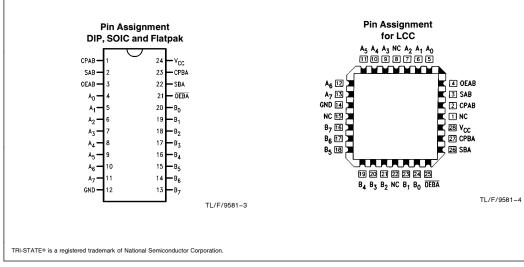
National Semiconductor

54F/74F651 • 54F/74F652 Transceivers/Registers

General Description

These devices consist of bus transceiver circuits with D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to HIGH logic level. Output Enable pins (OEAB, OEBA) are provided to control the transceiver function.

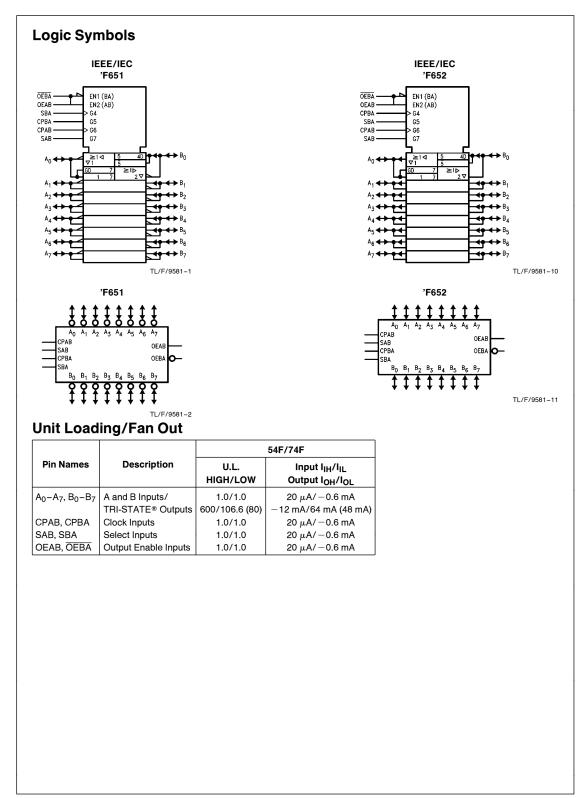
Features

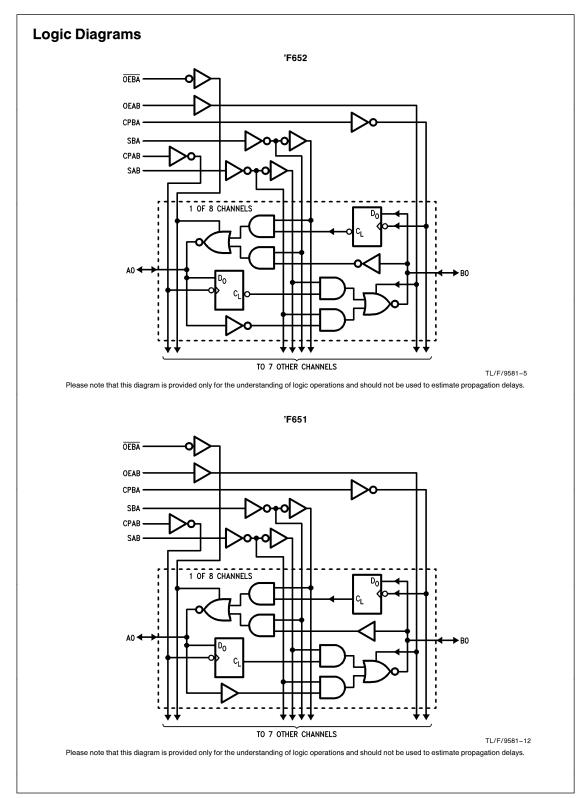

- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths — 'F651 inverting
 - 'F652 non-inverting
- Guaranteed 4000V minimum ESD protection

