Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

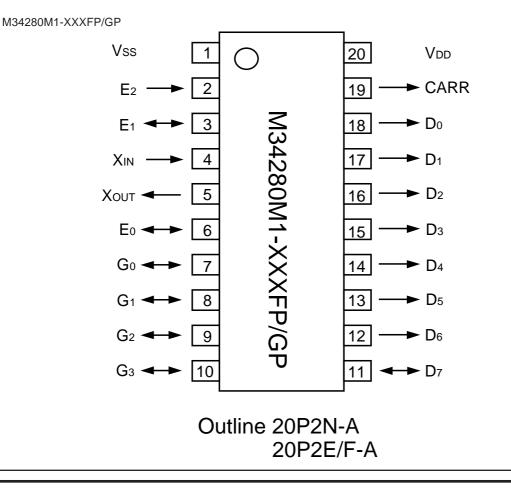
Renesas Technology Corp. Customer Support Dept. April 1, 2003

DESCRIPTION

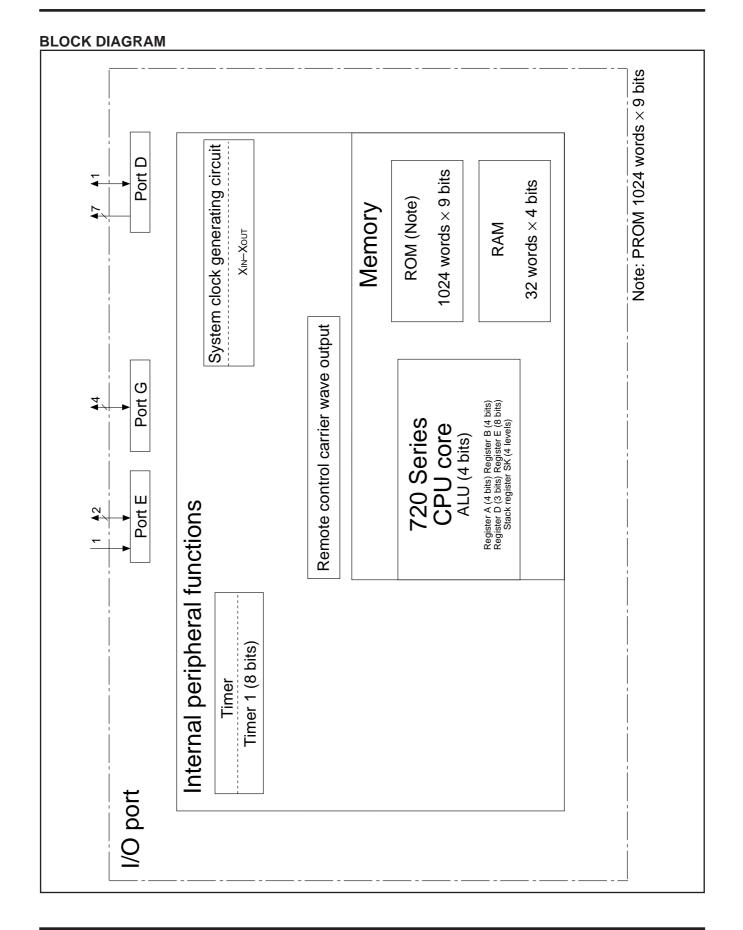
The 4280 Group is a 4-bit single-chip microcomputer designed with CMOS technology for remote control transmitters. The 4280 Group has 7 carrier waves and enables fabrication of 8×7 key matrix.

FEATURES

- Supply voltage 1.8 V to 3.6 V
- Subroutine nesting 4 levels


- Carrier wave output function (port CARR) f(XIN), f(XIN)/4, f(XIN)/8, f(XIN)/12 f(XIN)/64, f(XIN)/96, "H" output fixed
- Logic operation function (XOR, OR, AND)
- RAM back-up function
- Key-on wakeup function (ports D7, E0-E2, G0-G3) 8
- I/O port (ports D, E, G, CARR) 16
- Oscillation circuit Ceramic resonance
- Watchdog timer
- Power-on reset circuit
- Voltage drop detection circuit Typical:1.50 V

