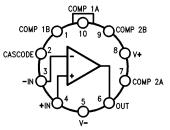


LM715 High Speed Operational Amplifier

General Description

The LM715 is a high speed, high gain, monolithic operational amplifier intended for use in a wide range of applications where fast signal acquisition or wide bandwidth is required. The LM715 features fast settling time, high slew rate, low offsets, and high output swing for large signal applications. In addition, the device displays excellent temperature stability and will operate over a wide range of supply voltages.

Features

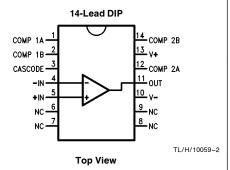

- High slew rate— 100 V/μs (Inverting, A_V = 1) typically
- Fast settling time— 800 ns typically
- Wide bandwidth— 65 MHz typically
- Wide operating supply range
- Wide input voltage ranges

Applications

- Video amplifiers
- Active filters
- High speed data conversion

Connection Diagrams

10-Lead Metal Package



TL/H/10059-1 **Top View**

Lead 5 connected to case.

Ordering Information

Device	Package	Package
Code	Code	Description
LM715MH	H10C	Metal
LM715CH	H10C	Metal
LM715MJ	J14A	Ceramic DIP
LM715CJ	J14A	Ceramic DIP

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

-65°C to +175°C

Operating Temperature Range Extended (LM715M) Commercial (LM715C)

0°C to +70°C

-55°C to +125°C

Internal Power Dissipation (Notes 1, 2)

Input Voltage (Note 3)

10L-Metal Can 1.07W 14L-Ceramic DIP 1.36W Supply Voltage $\pm\,18V$ Differential Input Voltage $\pm 5V$

 $\pm\,15V$

Lead Temperature

Metal Can and Ceramic DIP

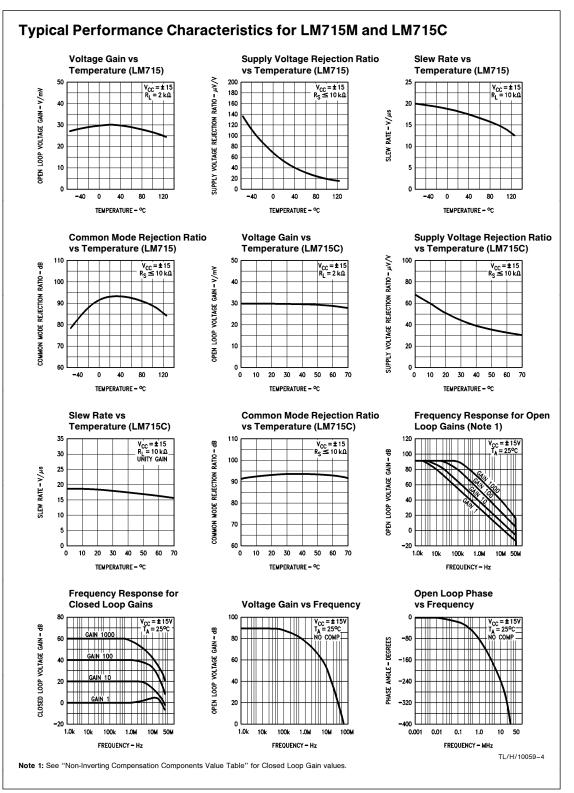
(Soldering, 60 sec.)