Commercial	Military	Package Number	Package Description
74F651SPC		N24C 24-Lead (0.300" Wide) Molded Dual-In-Line	
	54F651SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F651SC (Note 1)	C (Note 1) M24B 24-Lead (0.300" Wide) Mc		24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F651FM (Note 2)	54F651FM (Note 2) W24C 24-Lead Cerpack	
	54F651LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C
74F652SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F652SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F652SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F652FM (Note 2) W24C		24-Lead Cerpack
	54F652LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C

Note 1:Devices also available in 13" reel. Use suffix = SCX

Note 2:Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB

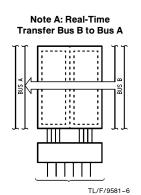

Connection Diagrams



© 1995 National Semiconductor Corporation TL/F/958

RRD-B30M75/Printed in U. S. A.

December 1994

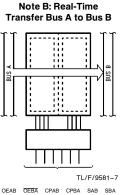

Functional Description

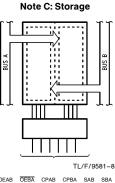
In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select (SAB, SBA) controls can multiplex stored and real-time.

The examples in *Figure 1* demonstrate the four fundamental bus-management functions that can be performed with the Octal bus transceivers and receivers.

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the appro-

н н х




OEBA CPAB CPBA SAB SBA

OEAB

L

L X X X L

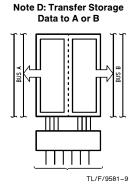
x x x

1

х

х

x x


/

х

н

TL/F/9581-7 OEAB OEB CPBA SAB SBA X H X L X L X

FIGURE 1

priate Clock Inputs (CPAB, CPBA) regardless of the Select

or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without

using the internal D flip-flops by simultaneously enabling

OEAB and OEBA. In this configuration each Output reinforc-

es its Input. Thus when all other data sources to the two

sets of bus lines are in a HIGH impedance state, each set of

bus lines will remain at its last state.

OEAB OEBA CPAB CPBA SAB SBA H L HorL HorL H X

Inputs						Inputs/Outp	outs (Note 1)	Operating Mode	
OEAB	OEBA	СРАВ	СРВА	SAB	SBA	A ₀ thru A ₇ B ₀ thru B ₇			
L	Н	H or L	H or L	х	х	Input	Input	Isolation	
L	Н	$\langle $	<u> </u>	х	х	mpat	mpat	Store A and B Data	
Х	Η	$\langle $	H or L	х	х	Input	Not Specified	Store A, Hold B	
Н	Н	$\langle \rangle$	<u> </u>	х	х	Input	Output	Store A in Both Registers	
L	Х	H or L		х	Х	Not Specified	Input	Hold A, Store B	
L	L	$\langle \rangle$	<u> </u>	х	х	Output	Input	Store B in Both Registers	
L	L	Х	х	х	L	Output	Input	Real-Time B Data to A Bus	
L	L	х	H or L	х	н	Culput	mpat	Store B Data to A Bus	
Н	Н	Х	Х	L	х	Input	Output	Real-Time A Data to B Bus	
Н	Н	H or L	х	н	х	mpat	Culput	Stored A Data to B Bus	
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus	

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

 \checkmark = LOW to HIGH Clock Transition

Note 1: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Note 1. Absolute maximum ratings are value	s beyond which the device may

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

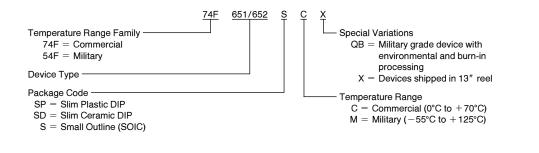
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

