5V ECL ÷2/4, ÷4/6 Clock Generation Chip

The MC100EL39 is a low skew ÷2/4, ÷4/6 clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple EL39s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EL39, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\pm 2/4$ and the $\pm 4/6$ outputs of a single device.

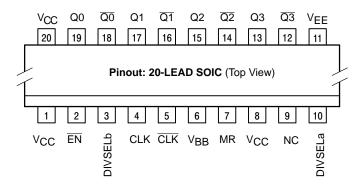
- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection: > 2 KV HBM, > 100 V MM
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -4.2 \text{ V}$ to -5.7 V
- Internal Input Pulldown Resistors on EN, MR, CLK(s), and DIVSEL(s)
- Q Output will Default LOW with Inputs Open or at VEE
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 419 devices

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAM

A = Assembly Location


WL = Wafer Lot

YY = Year

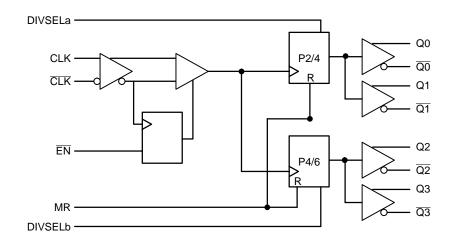
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC100EL39DW	SO-20	38 Units/Rail
MC100EL39DWR2	SO-20	1000 Units/Reel

* All V_{CC} pins are tied together on the die.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.


Figure 1. Pinout Assignment

FUNCTION TABLE

CLK*	EN*	MR*	FUNCTION
Z ZZ	ΙП	L	Divide Hold Q _{0—3}
X	Х	Н	Reset Q ₀₋₃

Z = Low-to-High Transition

^{*} Pin will default low when left open.

PIN DESCRIPTION

DIVSELa*	Q ₀ , Q ₁ OUTPUTS
0	Divide by 2 Divide by 4
DIVSELb*	${\tt Q_2,Q_3}$ outputs

^{*} Pin will default low when left open.

ZZ = High-to-Low Transition

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
VCC	PECL Mode Power Supply	VEE = 0 V		8	V
VEE	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	AEE = 0 A	$V_I \ge V_{EE}$	6 -6	V V
lout	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJΑ	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	20 SOIC 20 SOIC	90 60	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	std bd	20 SOIC	30 to 35	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

100EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 2)

		-40°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current		50	59		50	59		54	61	mA
VOH	Output HIGH Voltage (Note 3)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
VOL	Output LOW Voltage (Note 3)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
VIH	Input HIGH Voltage (Single–Ended)			4120	3835		4120	3835		4120	mV
VIL	Input LOW Voltage (Single–Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Common Mode Range (Differential) (Note 4) Vpp < 500 mV Vpp ≥ 500 mV	1.3 1.5		4.6 4.6	1.2 1.4		4.6 4.6	1.2 1.4		4.6 4.6	V
lн	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

100EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 5)

			–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
IEE	Power Supply Current		50	59		50	59		54	61	mA	
Voн	Output HIGH Voltage (Note 6)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV	
VOL	Output LOW Voltage (Note 6)		-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV	
VIH	Input HIGH Voltage (Single–Ended)			-880	-1165		-880	-1165		-880	mV	
V _{IL}	Input LOW Voltage (Single–Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV	
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V	
VIHCMR	Common Mode Range (Differential) (Note 7) Vpp < 500 mV Vpp ≥ 500 mV	-3.7 -3.5		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	-3.8 -3.6		-0.4 -0.4	V	
lН	Input HIGH Current			150			150			150	μΑ	
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ	

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The

- Circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
 Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} 2.0 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

AC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}; V_{EE} = -5.0 \text{ V}$ (Note 8)

			-40°C			25°C						
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Freq	quency	1.0			1.0			1.0			GHz
^t PLH ^t PHL	Propagation Delay to Output	$\begin{array}{c} CLK \to Q \; (Diff) \\ CLK \to Q \; (S.E.) \\ MR \to Q \end{array}$	760 710 600		960 1010 900	800 750 610		1000 1050 910	850 800 630		1050 1100 930	ps
tSKEW	Within-Device Skew (Note 9) Q ₀ – Q ₃				50			50			50	ps
	Part-to-Part	$Q_0 - Q_3$ (Diff)			200			200			200	
^t JITTER	Cycle-to-Cycle Jitter			TBD			TBD			TBD		ps
ts	Setup Time	$\overline{\text{EN}} \to \overline{\text{CLK}}$ DIVSEL \to CLK	250 400			250 400			250 400			ps
tH	Hold Time	$\begin{array}{c} \overline{\text{CLK}} \to \overline{\text{EN}} \\ \text{CLK} \to \text{Div_Sel} \end{array}$	100 150			100 150			100 150			ps
VPP	Input Swing (Note 10)		150		1000	150		1000	150		1000	mV
^t RR	Reset Recovery Time				100			100			100	ps
t _{PW}	Minimum Pulse Width	CLK MR	500 700			500 700			500 700			ps
t _r , t _f	Output Rise/Fall Times	s Q (20% – 80%)	280		550	280		550	280		550	ps

V_{EE} can vary +0.8 V / −0.5 V.
 Skew is measured between outputs under identical transitions.
 V_{PP}(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.

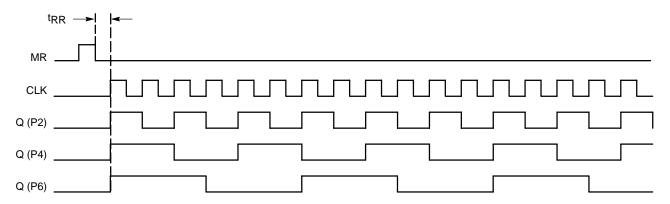
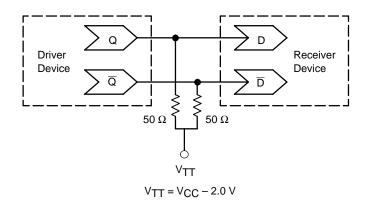



Figure 3. Timing Diagram

Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard VIH Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

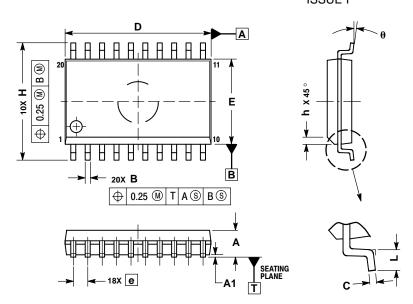
AN1560 – Low Voltage ECLinPS SPICE Modeling Kit

AN1568 – Interfacing Between LVDS and ECL

AN1596 - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire-OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide


AND8001 - Odd Number Counters Design

AND8002 – Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SO-20 **DW SUFFIX** PLASTIC SOIC PACKAGE CASE 751D-05 **ISSUE F**

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS DANDE DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS
DIM	MIN	MAX
Α	2.35	2.65
A1	0.10	0.25
В	0.35	0.49
С	0.23	0.32
D	12.65	12.95
Е	7.40	7.60
е	1.27	BSC
Н	10.05	10.55
h	0.25	0.75
L	0.50	0.90
θ	0 °	7 °

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.