APPLICATION


Various remote control transmitters

Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34280M1-XXXFP	1024 words	32 words	20P2N-A	Mask ROM
M34280M1-XXXGP	1024 words	32 words	20P2E/F-A	Mask ROM
M34280E1FP	1024 words	32 words	20P2N-A	One Time PROM
M34280E1GP	1024 words	32 words	20P2E/F-A	One Time PROM

PIN CONFIGURATION (TOP VIEW)

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

PERFORMANCE OVERVIEW

Pa	arameter		Function			
Number of basic instructions		tions	62			
Minimum instru	uction exe	cution time	8.0 μs (at 4.0 MHz system clock frequency)			
			(f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)			
Memory sizes	ROM	M34280M1/	1024 words X 9 bits			
	RAM	E1	32 words X 4 bits			
Input/Output	D0-D6	Output	Seven independent output ports			
ports	D7	I/O	1-bit I/O port with the pull-down function			
	E0-E2	Input	3-bit input port with the pull-down function			
E0, E1 Output		Output	2-bit output port (Eo, E1)			
G0-G3 I/O		I/O	4-bit I/O port with the pull-down function			
	CARR	Output	1-bit output port; CMOS output			
Timer 1			8-bit timer with a reload register			
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)			
Device structur	е		CMOS silicon gate			
Package			20-pin plastic molded SOP (20P2N-A)/SSOP (20P2E/F-A)			
Operating temp	perature r	ange	–20 °C to 85 °C			
Supply voltage			1.8 V to 3.6 V			
Power	Active m	ode	400 μΑ			
dissipation			$(f(X_{IN}) = 4.0 \text{ MHz}, \text{ system clock} = f(X_{IN})/8, \text{ VDD} = 3 \text{ V})$			
(typical value)	RAM bad	ck-up mode	0.1 μ A (at room temperature, VDD = 3 V)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
Vdd	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
Xin	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator
Хоит	System clock output	Output	between pins XIN and XOUT. The feedback resistor is built-in between pins XIN and XOUT.
D0-D6	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is P-channel open-drain.
D7	I/O port D	I/O	1-bit I/O port. For input use, turn on the built-in pull-down transistor and set the latch of the specified bit to "0." In addition, key-on wakeup function using "H" level sense becomes valid. The output structure is P-channel open-drain.
E0-E2	I/O port E	Output	2-bit (E0, E1) output port. The output structure is P-channel open-drain.
		Input	3-bit input port. For input use (E ₀ , E ₁), turn on the built-in pull-down transistor and set the latch of the specified bit to "0." In addition, key-on wakeup function using "H" level sense becomes valid. Port E ₂ has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.
G0–G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. Port G has a key-on wakeup function using "H" level sense and pull-down transistor.
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to Vod pin (Note 2).
E2	Open or connect to Vss pin.
G0–G3	Set the output latch to "0" and open, or
	connect to Vss pin.

Notes 1: Port D7: Set the bit 2 (PU0₂) of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF. 2: Set the corresponding bits (PU0₀, PU0₁) of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "0" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and Vbb)

• Connect the unused pins to Vss or Vbb at the shortest distance and use the thick wire against noise.

Port	Pin	Input/		Control	Control	Control	Remark
	PIII	Output	Output structure	bits	instructions	registers	Remark
Port D	D0-D6	Output	P-channel open-drain	1 bit	SD		
		(7)			RD		
					CLD		
	D7	I/O			SD	PU0	Pull-down function and key-on
		(1)			RD		wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and key-on
	E1	(2)		2 bits	IAE		wakeup function
				Input:			(programmable)
	E2	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA		Pull-down function and key-on
		(4)			IAG		wakeup function
Port CARR	CARR	Output	CMOS	1 bit	OCRA	С	
		(1)					

