Power MOSFET 110 Amps, 24 Volts

N-Channel DPAK

Features

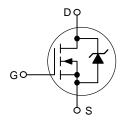
- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low Ciss to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High-Efficiency DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	24	Vdc
Gate-to-Source Voltage - Continuous	V_{GS}	±20	Vdc
Thermal Resistance - Junction-to-Case Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C, Chip	$R_{ heta JC} \ P_D \ I_D$	1.35 92.5 110	°C/W W
 Continuous @ T_A = 25°C, Limited by Package Continuous @ T_A = 25°C, Limited by Wires Single Pulse (t_p = 10 μs) 	I _D I _D	110 32 110	A A A
Thermal Resistance - Junction-to-Ambient (Note 1) - Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	R _{θJA} P _D	52 2.4 17	°C/W W A
Thermal Resistance - Junction-to-Ambient (Note 2) - Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	R _{θJA} P _D I _D	100 1.25 12	°C/W W A
Operating and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}\text{C}$ ($V_{DD} = 50 \text{ Vdc}, V_{GS} = 10 \text{ Vdc},$ $I_L = 15.5 \text{ Apk}, L = 1.0 \text{ mH}, R_G = 25 \Omega$)	E _{AS}	120	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

- 1. When surface mounted to an FR4 board using 1" pad size,
- (Cu Area 1.127 in²).

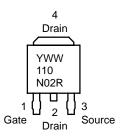
 2. When surface mounted to an FR4 board using the minimum recommended pad size, (Cu Area 0.412 in²).


ON Semiconductor®

http://onsemi.com

110 AMPERES 24 VOLTS

 $R_{DS(on)} = 3.7 \text{ m}\Omega \text{ (Typ.)}$


N-Channel

CASE 369A **DPAK** (Bend Lead) STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENTS

= Year WW = Work Week 110N02R = Device Code

ORDERING INFORMATION

Device	Package	Shipping	
NTD110N02R	DPAK	75 Units/Rail	
NTD110N02RT4	DPAK	2500/Tape & Reel	
NTD110N02R1	DPAK	75 Units/Rail	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) (V _{GS} = 0 Vdc, I _D = 250 μAdc) Positive Temperature Coefficient		V _{(BR)DSS}	24	28 15	-	Vdc mV/°C
Zero Gate Voltage Drain Current (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc, T _J = 125°C)					1.5 10	μAdc
Gate-Body Leakage Current (V	I_{GSS}	-	=	±100	nAdc	
ON CHARACTERISTICS (Note 3	3)					
Gate Threshold Voltage (Note 3) (V _{DS} = V _{GS} , I _D = 250 μAdc) Negative Threshold Temperature Coefficient			1.0	1.5 5.0	2.0	Vdc mV/°C
Static Drain-to-Source On-Res $(V_{GS} = 10 \text{ Vdc}, I_D = 110 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 55 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 20 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 20 \text{ Adc})$	R _{DS(on)}	- - - -	3.7 4.9 3.7 4.7	- - 4.6 6.2	mΩ	
Forward Transconductance (V _D	_{IS} = 10 Vdc, I _D = 15 Adc) (Note 3)	9FS	-	44	-	Mhos
DYNAMIC CHARACTERISTICS			•	•	•	•
Input Capacitance Output Capacitance	(V _{DS} = 20 Vdc, V _{GS} = 0 Vdc,	C _{iss}	-	2710 1105	3440 1670	pF
Transfer Capacitance	f = 1.0 MHz)	C _{rss}	-	227	640	1
SWITCHING CHARACTERISTIC	S (Note 4)		•		•	•
Turn-On Delay Time		t _{d(on)}	-	11	22	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 10 Vdc,	t _r	-	39	80]
Turn-Off Delay Time	$I_D = 40 \text{ Adc}, R_G = 3.0 \Omega$	t _{d(off)}	-	27	40	
Fall Time		t _f	-	21	40	
Gate Charge		Q_{T}	-	23.6	28	nC
	(V _{GS} = 4.5 Vdc, I _D = 40 Adc, V _{DS} = 10 Vdc) (Note 3)	Q1	-	5.1	-	
	VDS = 10 Vdc) (Note 3)	Q2	-	11	-	
SOURCE-DRAIN DIODE CHAR	ACTERISTICS					
Forward On-Voltage	$(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$ $(I_S = 55 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V_{SD}		0.82 0.99 0.65	1.2 - -	Vdc
Reverse Recovery Time		t _{rr}	-	36.5	-	ns
,	$(I_S = 30 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$	t _a	-	17.7	-	1
		t _b	-	18.8	-	1
Reverse Recovery Stored Charge		Q _{rr}	-	0.024	-	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

