# 1-to-64 Bit Variable Length Shift Register

The MC14557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled Length Control inputs (L1, L2, L4, L8, L16, and L32) plus one. Serial data may be selected from the A or B data inputs with the A/B select input. This feature is useful for recirculation purposes. A Clock Enable (CE) input is provided to allow gating of the clock or negative edge clocking capability.

The device can be effectively used for variable digital delay lines or simply to implement odd length shift registers.

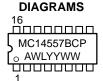
- 1-64 Bit Programmable Length
- Q and  $\overline{Q}$  Serial Buffered Outputs
- Asynchronous Master Reset
- All Inputs Buffered
- No Limit On Clock Rise and Fall Times
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or one Low–power Schottky TTL Load Over the Rated Temperature Range



| Symbol                             | Parameter                                         | Value                         | Unit |
|------------------------------------|---------------------------------------------------|-------------------------------|------|
| $V_{DD}$                           | DC Supply Voltage Range                           | -0.5 to +18.0                 | V    |
| V <sub>in</sub> , V <sub>out</sub> | Input or Output Voltage Range (DC or Transient)   | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| I <sub>in</sub> , I <sub>out</sub> | Input or Output Current (DC or Transient) per Pin | ±10                           | mA   |
| P <sub>D</sub>                     | Power Dissipation,<br>per Package (Note 3.)       | 500                           | mW   |
| T <sub>A</sub>                     | Ambient Temperature Range                         | -55 to +125                   | °C   |
| T <sub>stg</sub>                   | Storage Temperature Range                         | -65 to +150                   | °C   |
| TL                                 | Lead Temperature<br>(8–Second Soldering)          | 260                           | °C   |

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

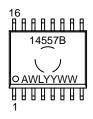
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



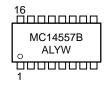
http://onsemi.com




PDIP-16 P SUFFIX CASE 648



**MARKING** 




SOIC-16 DW SUFFIX CASE 751G





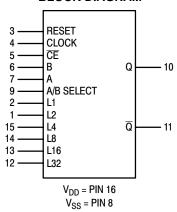
SOEIAJ-16 F SUFFIX CASE 966



A = Assembly Location


WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

#### ORDERING INFORMATION


| Device       | Package   | Shipping         |
|--------------|-----------|------------------|
| MC14557BCP   | PDIP-16   | 2000/Box         |
| MC14557BDW   | SOIC-16   | 47/Rail          |
| MC14557BDWR2 | SOIC-16   | 1000/Tape & Reel |
| MC14557BF    | SOEIAJ-16 | See Note 1.      |
| MC14557BFEL  | SOEIAJ-16 | See Note 1.      |

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.





#### **BLOCK DIAGRAM**



**TRUTH TABLE** 

|     | Output |       |    |   |
|-----|--------|-------|----|---|
| Rst | A/B    | Clock | CE | Q |
| 0   | 0      |       | 0  | В |
| 0   | 1      |       | 0  | Α |
| 0   | 0      | 1     | ~  | В |
| 0   | 1      | 1     | ~  | Α |
| 1   | Х      | Х     | Х  | 0 |

Q is the output of the first selected shift register stage.