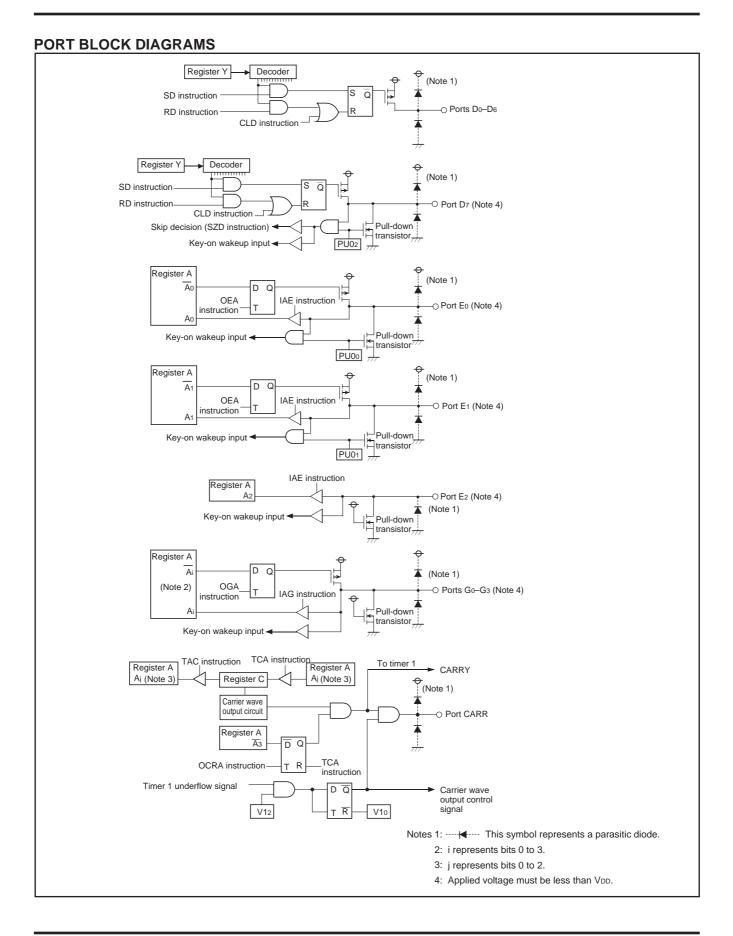
PORT FUNCTION

DEFINITION OF CLOCK AND CYCLE

System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock	
When not using	f(XIN)/8	f(Xın)/32	
When using	f(Xin)	f(XIN)/4	


• Instruction clock (INSTCK)

The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

• Machine cycle The machine cycle is the cycle required to execute the instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

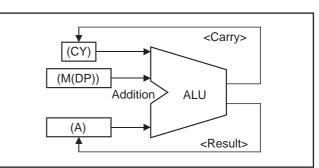
(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A₀ is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.


(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

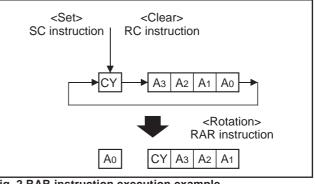
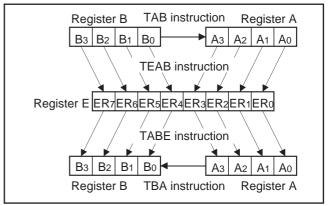
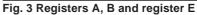




Fig. 2 RAR instruction execution example

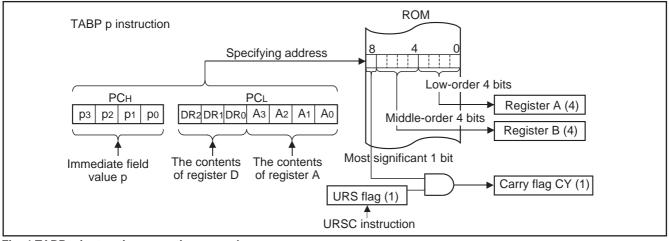


Fig. 4 TABP p instruction execution example

(5) Most significant ROM code reference enable flag (URS) URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned

from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

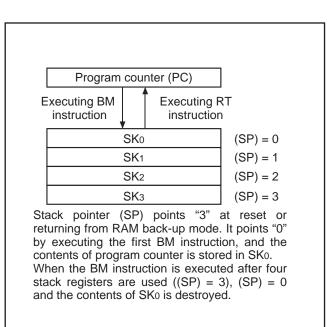
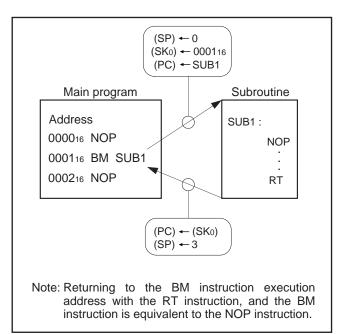

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.


