NL27WZ16

Dual Buffer

The NL27WZ16 is a high performance dual buffer operating from a 2.3 to 5.5 V supply. At $\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}$, high impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance.

- Extremely High Speed: tpD 2.0 ns (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Designed for 2.3 V to 5.5 V VCC Operation
- Over Voltage Tolerant Inputs
- LVTTL Compatible - Interface Capability With 5 V TTL Logic with $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET $=72$; Equivalent Gate $=18$

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	VCC $^{\text {CO }}$
6	OUT Y1

FUNCTION TABLE

A Input	$\overline{\text { Y Output }}$
L	L
H	H

ON Semiconductor ${ }^{\text {w }}$

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

NL27WZ16

MAXIMUM RATINGS (Note 1)

Symbol	Characteristics	Value	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$	V
V_{O}	DC Output Voltage \quad Output in Z or LOW State (Note 2)	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq 7.0$	V
IIK	DC Input Diode Current $\quad \mathrm{V}_{1}<\mathrm{GND}$	-50	mA
IOK	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
Io	DC Output Sink Current	± 50	mA
ICC	DC Supply Current per Supply Pin	± 100	mA
IGND	DC Ground Current per Ground Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation in Still Air SC-88, TSOP-6	200	mW
${ }^{\text {J JA }}$	Thermal Resistance SC-88, TSOP-6	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{L}	Lead Temperature, 1 mm from case for 10 s	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$V_{E S D}$	Human Body Model (Note 3) Machine Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V
LLatch-Up	Latch-Up Performance \quad Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 6)	± 500	mA

1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.
2. Io absolute maximum rating must be observed.
3. Tested to EIA/JESD22-A114-A
4. Tested to EIA/JESD22-A115-A
5. Tested to JESD22-C101-A
6. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$V_{\text {CC }}$	Supply Voltage	Operating Data Retention Only	$\begin{aligned} & 2.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	(High or LOW State)	0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 20 \\ 10 \\ 5 \end{gathered}$	ns / V

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		2.3 to 5.5	$0.7 \mathrm{~V}_{\mathrm{CC}}$			$0.7 \mathrm{~V}_{\mathrm{CC}}$		V
V_{IL}	Low-Level Input Voltage		2.3 to 5.5			$0.3 \mathrm{~V}_{\mathrm{CC}}$		$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
V_{OH}	High-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\mathrm{l} \mathrm{OH}=100 \mu \mathrm{~A}$	2.3 to 5.5	$\mathrm{V}_{\mathrm{CC}}-0.1$	VCC		$\mathrm{V}_{\mathrm{CC}}-0.1$		V
		$\mathrm{IOH}=-8 \mathrm{~mA}$	2.3	1.9	2.1		1.9		
		$\mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2	2.4		2.2		
		$\mathrm{l} \mathrm{OH}=-16 \mathrm{~mA}$	3.0	2.4	2.7		2.4		
		$\mathrm{IOH}=-24 \mathrm{~mA}$	3.0	2.3	2.5		2.3		
		$\mathrm{l} \mathrm{OH}=-32 \mathrm{~mA}$	4.5	3.8	4.0		3.8		
V_{OL}	Low-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$	2.3 to 5.5			0.1		0.1	V
		$\mathrm{IOL}=8 \mathrm{~mA}$	2.3		0.20	0.3		0.3	
		$\mathrm{OL}=12 \mathrm{~mA}$	2.7		0.22	0.4		0.4	
		$\mathrm{IOL}=16 \mathrm{~mA}$	3.0		0.28	0.4		0.4	
		$\mathrm{IOL}=24 \mathrm{~mA}$	3.0		0.38	0.55		0.55	
		$\mathrm{IOL}=32 \mathrm{~mA}$	4.5		0.42	0.55		0.55	
In	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
IOFF	Power Off-Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			1		10	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1		10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{array}{\|l\|l\|l\|} \text { tPLH } \\ \text { tpHL } \end{array}$	Propagation Delay (Figure 3 and 4)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	2.5 ± 0.2	1.0	3.0	5.2	1.0	5.8	ns
		$R_{L}=1 \mathrm{M} \Omega, C_{L}=15 \mathrm{pF}$	3.3 ± 0.3	0.8	2.3	3.6	0.8	4.0	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		1.2	3.0	4.6	1.2	5.1	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5.0 ± 0.5	0.5	$1 . .8$	2.9	0.5	3.2	
		$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0.8	2.4	3.8	0.8	4.2	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7.0	pF
C_{PD}	Power Dissipation Capacitance (Note 7$)$	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	9	pF
		$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	11	

7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\operatorname{ICC}(O P R)=\mathrm{CPD} \bullet \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{fin}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}}{ }^{2} \cdot \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathrm{CC}}$.

NL27WZ16

DEVICE ORDERING INFORMATION

	Device Nomenclature								
Device Order Number	Logic Circuit Indicator	No. of Gates per Package	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape \& Reel Suffix	Package Type (Name/SOT\#/ Common Name)	Tape and Reel Size
NL27WZ16DFT2	NL	2	7	WZ	16	DF	T2	$\begin{gathered} \hline \text { SC-88 / SOT-363 } \\ \text { / SC-70 } \end{gathered}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$
NL27WZ16DTT1	NL	2	7	WZ	16	DT	T1	$\begin{gathered} \text { TSOP-6 / SOT-23 } \\ \text { / SC-59 } \end{gathered}$	$\begin{aligned} & 178 \text { mm (7") } \\ & 3000 \text { Unit } \end{aligned}$

Figure 5. Tape Ends for Finished Goods

Figure 6. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

Figure 7. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	\mathbf{G}	\mathbf{t} Max
8 mm	$\mathrm{~T} 1, \mathrm{~T} 2$	178 mm $(7 \mathrm{in})$	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	14.4 mm $(0.56 \mathrm{in})$

Figure 8. Reel Winding Direction

NL27WZ16

PACKAGE DIMENSIONS

SC70-6/SC-88/SOT-363
 DF SUFFIX
 CASE 419B-02
 ISSUE H

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH

			MILLII	TERS
DIM	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	---	0.004	---	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20

NL27WZ16

PACKAGE DIMENSIONS

SOT23-6/TSOP-6/SC59-6 DT SUFFIX

CASE 318G-02

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	2.90	3.10	0.1142	0.1220	
B	1.30	1.70	0.0512	0.0669	
C	0.90	1.10	0.0354	0.0433	
D	0.25	0.50	0.0098	0.0197	
G	0.85	1.05	0.0335	0.0043	
H	0.013	0.100	0.0005	0.0040	
J	0.10	0.26	0.0040	0.0102	
K	0.20	0.60	0.0079	0.0236	
L	1.25	1.55	0.0493	0.0610	
M	0°	10°	0°	10°	
S	2.50	3.00	0.0985	0.1181	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