X = Don't Care

#### **LENGTH SELECT TRUTH TABLE**

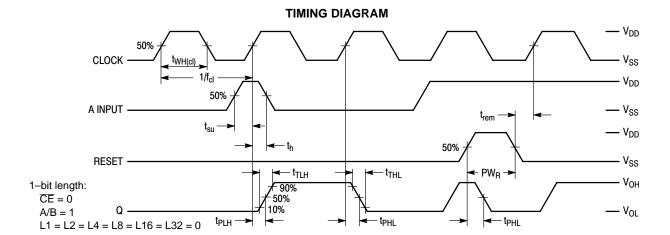
| L32 | L16 | L8 | L4 | L2 | L1 | Register Length                         |
|-----|-----|----|----|----|----|-----------------------------------------|
| 0   | 0   | 0  | 0  | 0  | 0  | 1 Bit                                   |
| 0   | 0   | 0  | 0  | 0  | 1  | 2 Bits                                  |
| 0   | 0   | 0  | 0  | 1  | 0  | 3 Bits                                  |
| 0   | 0   | 0  | 0  | 1  | 1  | 4 Bits                                  |
| 0   | 0   | 0  | 1  | 0  | 0  | 5 Bits                                  |
| 0   | 0   | 0  | 1  | 0  | 1  | 6 Bits                                  |
| •   | •   | •  | •  | •  | •  | •                                       |
| •   | •   | •  | •  | •  | •  | •                                       |
| •   | •   | •  | •  | •  | •  | 00.5%                                   |
| 1   | 0   | 0  | 0  | 0  | 0  | 33 Bits                                 |
| 1   | 0   | 0  | 0  | 0  | 1  | 34 Bits                                 |
| •   | •   | •  | •  | •  | •  | •                                       |
| •   | •   | •  | •  | •  | •  | •                                       |
| •   | •   | •  | •  | •  | •  | • • • · · · · · · · · · · · · · · · · · |
| 1   | 1   | 1  | 1  | 0  | 0  | 61 Bits                                 |
| 1   | 1   | 1  | 1  | 1  | 1  | 62 Bits                                 |
| 1   | 1   | 1  | 1  | 1  | 0  | 63 Bits                                 |
| 1   | 1   | 1  | 1  | 0  | 1  | 64 Bits                                 |
|     |     | 1  |    |    |    |                                         |

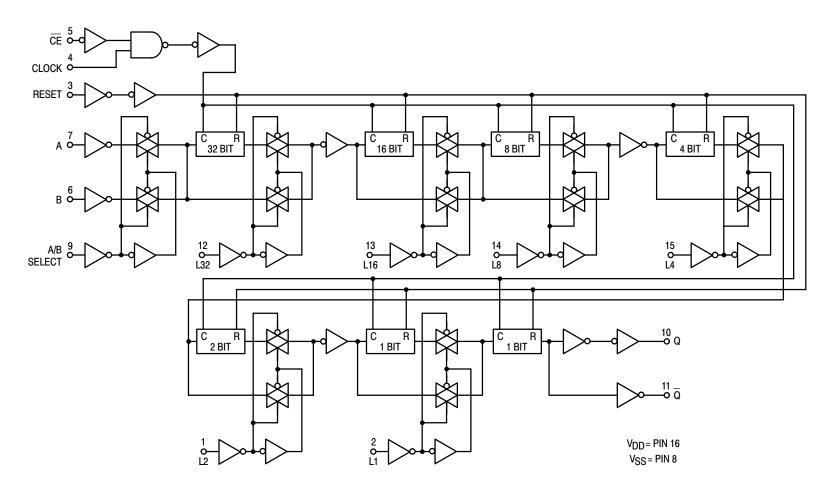
NOTE: Length equals the sum of the binary length control subscripts plus one.