(7) Skip flag

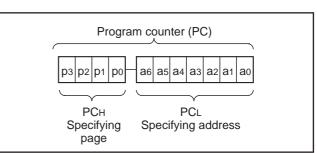
Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

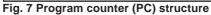
Note : The 4280 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

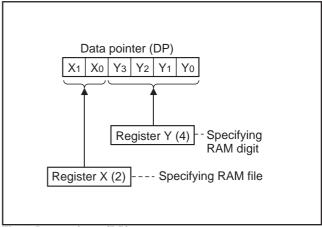
(8) Program counter (PC)

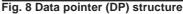
Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).


Make sure that the PCH does not exceed after the last page of the built-in ROM.


(9) Data pointer (DP)


Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).


Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

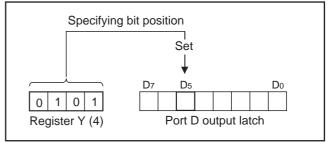


Fig. 9 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

PROGRAM MEMORY (ROM)

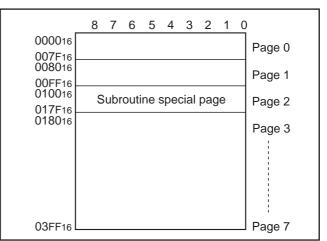
The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages		
M34280M1	1004 wordo	Q(0 to 7)		
M34280E1	1024 words	8 (0 to 7)		

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP p instruction.


DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Table 2 RAM size

Product	RAM size				
M34280M1	22 words \mathbf{V} (hits (129 hits)				
M34280E1	- 32 words X 4 bits (128 bits)				

Fig. 10 ROM map of M34280M1

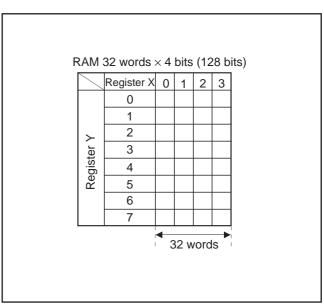


Fig. 11 RAM map

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

TIMERS

The 4280 Group has the programmable timer.

• Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

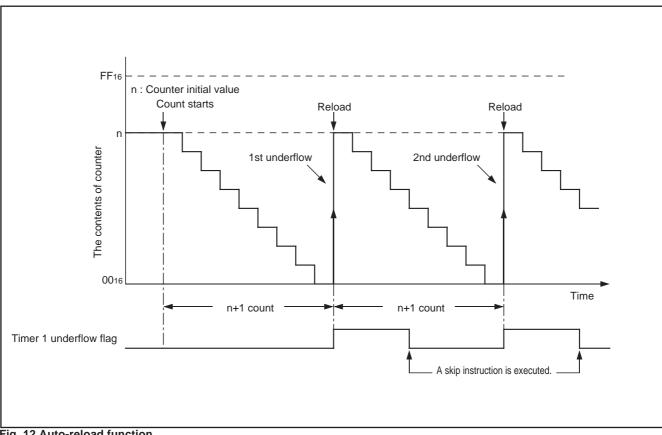


Fig. 12 Auto-reload function

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

The 4280 Group timer consists of the following circuit.

• Timer 1 : 8-bit programmable timer

This timer can be controlled with the timer control register V1. Timer 1 function is described below.

Table 3 Function related timer

Circuit	Structure	Count source	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Use of output signal	register
Timer 1	8-bit programmable	• Carrier generating circuit	1 to 256	Carrier wave output control	V1
	binary down counter	output (CARRY)			
		 Bit 5 of watchdog timer 			

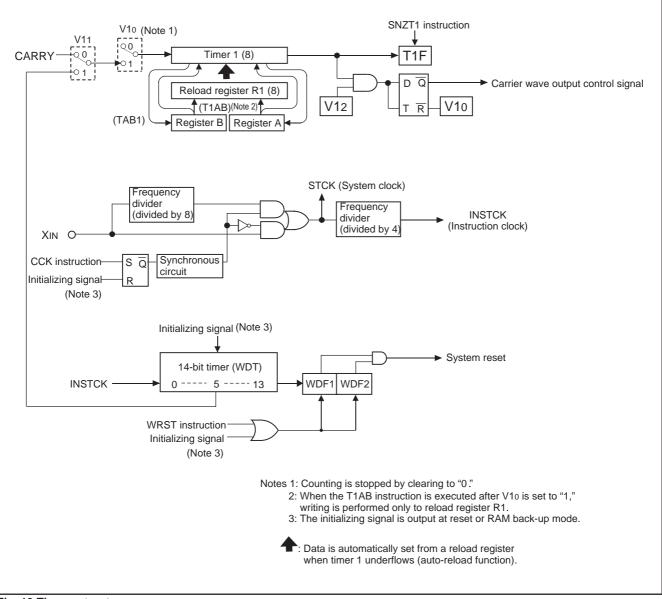


Fig. 13 Timers structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Table 4 Control registers related to timer

