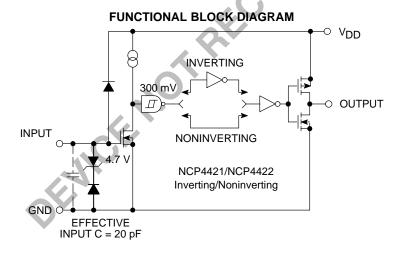
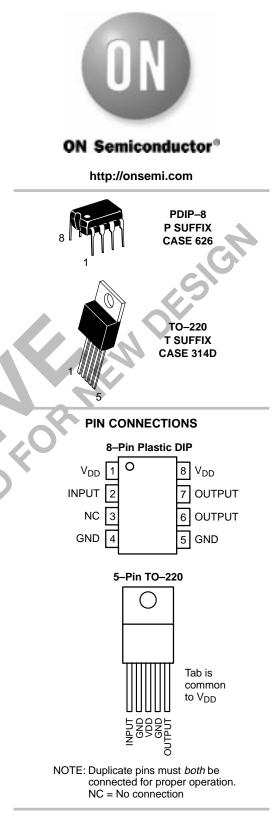
9.0 A High-Speed MOSFET Drivers

The NCP4421/4422 are high current buffer/drivers capable of driving large MOSFETs and IGBTs.

They are essentially immune to any form of upset except direct overvoltage or over-dissipation – they cannot be latched under any conditions within their power and voltage ratings; they are not subject to damage or improper operation when up to 5.0 V of ground bounce is present on their ground terminals; they can accept, without either damage or logic upset, more than 1.0 A inductive current of either polarity being forced back into their outputs. In addition, all terminals are fully protected against up to 4.0 kV of electrostatic discharge.


The inputs may be driven directly from either TTL or CMOS (3.0 V to 18 V). In addition, 300 mV of hysteresis is built into the input, providing noise immunity and allowing the device to be driven from slowly rising or falling waveforms.


Features

- Tough CMOS[™] Construction
- High Peak Output Current (9.0 A)
- High Continuous Output Current (2.0 A Max)
- Fast Rise and Fall Times:
 - 30 ns with 4,700 pF Load
 - 180 ns with 47,000 pF Load
- Short Internal Delays (30 nsec Typ)
- Low Output Impedance $(1.4 \Omega \text{ Typ})$

Applications

- Line Drivers for Extra-Heavily-Loaded Lines
- Pulse Generators
- Driving the Largest MOSFETs and IGBTs
- Local Power ON/OFF Switch
- Motor and Solenoid Driver

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 8 of this data sheet.