#### **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                                             |           |                 | V <sub>DD</sub>        | - 5                               | 5°C                  |                                   | 25°C                                      |                      | 125                               | 5°C                  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|-------------------------------------------|----------------------|-----------------------------------|----------------------|------|
| Characteristic                                                                                                                                              |           | Symbol          | Vdc                    | Min                               | Max                  | Min                               | Typ <sup>(4.)</sup>                       | Max                  | Min                               | Max                  | Unit |
| Output Voltage<br>V <sub>in</sub> = V <sub>DD</sub> or 0                                                                                                    | "0" Level | V <sub>OL</sub> | 5.0<br>10<br>15        | _<br>_<br>_                       | 0.05<br>0.05<br>0.05 | _<br>_<br>_                       | 0<br>0<br>0                               | 0.05<br>0.05<br>0.05 | _<br>_<br>_                       | 0.05<br>0.05<br>0.05 | Vdc  |
| V <sub>in</sub> = 0 or V <sub>DD</sub>                                                                                                                      | "1" Level | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95             | _<br>_<br>_          | 4.95<br>9.95<br>14.95             | 5.0<br>10<br>15                           | _<br>_<br>_          | 4.95<br>9.95<br>14.95             | _<br>_<br>_          | Vdc  |
| Input Voltage<br>( $V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$ )<br>( $V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$ )<br>( $V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$ ) | "0" Level | V <sub>IL</sub> | 5.0<br>10<br>15        |                                   | 1.5<br>3.0<br>4.0    | _                                 | 2.25<br>4.50<br>6.75                      | 1.5<br>3.0<br>4.0    |                                   | 1.5<br>3.0<br>4.0    | Vdc  |
| $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$                        | "1" Level | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11                  |                      | 3.5<br>7.0<br>11                  | 2.75<br>5.50<br>8.25                      |                      | 3.5<br>7.0<br>11                  | _<br>_<br>_          | Vdc  |
| Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$                   | Source    | I <sub>OH</sub> | 5.0<br>5.0<br>10<br>15 | - 3.0<br>- 0.64<br>- 1.6<br>- 4.2 | _<br>_<br>_<br>_     | - 2.4<br>- 0.51<br>- 1.3<br>- 3.4 | - 4.2<br>- 0.88<br>- 2.25<br>- 8.8        | _<br>_<br>_<br>_     | - 1.7<br>- 0.36<br>- 0.9<br>- 2.4 | <br> -<br> -         | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                                | Sink      | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2                |                      | 0.51<br>1.3<br>3.4                | 0.88<br>2.25<br>8.8                       |                      | 0.36<br>0.9<br>2.4                | _<br>_<br>_          |      |
| Input Current                                                                                                                                               |           | l <sub>in</sub> | 15                     | _                                 | ±0.1                 | _                                 | ±0.00001                                  | ±0.1                 | _                                 | ±1.0                 | μAdc |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                                  |           | C <sub>in</sub> | _                      | _                                 | _                    | _                                 | 5.0                                       | 7.5                  | _                                 | _                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                                          |           | I <sub>DD</sub> | 5.0<br>10<br>15        | _<br>_<br>_                       | 5.0<br>10<br>20      | _<br>_<br>_                       | 0.010<br>0.020<br>0.030                   | 5.0<br>10<br>20      | _<br>_<br>_                       | 150<br>300<br>600    | μAdc |
| Total Supply Current <sup>(5.)</sup> <sup>(6)</sup> (Dynamic plus Quiesce Per Package) (C <sub>L</sub> = 50 pF on all outp buffers switching)               | ent,      | Ι <sub>Τ</sub>  | 5.0<br>10<br>15        |                                   |                      | $I_{T} = (3)$                     | .75 μA/kHz)<br>.50 μA/kHz)<br>.25 μA/kHz) | f + I <sub>DD</sub>  |                                   |                      | μAdc |

<sup>4.</sup> Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
5. The formulas given are for the typical characteristics only at 25°C.
6. To calculate total supply current at loads other than 50 pF:

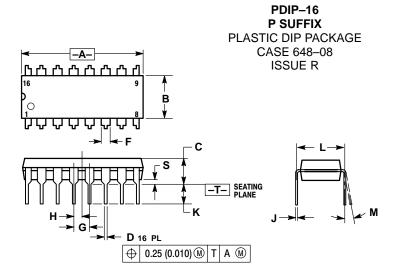

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$


where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF,  $V = (V_{DD} - V_{SS})$  in volts, f in kHz is input frequency, and k = 0.001.