Timer control register V1		at reset : 0002		at RAM back-up : 0002	W
		0	Auto-control output by timer 1 is invalid		
V12	V12 Carrier wave output auto-control bit		Auto-control output	by timer 1 is valid	
	V11 Timer 1 count source selection bit		Carrier output (CAF	RRY)	
V I1			Bit 5 of watchdog ti	imer (WDT)	
			Stop (Timer 1 state	e retained)	
V1o	Timer 1 control bit	1	Operating		

Note: "W" represents write enabled.

(1) Control register related to timer

Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

(2) Precautions

Note the following for the use of timers.

Count source

Stop timer 1 counting to change its count source.

- Watchdog timer Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1,

0 select the count source with the bit 1 of register V1, and 0 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 1 underflow flag (T1F)

Timer 1 underflow flag is set to "1" when the timer 1 underflows. The state of this flag can be examined with the skip instruction (SNZT1).

T1F flag is cleared to "0" when the next instruction is skipped with a skip instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

When using the watchdog timer, execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM backup mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

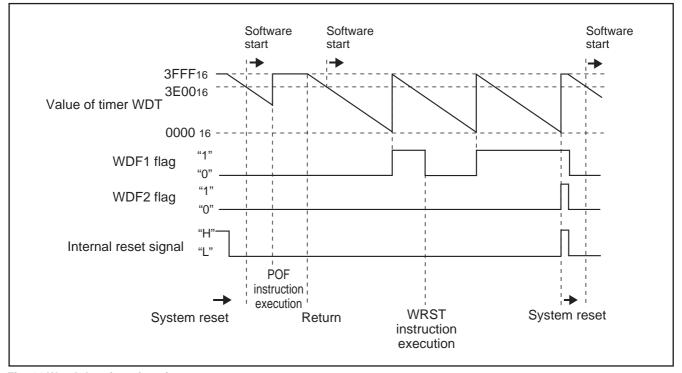


Fig. 14 Watchdog timer function

CARRIER GENERATING CIRCUIT

The 4280 Group can output the various carrier waveforms by the carrier wave selection register C.

Set the contents of this register through register A with the TCA instruction. The TAC instruction can be used to transfer the contents of register C to register A. When the TCA instruction is executed, the output latch of port CARR is cleared to "0."

The carrier waveform selected by setting register C can be output from port CARR by setting port CARR output latch to "1." When the CARR output latch is cleared to "0," carrier wave output is stopped and port CARR output is fixed to "L" level. The CARR output latch can be set through bit 3 (A₃) of register A with the OCRA instruction. The relationship between the setting value of register C and selected waveform is described below.

Also, timer 1 can auto-control the carrier wave output from port CARR by setting the timer control register V1.