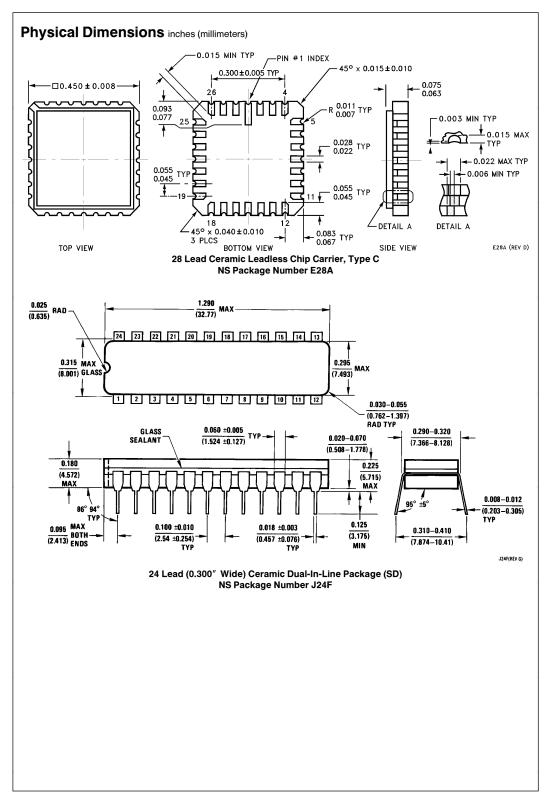
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output TRI-STATE Output	-0.5V to V _{CC} -0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