# SWITCHING CHARACTERISTICS (7.) $(C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C})$

| Characteristic                                                                   | Symbol               | $V_{DD}$ | Min       | Typ <sup>(8.)</sup> | Max | Unit |
|----------------------------------------------------------------------------------|----------------------|----------|-----------|---------------------|-----|------|
| Rise and Fall Time, Q or Q Output                                                | t <sub>TLH</sub> ,   |          |           |                     |     | ns   |
| $t_{TLH}$ , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$                  | t <sub>THL</sub>     | 5        | _         | 100                 | 200 |      |
| $t_{TLH}$ , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$               |                      | 10       | _         | 50                  | 100 |      |
| $t_{TLH}$ , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$                |                      | 15       | _         | 40                  | 80  |      |
| Propagation Delay, Clock or $\overline{\text{CE}}$ to Q or $\overline{\text{Q}}$ | t <sub>PLH</sub> ,   |          |           |                     |     | ns   |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 215 \text{ ns}$                 | t <sub>PHL</sub>     | 5        |           | 300                 | 600 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$                 |                      | 10       | _         | 130                 | 260 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 65 \text{ ns}$                  |                      | 15       | _         | 90                  | 180 |      |
| Propagation Delay, Reset to Q or Q                                               | t <sub>PLH</sub> ,   |          |           |                     |     | ns   |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 215 \text{ ns}$                 | t <sub>PHL</sub>     | 5        | _         | 300                 | 600 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$                 |                      | 10       | _         | 130                 | 260 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 70 \text{ ns}$                  |                      | 15       | _         | 95                  | 190 |      |
| Pulse Width, Clock                                                               | t <sub>WH(cl)</sub>  | 5        | 200       | 95                  | _   | ns   |
|                                                                                  | ( )                  | 10       | 100       | 45                  | _   |      |
|                                                                                  |                      | 15       | 75        | 35                  | _   |      |
| Pulse Width, Reset                                                               | t <sub>WH(rst)</sub> | 5        | 300       | 150                 | _   | ns   |
| ·                                                                                | VVI (IOU)            | 10       | 140       | 70                  | _   |      |
|                                                                                  |                      | 15       | 100       | 50                  | _   |      |
| Clock Frequency (50% Duty Cycle)                                                 | f <sub>cl</sub>      | 5        | _         | 3.0                 | 1.7 | MHz  |
|                                                                                  | Ci                   | 10       |           | 7.5                 | 5.0 |      |
|                                                                                  |                      | 15       | _         | 13.0                | 6.7 |      |
| Setup Time, A or B to Clock or CE                                                | t <sub>su</sub>      |          |           |                     |     | ns   |
| Worst case condition: L1 = L2 = L4 = L8 =                                        | ou .                 | 5        | 700       | 350                 | _   |      |
| $L16 = L32 = V_{SS}$ (Register Length = 1)                                       |                      | 10       | 290       | 130                 | _   |      |
|                                                                                  |                      | 15       | 145       | 85                  | _   |      |
| Best case condition: L32 = V <sub>DD</sub> , L1 through L16 =                    |                      | 5        | 400       | 45                  | _   |      |
| Don't Care (Any register length from 33 to 64)                                   |                      | 10       | 165       | 5                   | _   |      |
| ,                                                                                |                      | 15       | 60        | 0                   | _   |      |
| Hold Time, Clock or CE to A or B                                                 | t <sub>h</sub>       |          |           |                     |     | ns   |
| Best case condition: L1 = L2 = L4 = L8 = L16 =                                   |                      | 5        | 200       | <b>– 150</b>        | _   |      |
| L32 = V <sub>SS</sub> (Register Length = 1)                                      |                      | 10       | 100       | - 60                | _   |      |
|                                                                                  |                      | 15       | 10        | <b>- 50</b>         |     |      |
| Worst case condition: L32 = V <sub>DD</sub> , L1 through L16 =                   |                      | 5        | 400       | 50                  | _   |      |
| Don't Care (Any register length from 33 to 64)                                   |                      | 10       | 185       | 25                  | _   |      |
| , , , , , , , , , , , , , , , , , , , ,                                          |                      | 15       | 85        | 22                  | _   |      |
| Rise and Fall Time, Clock                                                        | t <sub>r</sub> ,     | 5        |           |                     |     | _    |
|                                                                                  | t <sub>f</sub>       | 10       |           | No Limit            |     |      |
|                                                                                  | 1                    | 15       |           |                     |     |      |
| Rise and Fall Time, Reset or CE                                                  | t <sub>r</sub> ,     | 5        | _         | _                   | 15  | μs   |
| ,                                                                                | t <sub>f</sub>       | 10       | _         |                     | 5   |      |
|                                                                                  |                      | 15       | _         | _                   | 4   |      |
|                                                                                  | +                    | <b> </b> | -         | <b>†</b>            | -   | 1    |
| Removal Time. Reset to Clock or CE                                               | trom                 | 5        | 160       | 80                  |     | ns   |
| Removal Time, Reset to Clock or CE                                               | t <sub>rem</sub>     | 5<br>10  | 160<br>80 | 80<br>40            | _   | ns   |

<sup>7.</sup> The formulas given are for the typical characteristics only at 25°C.
8. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.






# LOGIC DIAGRAM

MC14557B

#### **PACKAGE DIMENSIONS**



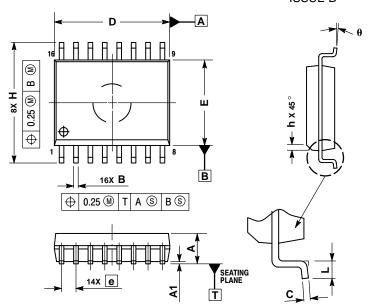
#### NOTES:

- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: INCH.