MEND

ABSOLUTE MAXIMUM RATINGS*

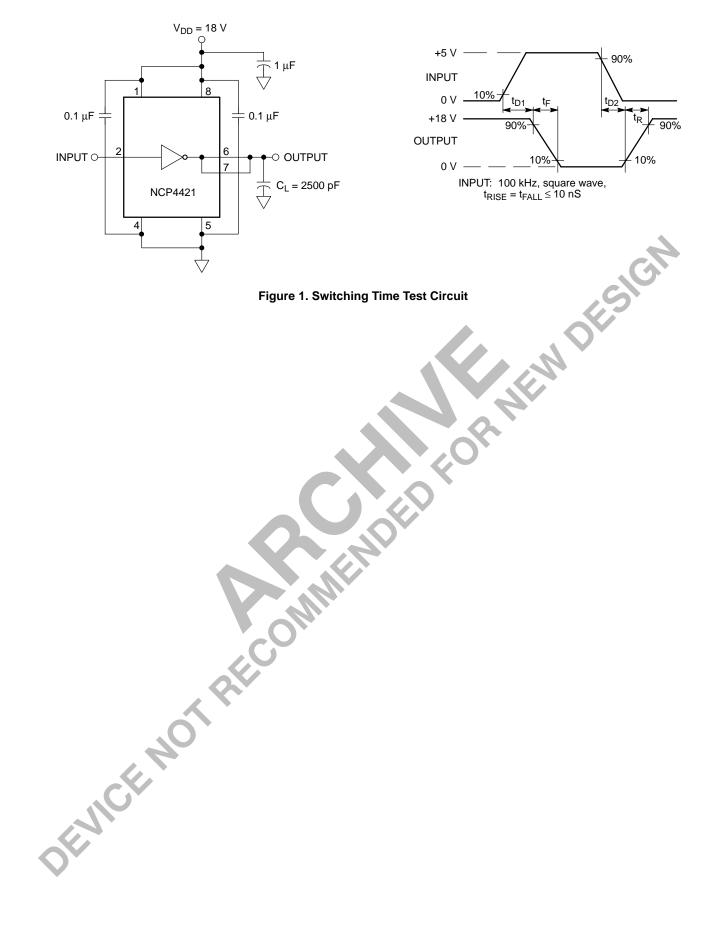
Rating	Symbol	Value	Unit
Power Dissipation ($T_A \le 70^{\circ}C$) PDIP 5–Pin TO–220	_	730 1.6	W
Power Dissipation ($T_C \le 25^{\circ}C$) 5–Pin TO–220 (With Heat Sink)	-	12.5	W
Derating Factors (To Ambient) PDIP 5–Pin TO–220	-	8.0 12	mW/°C
Thermal Impedance (To Case) 5–Pin TO–220 R _{θJC}	-	10	°C/W
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Temperature (Chip)	-	150	°C
Operating Temperature (Ambient) TO–220 Version PDIP Version	-	0 to +70 -40 to +85	3 °
Lead Temperature (10 Seconds)	-	300	°C
Supply Voltage	Vcc	20	V
Input Voltage	-	V _{DD} +3.0 to GND –5.0	V
Input Current (V _{IN >} V _{DD})	-	50	mA

*Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.

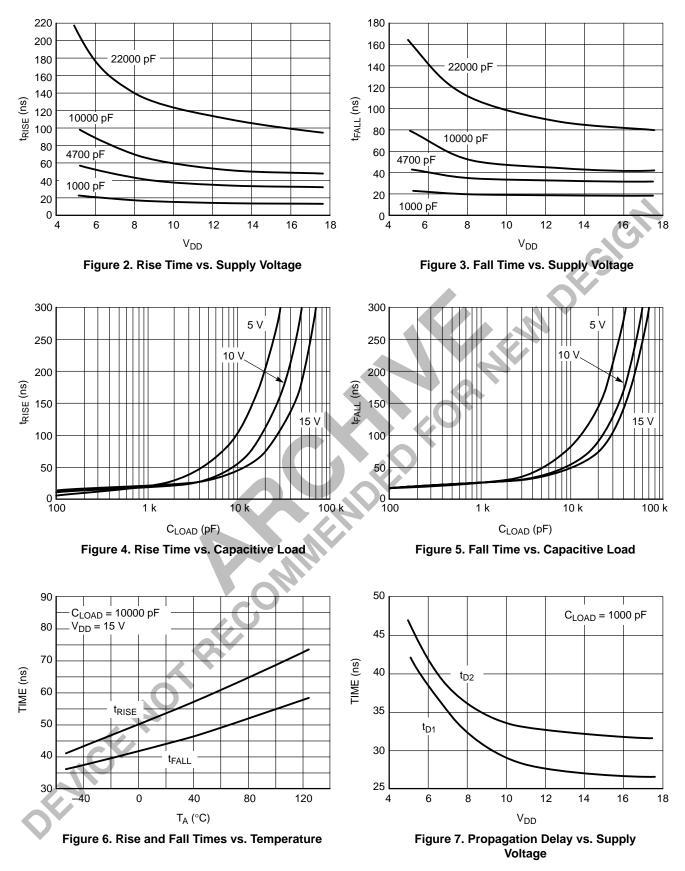
ELECTRICAL CHARACTERISTICS (T_A = 25°C with 4.5 V \leq V_{DD} \leq 18 V unless otherwise specified.)