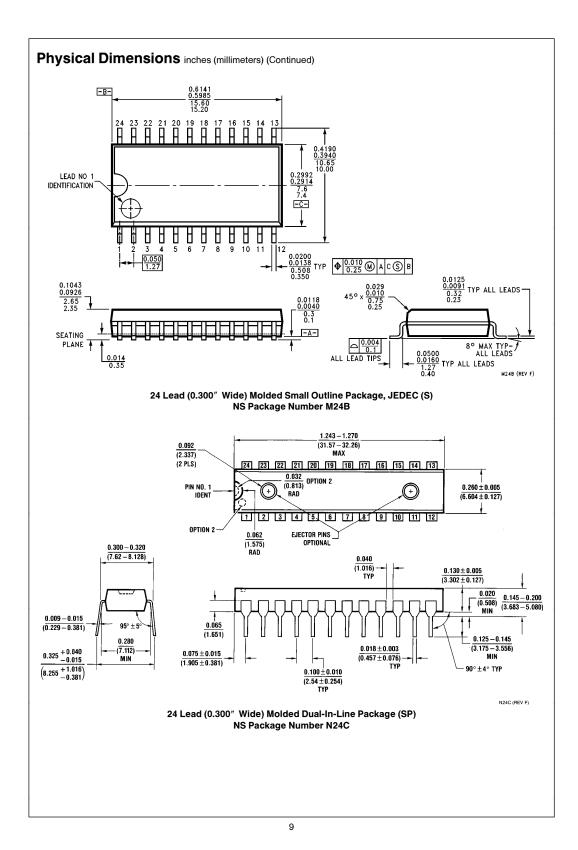
DC Electrical Characteristics

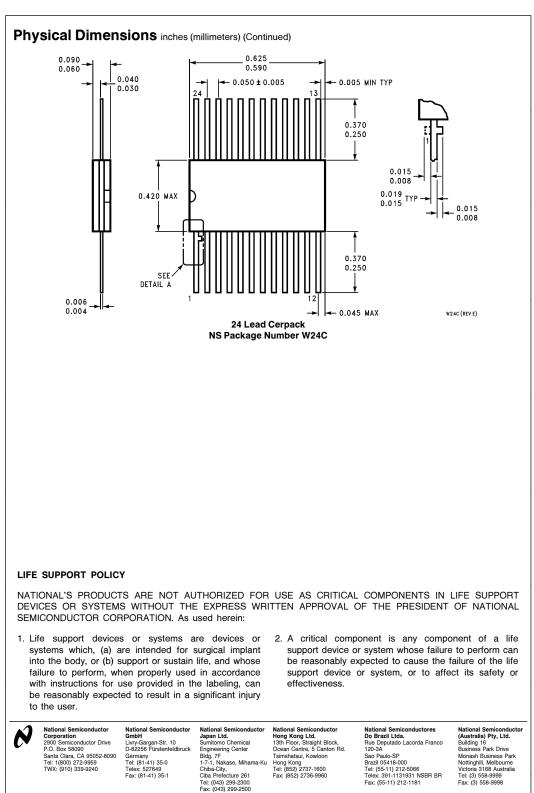
Symbol	Parameter -		54F/74F			Units	v _{cc}	Conditions	
Symbol			Min	Тур	Мах	Units	VCC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18$ mA (Non I/O Pins)	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC}	2.0 2.0			V	Min	$I_{OH} = -12 \text{ mA} (A_n, B_n)$ $I_{OH} = -15 \text{ mA} (A_n, B_n)$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.55 0.55	v	Min	$I_{OL} = 48 \text{ mA} (A_n, B_n)$ $I_{OL} = 64 \text{ mA} (A_n, B_n)$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V (Non I/O Pins)	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{BVIT}	Input HIGH Current Breakdown (I/O)	54F 74F			1.0 0.5	mA	Max	$V_{IN} = 5.5V$ (A _n , B _n)	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	VI _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$ (Non I/O Pins)	
I _{IH} + I _{OZH}	Output Leakage Curr	ent			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$	
$I_{IL} + I_{OZL}$	Output Leakage Curr	ənt			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$	
I _{OS}	Output Short-Circuit Current		-100		-225	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
ICCH	Power Supply Current			105	135	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			118	150	mA	Max	$V_{O} = LOW$	
I _{CCZ}	Power Supply Current			115	150	mA	Мах	V _O = HIGH Z	


Symbol		74F		5	4F	7		
	Parameter	V _{CC} =	+ 25°C + 5.0V 50 pF		c = Mil 50 pF	T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Мах	Min	Max	Min	Мах	1
f _{max}	Max. Clock Frequency	90		75		90		MHz
t _{PLH}	Propagation Delay	2.0	7.0	2.0	8.5	2.0	8.0	ns
t _{PHL}	Clock to Bus	2.0	8.0	2.0	9.5	2.0	9.0	
^t PLH	Propagation Delay	2.0	8.5	1.0	9.0	2.0	9.0	ns
^t PHL	Bus to Bus ('F651)	1.0	7.5	1.0	8.0	1.0	8.0	
^t PLH	Propagation Delay	1.0	7.0	1.0	8.0	1.0	7.5	ns
^t PHL	Bus to Bus ('F652)	1.0	6.5	1.0	8.0	1.0	7.0	
t _{PLH}	Propagation Delay	2.0	8.5	2.0	11.0	2.0	9.5	ns
t _{PHL}	SBA or SAB to A or B	2.0	8.0	2.0	10.0	2.0	9.0	


AC Operating Requirements

Symbol		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	74F T _A , V _{CC} = Com		Units
	Parameter			T _A , V _{CC}	; = Mil			
		Min	Мах	Min	Мах	Min	Max	
t _{PZH} t _{PZL}	Enable Time *OEBA to A	2.0 2.0	9.5 12.0	2.0 2.0	10.0 10.0	2.0 2.0	10.0 12.5	
t _{PHZ} t _{PLZ}	Disable Time *OEBA to A	1.0 2.0	7.5 8.5	1.0 1.0	9.0 9.0	1.0 2.0	8.0 9.0	ns
t _{PZH} t _{PZL}	Enable Time OEAB to B	2.0 3.0	9.5 13.0	2.0 2.0	10.0 12.0	2.0 3.0	10.0 14.0	
t _{PHZ} t _{PLZ}	Disable Time OEAB to B	2.0 2.0	9.0 10.5	1.0 1.0	9.0 12.0	2.0 2.0	10.0 11.0	ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW, Bus to Clock	5.0 5.0		5.0 5.0		5.0 5.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW, Bus to Clock	2.0 2.0		2.5 2.5		2.0 2.0		ns
t _w (H) t _w (L)	Clock Pulse Width HIGH or LOW	5.0 5.0		5.0 5.0		5.0 5.0		ns


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.