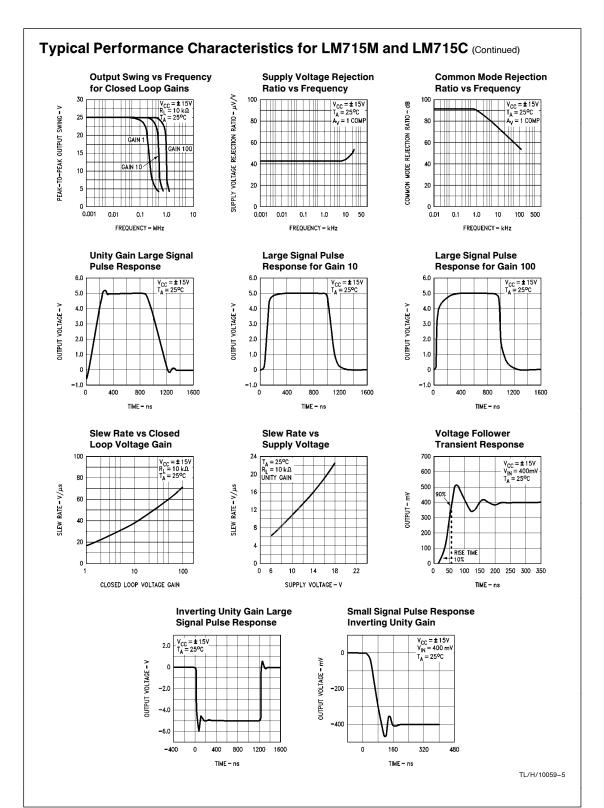
300°C

LM715M and LM715C

Electrical Characteristics $T_A = 25^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise specified

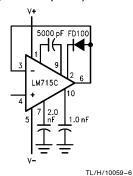
Symbol	Parameter		Conditions	LM715M			LM715C			Units
Cymbol			Conditions	Min	Тур	Max	Min	Тур	Max	Oilles
V _{IO}	Input Offset Vo	oltage	$R_S \le 10 \text{ k}\Omega$		2.0	5.0		2.0	7.5	mV
IIO	Input Offset C	urrent			70	250		70	250	nA
I _{IB}	Input Bias Current				400	750		400	1500	nA
Z _I	Input Impedance				1.0			1.0		МΩ
RO	Output Resistance				75			75		Ω
Icc	Supply Curren	t			5.5	7.0		5.5	10	mA
P _c	Power Consumption				165	210		165	300	mW
V _{IR}	Input Voltage	Range		±10	±12		±10	±12		V
A _{VS}	Large Signal Voltage Gain		$R_L \ge 2.0 \text{ k}\Omega, V_O = \pm 10V$	15	30		10	30		V/mV
V	Settling Time		$V_O = \pm 5.0V, A_V = 1.0$		800			800		ns
TR	Transient	Rise Time	$V_I = 400 \text{ mV}, A_V = 1.0$		30	60		30	75	ns
	Response	Overshoot			25	40		25	50	%
SR	Slew Rate		A _V = 100		70			70		
			A _V = 10		38			38		V/μs
			A _V = 1.0 (Non-Inverting)	15	18		10	18		ν, μ3
			A _V = 1.0 (Inverting)		100			100		

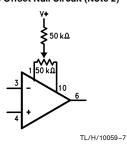

The following specifications apply over the range of $-55^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ for the LM715M, and $0^{\circ}\text{C} \leq +70^{\circ}\text{C}$ for the LM715M, and


Symbol	Parameter	Conditions	LM715M			LM715C			Units
Symbol			Min	Тур	Max	Min	Тур	Max	Office
V _{IO}	Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$			7.5			10	mV
I _{IO}	Input Offset Current	$T_A = T_{A \text{ Max}}$			250			250	nA
		$T_A = T_{A \text{ Min}}$	T _{A Min}		800			750] "
I _{IB}	Input Bias Current	$T_A = T_{A Max}$			0.75			1.5	<u>μ</u> Α
		$T_A = T_{A \text{ Min}}$			4.0			7.5	μπ
CMR	Common Mode Rejection	$R_S \le 10 \text{ k}\Omega$	74	92		74 (Note 4)	92 (Note 4)		dB
PSRR	Power Supply Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		45	300		45 (Note 4)	400 (Note 4)	μV/V
A _{VS}	Large Signal Voltage Gain	$\begin{array}{c} R_L \geq 2.0 \ k\Omega, \\ V_O = \ \pm 10V \end{array}$	10			8			V/mV
V _{OP}	Output Voltage Swing	$R_L = 2.0 k\Omega$	±10	±13		±10	±13		V

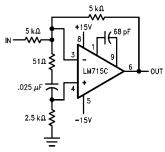
Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 10L-Metal Can at 7.1 mW/°C, and the 14L-Ceramic DIP at 9.1 mW/°C.

Note 3: For supply voltages less than \pm 15V, the absolute maximum input voltage is equal to the supply voltage.