  3. DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL.


  4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

  5. ROUNDED CORNERS OPTIONAL.

|     | INC   | HES   | MILLIM | IETERS |
|-----|-------|-------|--------|--------|
| DIM | MIN   | MAX   | MIN    | MAX    |
| Α   | 0.740 | 0.770 | 18.80  | 19.55  |
| В   | 0.250 | 0.270 | 6.35   | 6.85   |
| С   | 0.145 | 0.175 | 3.69   | 4.44   |
| D   | 0.015 | 0.021 | 0.39   | 0.53   |
| F   | 0.040 | 0.70  | 1.02   | 1.77   |
| G   | 0.100 | BSC   | 2.54   | BSC    |
| Н   | 0.050 | BSC   | 1.27   | BSC    |
| J   | 0.008 | 0.015 | 0.21   | 0.38   |
| K   | 0.110 | 0.130 | 2.80   | 3.30   |
| L   | 0.295 | 0.305 | 7.50   | 7.74   |
| M   | 0°    | 10°   | 0°     | 10 °   |
| S   | 0.020 | 0.040 | 0.51   | 1.01   |

### SOIC-16 **DW SUFFIX**

PLASTIC SOIC PACKAGE CASE 751G-03 ISSUE B

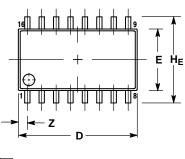


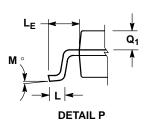
- NOTES:
  1. DIMENSIONS ARE IN MILLIMETERS.
  2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

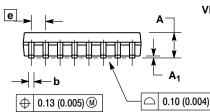
- PER ASME Y14.5M, 1994.

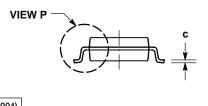
  3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.

  4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.


  5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.


|     | MILLIMETERS |       |  |  |  |  |
|-----|-------------|-------|--|--|--|--|
| DIM | MIN         | MAX   |  |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |  |
| В   | 0.35        | 0.49  |  |  |  |  |
| С   | 0.23        | 0.32  |  |  |  |  |
| D   | 10.15       | 10.45 |  |  |  |  |
| Е   | 7.40        | 7.60  |  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |  |
| Н   | 10.05       | 10.55 |  |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |  |
| A   | 0 0         | 7 0   |  |  |  |  |


#### PACKAGE DIMENSIONS


#### SOEIAJ-16 F SUFFIX

PLASTIC EIAJ SOIC PACKAGE CASE 966-01 ISSUE O









#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
  Y14 5M 1982
- 2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSIONS D AND E DO NOT INCLUDE
  MOLD FLASH OR PROTRUSIONS AND ARE
  MEASURED AT THE PARTING LINE. MOLD FLASH
  OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

  4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
- 4. TEHMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
  5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

|                | MILLIN | IETERS | INC       | HES   |
|----------------|--------|--------|-----------|-------|
| DIM            | MIN    | MAX    | MIN       | MAX   |
| Α              |        | 2.05   |           | 0.081 |
| A <sub>1</sub> | 0.05   | 0.20   | 0.002     | 0.008 |
| b              | 0.35   | 0.50   | 0.014     | 0.020 |
| C              | 0.18   | 0.27   | 0.007     | 0.011 |
| D              | 9.90   | 10.50  | 0.390     | 0.413 |
| E              | 5.10   | 5.45   | 0.201     | 0.215 |
| е              | 1.27   | BSC    | 0.050 BSC |       |
| HE             | 7.40   | 8.20   | 0.291     | 0.323 |
| L              | 0.50   | 0.85   | 0.020     | 0.033 |
| LE             | 1.10   | 1.50   | 0.043     | 0.059 |
| M              | 0 °    | 10 °   | 0 °       | 10°   |
| Q1             | 0.70   | 0.90   | 0.028     | 0.035 |
| Z              |        | 0.78   |           | 0.031 |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

#### N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com

ench Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

#### EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, UK

#### CENTRAL/SOUTH AMERICA:

**Spanish Phone**: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781
Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.