Characteristics	Test Conditions	Symbol	Min	Тур	Мах	Unit
Input						
Logic 1 Input Voltage		V _{IH}	2.4	1.8	-	V
Logic 0 Input Voltage		VIL	-	1.3	0.8	V
Input Current	$0 V \le V_{IN} \le V_{DD}$	l _{IN}	-10	_	10	μΑ
Output						
High Output Voltage	See Figure 1	V _{OH}	V _{DD} - 0.025	-	-	V
Low Output Voltage	See Figure 1	V _{OL}	-	-	0.025	V
Output Resistance, High	V _{DD} = 18 V, I _O = 10 mA	R _O	_	1.4	-	Ω
Output Resistance, Low	V _{DD} = 18 V, I _O = 10 mA	R _O	_	0.9	1.7	Ω
Peak Output Current	V _{DD} = 18 V	I _{PK}	_	9.0	-	Α
Continuous Output Current	$\begin{array}{c} 10 \; \text{V} \leq \; \text{V}_{\text{DD}} \leq 18 \; \text{V}, \; \text{T}_{\text{C}} = 25^{\circ} \\ (\text{TC4421/22 \; CAT \; only}) \end{array}$	I _{DC}	2.0	-	-	A
Latch–Up Protection	Duty Cycle ≤ 2% Withstand Reverse Current	I _{REV}	>1500 t ≤ 300 μs	-	_	mA
Switching Time (Note 1)						
Rise Time	Figure 1, C ₁ = 10,000 pF	t _R	_	60	75	nsec

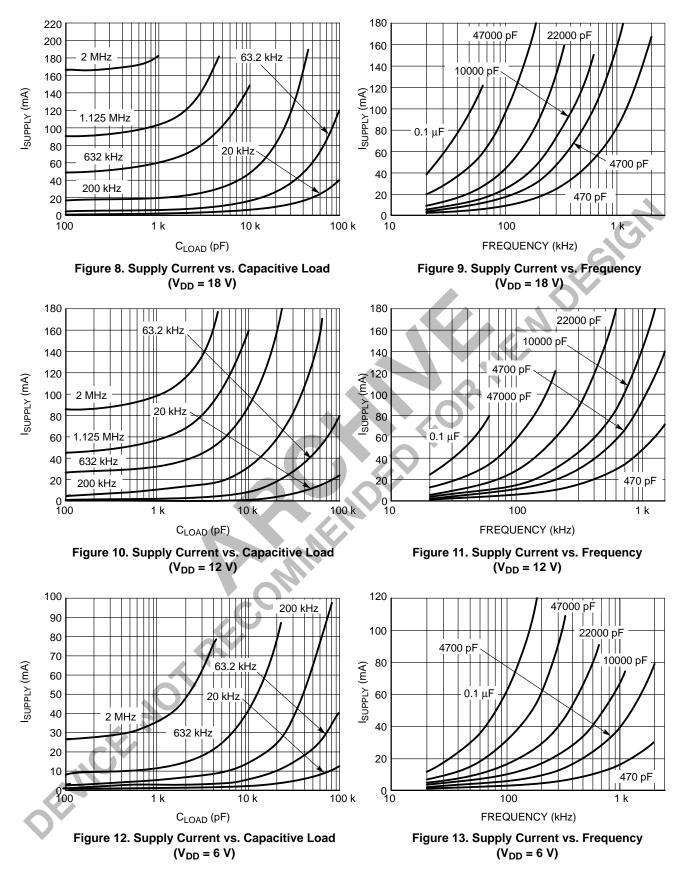
Figure 1, $C_L = 10,000 \text{ pl}$ 75 Hime ۱R 75 Fall Time Figure 1, $C_{L} = 10,000 \text{ pF}$ t_F _ 60 nsec _ **Delay Time** Figure 1 30 60 t_{D1} nsec 33 60 **Delay Time** Figure 1 nsec t_{D2} _