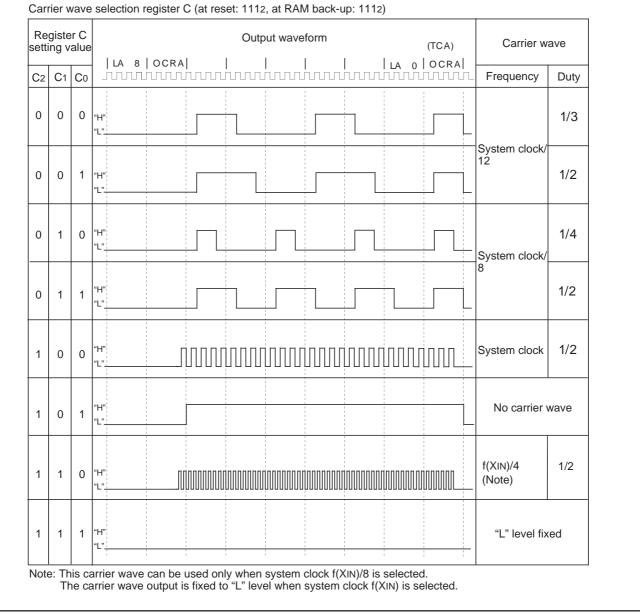


Fig. 15 Carrier wave selection register

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

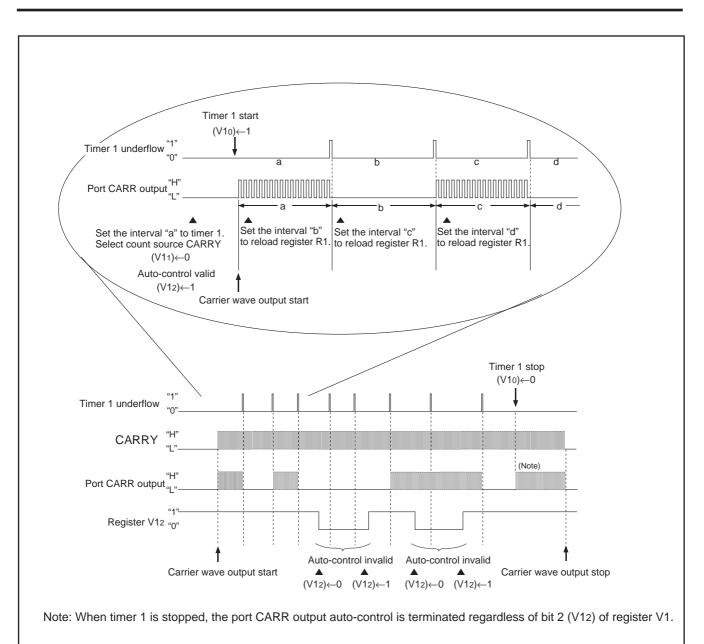


Fig. 16 Port CARR output auto-control by timer 1

LOGIC OPERATION FUNCTION

The 4280 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

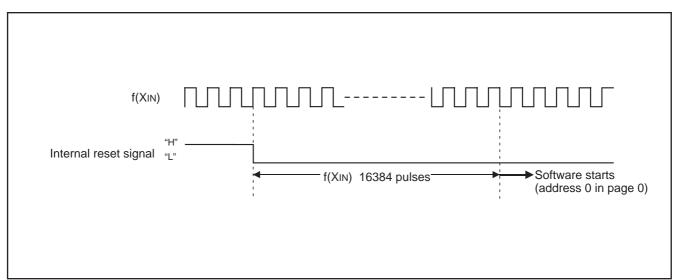
Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

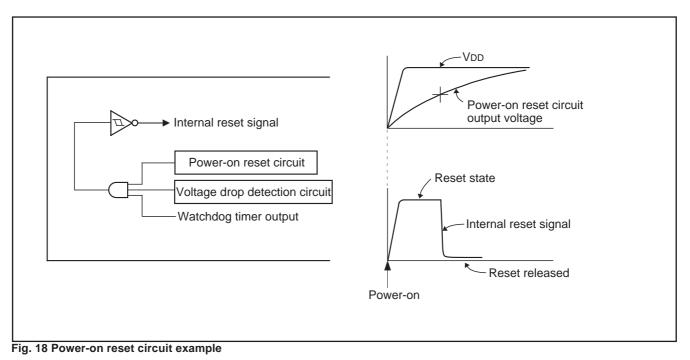
Table 5 Logic operation selection register LO

Logic operation selection register LO		at reset : 002		t reset : 002	at RAM back-up : 002	W
	D1		LO ₀		Logic operation function	
LO1			0	Exclusive logic OR	operation (XOR)	
	Logic operation selection bits	0	1	OR operation (OR)		
LOo			0	AND operation (AN	D)	
			1	Not available		

Note: "W" represents write enabled.

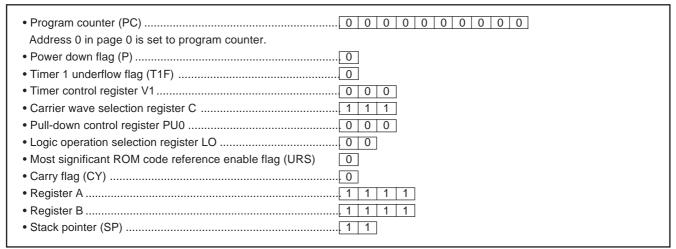


SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS


RESET FUNCTION

The 4280 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD= 0 to 2.2 V is obtained at power-on 1ms or less.



SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

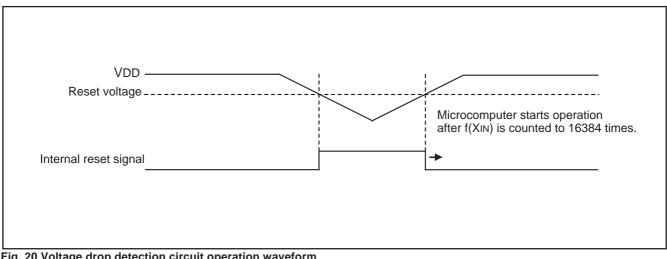
(1) Internal state at reset

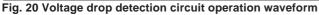
Table 6 shows port state at reset, and Figure 19 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 19 are undefined, so set the initial value to them.

Fig. 19 Internal state at reset

Table 6 Port state at reset


Name	State at reset	State after system is released from reset
D0-D6	"H" output	High impedance state
D7	"H" output	Input circuit OFF (Pull-down transistor OFF)
G0–G3, E2	Input port (Pull-down transistor ON)	Input port (Pull-down transistor ON)
E0, E1	Input circuit OFF (Pull-down transistor OFF)	Input port (Pull-down transistor OFF)


Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced at the RAM back-up mode, when the functions except the RAM and pull-down control register (PU0) are initialized.

RAM BACK-UP MODE

The 4280 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 21 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

Table 7 Functions and states retained at RAM back-up

Functi	on	RAM back-up
Program counter (PC), r	egisters A, B,	×
carry flag (CY), stack po	inter (SP) (Note 2)	^
Contents of RAM		0
Ports Do-D6 (Note 3)		X ("H" output)
Port D7	(PU02)=0 (Note 3)	X ("H" output)
	(PU02)=1	X (input)
Port Eo	(PU00)=0 (Note 4)	X (input cut-off)
	(PU00)=1	X (input)
Port E1	(PU01)=0 (Note 4)	X (input cut-off)
	(PU01)=1	X (input)
Port G		X (input)
Timer control register V	1	×
Pull-down control registe	er PU0	0
Logic operation selection	n register LO	×
Timer 1 function		×
Timer 1 underflow flag (T1F)	×
Watchdog timer (WDT)		×
Watchdog timer flag 1 (\	WDF1)	×
Watchdog timer flag 2 (\	VDF2)	×
Most significant ROM code ref	erence enable flag (URS)	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

3: The contents of port output latch is initialized to "0." However, port continues to output "H" level.

4: The state of this bit is equal to the state at reset.

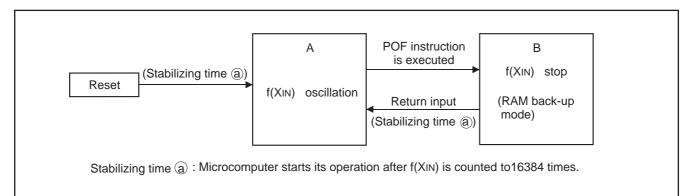
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(4) Return signal

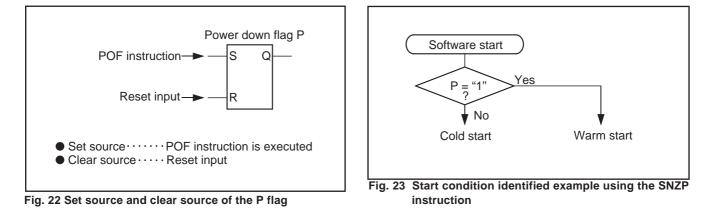
An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

Return source	Return condition	Remarks
Ports D7, E0, E1	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON is valid.
Ports G, E2	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	


(5) Pull-down control register PU0

 Pull-down control register PU0 Register PU0 controls the ON/OFF of pull-down transistor, input, key-on wakeup function of ports E0, E1 and D7. Set the contents of this register through register A with the TPU0A instruction.