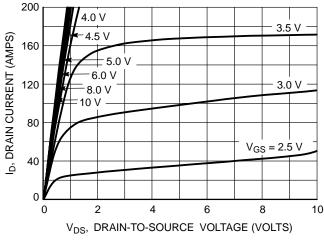
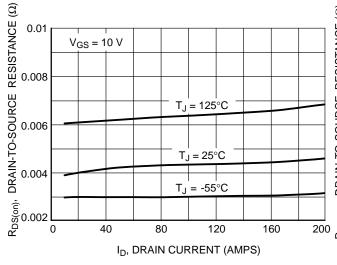



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

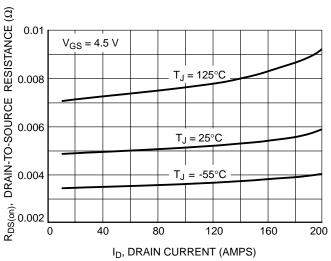
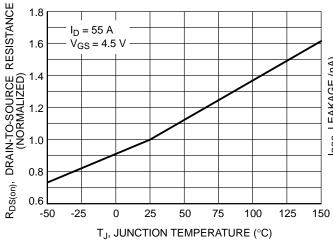



Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Temperature

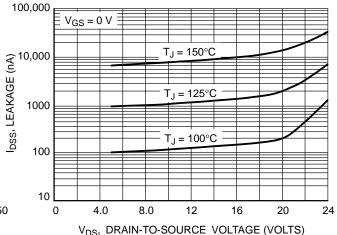
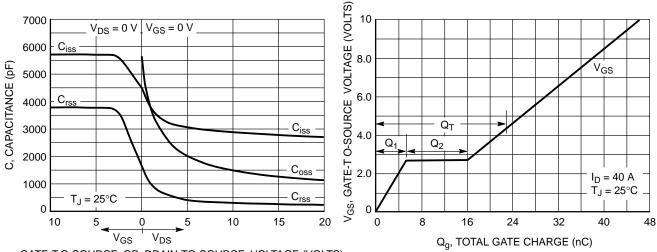



Figure 5. On-Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

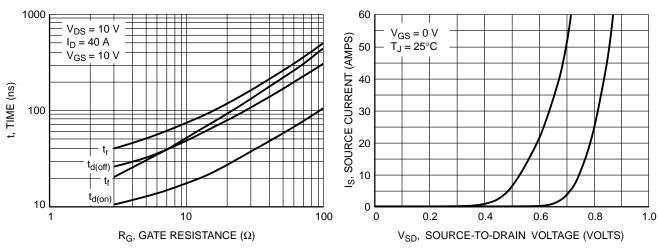


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

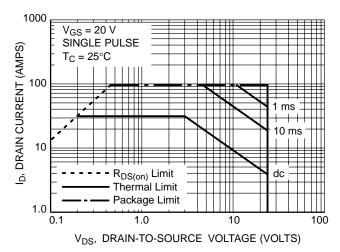


Figure 11. Maximum Rated Forward Biased Safe Operating Area

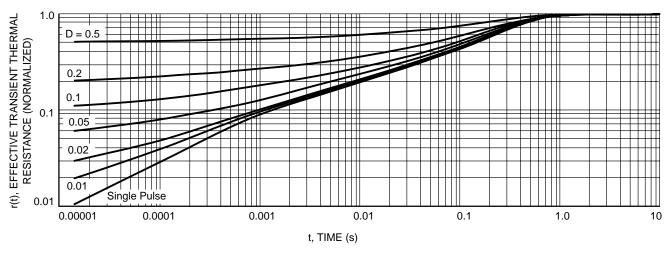
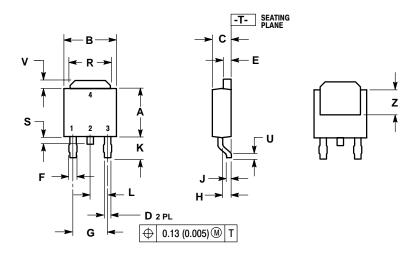



Figure 12. Thermal Response

PACKAGE DIMENSIONS

DPAK CASE 369A-13 **ISSUE AB**

- DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.250	5.97	6.35	
В	0.250	0.265	6.35	6.73	
C	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.033	0.040	0.84	1.01	
F	0.037	0.047	0.94	1.19	
G	0.180 BSC		4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29	2.29 BSC	
R	0.175	0.215	4.45	5.46	
S	0.020	0.050	0.51	1.27	
U	0.020		0.51		
٧	0.030	0.050	0.77	1.27	
Z	0.138		3.51		

STYLE 2: PIN 1. GATE

2. DRAIN 3. SOURCE

4. DRAIN

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.