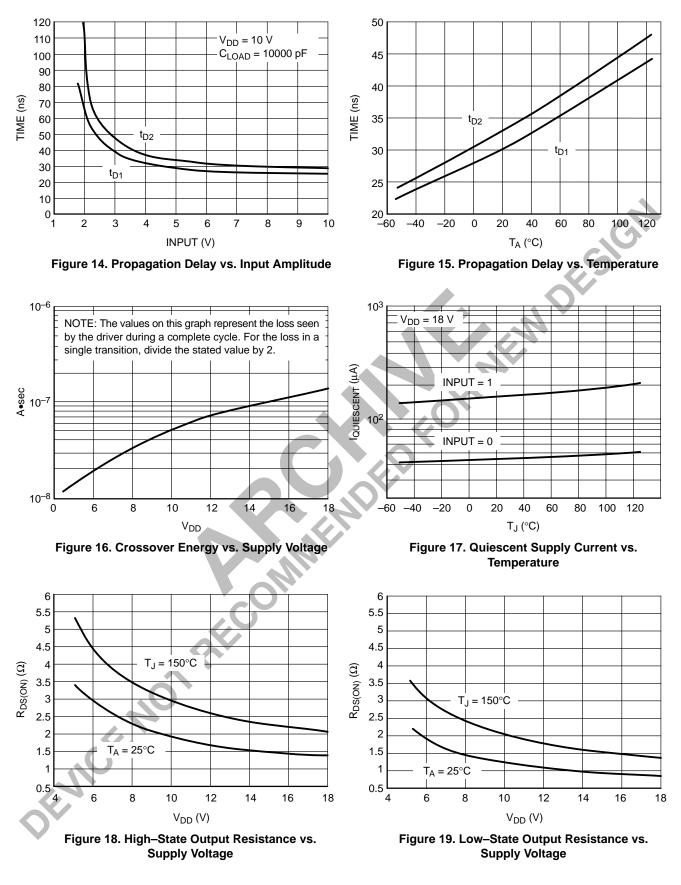

1. Switching times guaranteed by design.

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ with 4.5 V $\leq V_{DD} \leq 18$ V unless otherwise specified.)

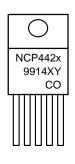

		66		•	,	
Characteristics	Test Conditions	Symbol	Min	Тур	Max	Unit
Power Supply						
Power Supply Current	V _{IN} = 3.0 V V _{IN} = 0 V	۱ _S	-	0.2 55	1.5 150	mA μA
Operating Input Voltage	-	V _{DD}	4.5	-	18	V
Input						
Logic 1 Input Voltage	-	V _{IH}	2.4	-	-	V
Logic 0 Input Voltage	-	V _{IL}	-	-	0.8	V
Input Current	$0 V \leq V_{IN} \leq V_{DD}$	I _{IN}	-10	-	10	μA

ELECTRICAL CHARACTERISTICS (Measured over operating temperature range with 4.5 V \leq V_S \leq 18 V unless otherwise specified.)


_ _ 0 V ≤ V _{IN} ≤ V _{DD} See Figure 1 See Figure 1	V _{IH} V _{IL} I _{IN} V _{OH}	2.4 - -10	-	- 0.8 10	V V
See Figure 1	V _{IL} I _{IN}	-	-		V
See Figure 1	L _{IN}		-		-
See Figure 1		-10	-	10	
	V _{OH}	VX		10	μA
	VOH				
See Figure 1		V _{DD} – 0.025	-	-	V
Ŭ	V _{OL}		-	0.025	V
V _{DD} = 18 V, I _O = 10 mA	Ro	-	2.4	3.6	W
V _{DD} = 18 V, I _O = 10 mA	R _O	-	1.8	2.7	W
Figure 1, C _L = 10,000 pF	t _R	-	60	120	nse
Figure 1, C _L = 10,000 pF	t _F	-	60	120	nse
Figure 1	t _{D1}	-	50	80	nse
Figure 1	t _{D2}	_	65	80	nse
V _{IN} = 3.0 V V _{IN} = 0 V	۱ _S		0.45 0.06	3.0 0.2	mA
-	V _{DD}	4.5	-	18	V
	Figure 1, $C_L = 10,000 \text{ pF}$ Figure 1, $C_L = 10,000 \text{ pF}$ Figure 1 Figure 1 $V_{IN} = 3.0 \text{ V}$ $V_{IN} = 0 \text{ V}$ -	Figure 1, $C_L = 10,000 \text{ pF}$ t_R Figure 1, $C_L = 10,000 \text{ pF}$ t_F Figure 1, $C_L = 10,000 \text{ pF}$ t_D Figure 1 t_D Figure 1 t_D VIN = 3.0 V Is $V_{IN} = 0 \text{ V}$ V_{DD}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS