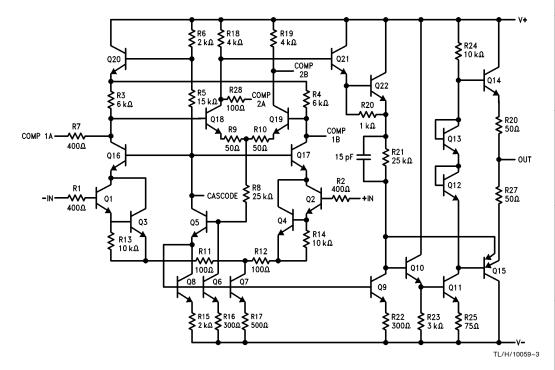

Note 4: $T_A = 25^{\circ}C$ only.



Typical Performance Characteristics for LM715M and LM715C (Continued)


Voltage Follower (Note 2)

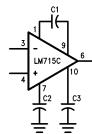
Voltage Offset Null Circuit (Note 2)


High Slew Rate Circuit (Note 2)

TL/H/10059-8

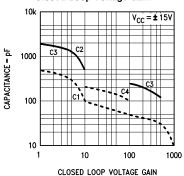
Note 2: Lead numbers apply to metal package.

Equivalent Circuit


Applications Information

Non-Inverting Compensation Components Values

Closed Loop Gain	C1	C2	СЗ
1000	10 pF		
100	50 pF		250 pF
10 (Note)	100 pF	500 pF	1000 pF
1	500 pF	2000 pF	1000 pF


Note: For gain 10, compensation may be simplified by removing C2, C3 and adding a 200 pF capacitor (C4) between Lead 7 and 10.

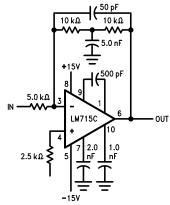
Frequency Compensation Circuit

TL/H/10059-9

Suggested Values of Compensation Capacitors vs Closed Loop Voltage Gain

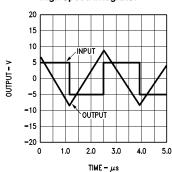
TL/H/10059-10

Layout Instructions


Layout—The layout should be such that stray capacitance is minimal.

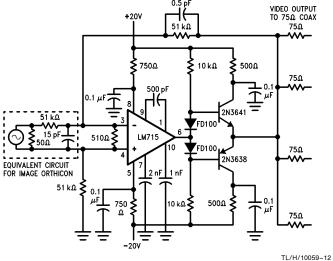
Supplies—The supplies should be adequately bypassed. Used of 0.1 μF high quality ceramic capacitors is recommended.

Ringing—Excessive ringing (long acquisition time) may occur with large capacitive loads. This may be reduced by isolating the capacitive load with a resistance of 100Ω . Large source resistances may also give rise to the same problem and this may be decreased by the addition of a capacitance across the feedback resistance. A value of around 50 pF for unity gain configuration and around 3.0 pF for gain 10 should be adequate.


Latch Up—This may occur when the amplifier is used as a voltage follower. The inclusion of a diode between leads 6 and 2 with the cathode toward lead 2 is the recommended preventive measure.

Typical Applications

TL/H/10059-14

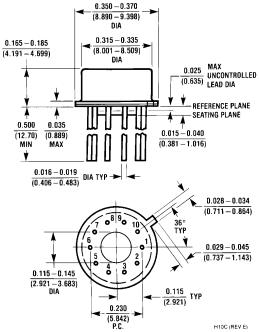

High Speed Integrator

TL/H/10059-13

Note: All lead numbers on this page apply to metal package.

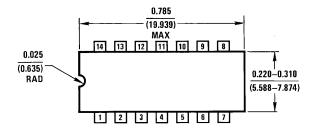
Typical Applications (Continued)

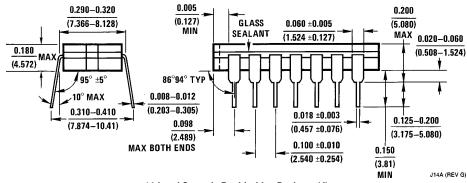
Wide Band Video Amplifier Drive Capability with 75Ω Coax Cable


10
0
0 dB = 255 mVpk - pk0
5 μA pk - pk1
0.001 0.01 0.1 1.0 10 100

FREQUENCY - MHz

TL/H/10059-11


Note: All lead numbers shown refer to metal package.


Physical Dimensions inches (millimeters)

10-Lead Metal Can Package (H) Order Number LM715CH or LM715MH NS Package Number H10C

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Dual-In-Line Package (J) Order Number LM715CJ or LM715MJ NS Package Number J14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408