Advance Information

Power MOSFET 2.6 Amps, 52 Volts N-Channel, Logic Level, Clamped MOSFET w/ ESD Protection in a SOT-223 Package

Benefits

- High Energy Capability for Inductive Loads
- Low Switching Noise Generation

Features

- Diode Clamp Between Gate and Source
- ESD Protection HBM 5000 V
- Active Over-Voltage Gate to Drain Clamp
- Scalable to Lower or Higher R_{DS(on)}
- Internal Series Gate Resistance

Applications

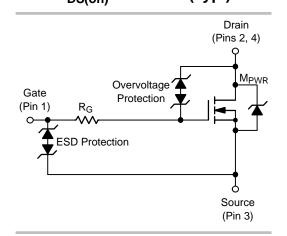
• Automotive and Industrial Markets: Solenoid Drivers, Lamp Drivers, Small Motor Drivers

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	52-59	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±12	Vdc
Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Single Pulse (tp = 10 μ s)	I _D I _{DM}	2.6 10	A
Total Power Dissipation @ $T_A = 25^{\circ}C$	PD	1.69	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting T _J = 125°C (V_{DD} = 50 V, I _{D(pk)} = 1.5 A, V _{GS} = 10 V, R _G = 25 Ω)	E _{AS}	TBD	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$f{R}_{ heta JC} \ f{R}_{ heta JA} \ f{R}_{ heta JA}$	- 74 169	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Sec.	ΤL	260	°C

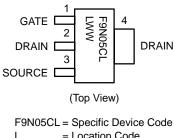
1. When surface mounted to an FR4 board using 1" pad size, (Cu area 1.127 in²)

 When surface mounted to an FR4 board using minimum recommended pad size, (Cu area 0.412 in²)


This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor[®]

http://onsemi.com


2.6 AMPERES 52 V CLAMPED R_{DS(on)} = 120 mΩ (Typ.)

SOT-223 CASE 318E STYLE 3

MARKING DIAGRAM

= Location Code = Work Week

WW = Work Weel

ORDERING INFORMATION

Device	Package	Shipping
NIF9N05CLT4	SOT-223	2500/Tape & Reel

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 Vdc, I_D = 1.0 mAdc$) Temperature Coefficient (Negative)		V _{(BR)DSS}	52 -	55 -10	59 -	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 40 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 40 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		I _{DSS}	-	-	10 25	μAdc
Gate-Body Leakage Current ($V_{GS} = \pm 8 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$) ($V_{GS} = \pm 14 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)		I _{GSS}	-	- ±22	±10 -	μAdc
ON CHARACTERISTICS (Note 3)		•				
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \ \mu Adc)$ Threshold Temperature Coefficient (Negative)		V _{GS(th)}	1.3 -	1.75 -4.5	2.5	Vdc mV/°C
		R _{DS(on)}	- - 70 67		200 385 1225 -	mΩ
Forward Transconductance (Note 3) ($V_{DS} = 15$ V	/dc, I _D = 9.0 Adc)	9FS	-	24	-	Mhos
DYNAMIC CHARACTERISTICS			•	•	•	•
Input Capacitance		C _{iss}	-	155	250	pF
Output Capacitance	$(V_{DS} = 40 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 10 \text{ kHz})$	C _{oss}	-	60	100	1
Transfer Capacitance		C _{rss}	-	25	40	1
but Capacitance		C _{iss}	-	175	-	pF
Output Capacitance	Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ V}, f = 10 \text{ kHz})$		-	70	-	1
		C _{oss}	İ	1	İ	1

 C_{rss}

-

30

-

Transfer Capacitance

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Мах	Unit
SWITCHING CHARACTERISTICS (No	ote 4)		•		•	
Turn-On Delay Time		t _{d(on)}	-	130	200	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 40 Vdc,	t _r	-	500	750	1
Turn-Of f Delay Time	$I_{\rm D} = 9.0 \; {\rm Adc}, \; {\rm R}_{\rm G} = 9.0 \; \Omega$	t _{d(off)}	-	1300	2000	1
Fall Time		t _f	-	1150	1850	1
Turn-On Delay Time		t _{d(on)}	-	200	-	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 15 Vdc,	t _r	-	500	-	1
Turn-Of f Delay Time	$I_D = 1.5 \text{ Adc}, R_G = 2 \text{ k}\Omega$	t _{d(off)}	-	2500	-	1
Fall Time		t _f	-	1800	-	1
Turn-On Delay Time		t _{d(on)}	-	120	-	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 15 Vdc,	t _r	-	275	-	1
Turn-Of f Delay Time	$I_D = 1.5 \text{ Adc}, R_G = 50 \Omega$	t _{d(off)}	-	1600	-	1
Fall Time		t _f	-	1100	-	1
Gate Charge		QT	-	4.5	7.0	nC
	$(V_{GS} = 4.5 \text{ Vdc}, V_{DS} = 40 \text{ Vdc}, I_{D} = 9.0 \text{ Adc})$ (Note 3)	Q ₁	-	1.2	-	1
		Q ₂	-	2.7	-	1
Gate Charge		QT	-	3.6	-	nC
	(V _{GS} = 4.5 Vdc, V _{DS} = 15 Vdc, I _D = 1.5 Adc) (Note 3)	Q ₁	-	1.0	-	1
			-	2.0	-	1
SOURCE-DRAIN DIODE CHARACTE	ERISTICS					
Forward On-Voltage		V _{SD}	- - -	0.86 0.845 0.725	1.2 - -	Vdc
Reverse Recovery Time		t _{rr}	-	700	-	ns
	$(I_{\rm S} = 4.5 \text{ Adc}, V_{\rm GS} = 0 \text{ Vdc}, dI_{\rm s}/dt = 100 \text{ A}/\mu \text{s})$ (Note 3)	ta	-	200	-	1
		<u> </u>		500	1	1

ESD CHARACTERISTICS

Reverse Recovery Stored Charge

Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	5000	-	-	V
	Machine Model (MM)		500	-	-	

500

6.5

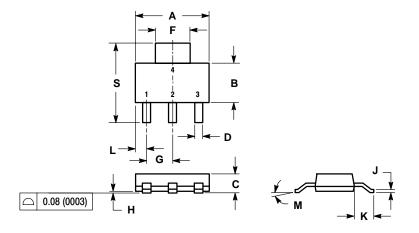
-

-

μC

-

-


t_b

Q_{RR}

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

PACKAGE DIMENSIONS

SOT-223 CASE 318E-04 ISSUE K

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982

Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.249	0.263	6.30	6.70
В	0.130	0.145	3.30	3.70
С	0.060	0.068	1.50	1.75
D	0.024	0.035	0.60	0.89
F	0.115	0.126	2.90	3.20
G	0.087	0.094	2.20	2.40
н	0.0008	0.0040	0.020	0.100
J	0.009	0.014	0.24	0.35
Κ	0.060	0.078	1.50	2.00
L	0.033	0.041	0.85	1.05
М	0 °	10 °	0 °	10 °
S	0.264	0.287	6.70	7.30

STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.