TYPICAL ELECTRICAL CHARACTERISTICS

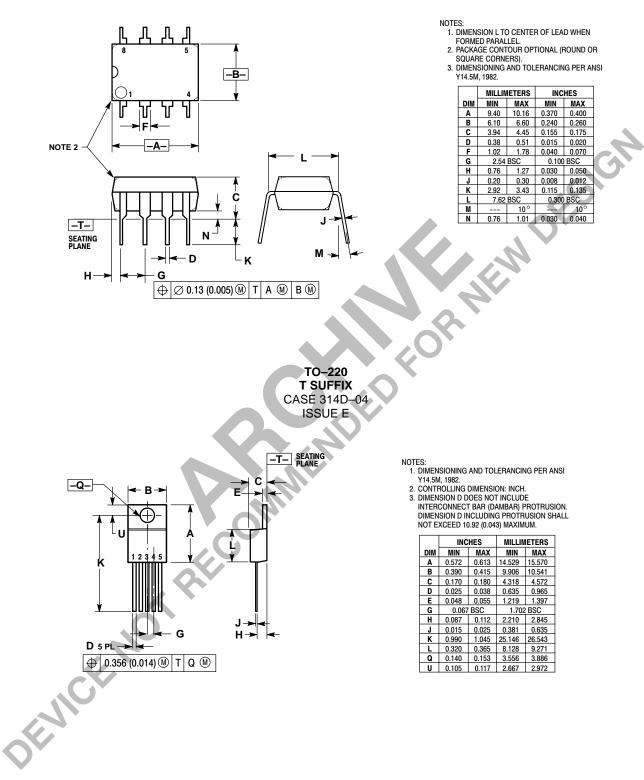
MARKING DIAGRAMS

- = 1 or 2 х
- Х = Assembly ID Code
- Υ = Year
- CO = Country of Origin

ORDERING INFORMATION

ORDERING IN Package 5-Pin TO-220 8-Pin PDIP 5-Pin TO-220 8-Pin PDIP	Temperature Range 0°C to + 70°C -40°C to + 85°C 0°C to + 70°C -40°C to + 85°C	Shipping 50 Units/Rail 50 Units/Rail 50 Units/Rail 50 Units/Rail
5–Pin TO–220 8–Pin PDIP 5–Pin TO–220 8–Pin PDIP	$ \begin{array}{c} 0^{\circ}C \text{ to } + 70^{\circ}C \\ -40^{\circ}C \text{ to } + 85^{\circ}C \\ 0^{\circ}C \text{ to } + 70^{\circ}C \\ -40^{\circ}C \text{ to } + 85^{\circ}C \\ \end{array} $	50 Units/Rail 50 Units/Rail 50 Units/Rail
8–Pin PDIP 5–Pin TO–220 8–Pin PDIP	-40°C to + 85°C 0°C to + 70°C -40°C to + 85°C	50 Units/Rail 50 Units/Rail
5–Pin TO–220 8–Pin PDIP	0°C to + 70°C -40°C to + 85°C	50 Units/Rail
8–Pin PDIP	-40°C to + 85°C	
	L'OR	50 Units/Rail
	DED	
2 FCU		
•		

Notes


DEWCE NOT RECOMMENDED FOR NEW DESIGN

Notes

DEWCE NOT RECOMMENDED FOR MENDESIGN

PACKAGE DIMENSIONS

PDIP P SUFFIX CASE 626–05 ISSUE K

OR NEW DESIGN MEND ON Semiconductor and O are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.

SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.