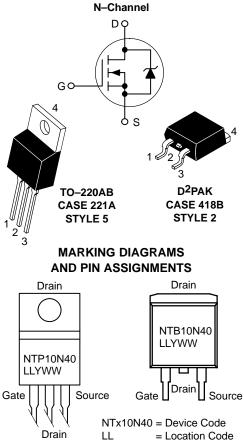
Typical Applications

- Switch Mode Power Supplies
- PWM Motor Controls
- Converters
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit		
Drain–Source Voltage	V _{DSS}	400	Vdc		
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	400	Vdc		
Gate–Source Voltage – Continuous – Non–Repetitive (t _p ≤10 ms)	V _{GS} V _{GSM}	±20 ±40	Vdc		
Drain – Continuous – Continuous @ 100°C – Single Pulse (t _p ≤10 μs)	ID ID IDM	10 7.5 35	Adc		
Total Power Dissipation Derate above 25°C	PD	142 1.14	Watts W/∘C		
Operating and Storage Temperature Range	TJ, Tstg	-55 to 150	°C		
Single Drain-to-Source Avalanche Energy – Starting T _J = 25° C (V _{DD} = 100 Vdc, V _{GS} = 10 Vdc, I _L = 10 A, L = 10 mH, R _G = 25Ω)	E _{AS}	500	mJ		
Thermal Resistance – Junction–to–Case – Junction–to–Ambient – Junction–to–Ambient (Note 1.)	R _{θJC} R _{θJA} R _{θJA}	0.88 62.5 50	°C/W		
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C		

1. When surface mounted to an FR4 board using the minimum recommended pad size.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor[™]

http://onsemi.com

10 AMPERES 400 VOLTS RDS(on) = 500 mΩ

= Year

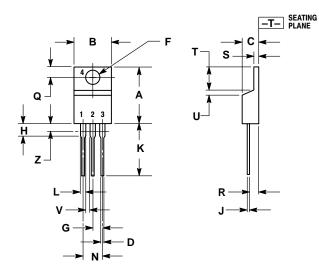
WW = Work Week

ORDERING INFORMATION

Υ

Device	Package	Shipping
NTP10N40	TO-220AB 50 Units/Ra	
NTB10N40	D ² PAK	50 Units/Rail
NTB10N40T4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

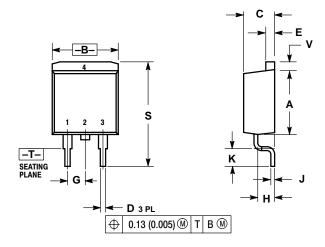

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 0.25 mAdc) Temperature Coefficient (Positive)		V _(BR) DSS	400	_ 475	-	Vdc mV/°C
Zero Gate Voltage Collector Cur			470		μAdc	
$ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{GS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{GS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{GS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 400 \text{ Vdc}, \text{ V}_{SS} = 0 \text{ Vd} \\ (V_{DS} = 0 \text{ Vd} \\ (V_{$	c)	IDSS	-		10 100	μλάς
Gate–Body Leakage Current (V	$GS = \pm 20$ Vdc, $V_{DS} = 0$)	IGSS(f) IGSS(r)		_ _	100 100	nAdc
ON CHARACTERISTICS (Note 2	.)					
Gate Threshold Voltage $I_D = 0.25 \text{ mA}, V_{DS} = V_{GS}$ Temperature Coefficient (Neg	ative)	VGS(th)	2.0 _	2.5 6.5	4.0 _	Vdc mV/°C
Static Drain-to-Source On-Res	sistance (V _{GS} = 10 Vdc, I_D = 5.0 Adc)	R _{DS(on)}	-	350	500	mOhm
	TJ = 125°C)	VDS(on)	_		6.0 5.3	Vdc
Forward Transconductance (VD	_S = 15 Vdc, I _D = 5.0 Adc)	9FS	2.0	7.0	-	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	1440	2020	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{OSS}	_	360	500	-
Transfer Capacitance	T = T.0 WHZ)	C _{rss}	-	15	30	
SWITCHING CHARACTERISTIC	S (Note 3.)	I			1	1
Turn–On Delay Time		^t d(on)	_	10	20	ns
Rise Time	$(V_{DD} = 200 \text{ Vdc}, I_D = 10 \text{ Adc},$	tr	-	20	40	1
Turn–Off Delay Time	V _{GS} = 10 Vdc, R _G = 9.1 Ω)	^t d(off)	-	33	70	
Fall Time		tf	-	24	50	
Gate Charge	(V _{DS} = 320 Vdc, I _D = 10 Adc,	QT	_	24	30	nC
		Q ₁	_	6.0	_	1
	$V_{GS} = 10$ Vdc)	Q ₂	-	7.0	-	
		Q ₃	_	12	_	-
SOURCE-DRAIN DIODE CHAR	ACTERISTICS	I			I	1
Forward On–Voltage (Note 2.)	(I _S = 10 Adc, V _{GS} = 0 Vdc) (I _S = 10 Adc, V _{GS} = 0 Vdc, T _J = 125°C)	V _{SD}		0.9 0.8	1.1 -	Vdc
Reverse Recovery Time		t _{rr}	_	305	_	ns
		ta	_	155	_	1
	(I _S = 10 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	tb	_	150	-	
Reverse Recovery Stored Charge		Q _{RR}	_	2.5	_	μC
NTERNAL PACKAGE INDUCTA	NCE					
Internal Drain Inductance (Measured from contact screw on tab to center of die) (Measured from the drain lead 0.25" from package to center of die)		LD		3.5 4.5		nH
Internal Source Inductance (Measured from the source lea	LS		7.5		1	

Switching characteristics are independent of operating junction temperature.

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB CASE 221A-09 **ISSUE AA**


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN MA		
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Η	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
Κ	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Ζ		0.080		2.04	

PIN 1. GATE DRAIN 2.

3. SOURCE DRAIN 4.

D²PAK CASE 418B-03 ISSUE D

NOTES: I. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
G	0.100	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
Κ	0.090	0.110	2.29	2.79	
S	0.575	0.625	14.60	15.88	
٧	0.045	0.055	1.14	1.40	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specification or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.