Table 9 Pull-down control register

	Pull-down control register PU0	at	t reset : 0002	at RAM back-up : state retained	W
PU02	Port D7 pull-down control bit	0	Pull-down transistor	r OFF, input circuit OFF, key-on wake	up invalid
P002		1	Pull-down transisto	r ON, input circuit ON, key-on wakeu	p valid
PU01	Port E1 pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid	
FUUI		1	Pull-down transisto	r ON, key-on wakeup valid	
PU00	Port E₀ pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid	
F 000		1	Pull-down transisto	r ON, key-on wakeup valid	

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- System clock generating circuit
- Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

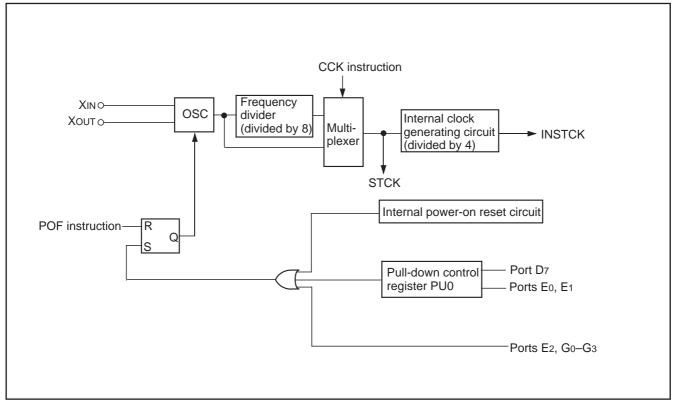


Fig. 24 Clock control circuit structure

Clock signal f(XIN) is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins XIN and XOUT at the shortest distance as shown Figure 26.

A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (2) Data to be written into mask ROM EPROM
- (three sets containing the identical data)
- (3) Mark Specification Form 1

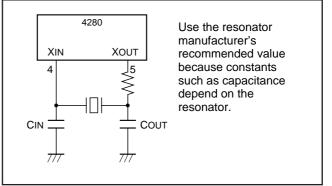


Fig. 25 Ceramic resonator external circuit

LIST OF PRECAUTIONS

1 Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use the thickest wire.

In the One Time PROM version, port E₂ is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E₂/VPP pin as close as possible at the shortest distance.

② Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

• After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.

Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.

• To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and Vdd

• Connect the unused pins to Vss and Vbb at the shortest distance and use the thick wire against noise.

3 Timer

- Count source
 - Stop timer 1 counting to change its count source.
- Watchdog timer Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

④ Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
С	Carrier wave selection register C (3 bits)		
V1	Timer control register V1 (3 bits)	x	Hexadecimal variable
PU0	Pull-down control register PU0 (3 bits)	у	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
х	Register X (2 bits)		immediate value
Y	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (10 bits)		(same for others)
РСн	High-order 3 bits of program counter		
PC∟	Low-order 7 bits of program counter	<i>←</i>	Direction of data movement
SK	Stack register (10 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register		Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
WDT	Watchdog timer	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
WDF1	Watchdog timer flag 1	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
WDF2	Watchdog timer flag 2		in page p3 p2 p1 p0
URS	Most significant ROM code reference enable flag	С	Hex. number C + Hex. number x (also same for
Р	Power down flag	+	others)
STCK	System clock	x	
INSTCK	Instruction clock		
			1

Note : The 4280 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	ТАВ	$(A) \gets (B)$		LA n	$(A) \gets n$	<u>د</u>	SEAM	(A) = (M(DP)) ?
	ТВА	(B) ← (A)			n = 0 to 15 (SP) \leftarrow (SP) + 1	Comparison operation	SEA n	(A) = n ? n = 0 to 15
ansfer	ΤΑΥ	$(A) \leftarrow (Y)$		TABP p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p=0 \text{ to } 7$	⊡ °	Ва	$(PCL) \leftarrow a_{6}-a_{0}$
jister tra	ΤΥΑ	$(Y) \gets (A)$			$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	c	BL p, a	(РСн) ← р
Register to register transfer	TEAB	$(ER_7 - ER_4) \leftarrow (B)$ $(ER_3 - ER_0) \leftarrow (A)$			When URS=0 (B) \leftarrow (ROM(PC))7 to 4	peratio		(PCL) ← a6–a0
Registe	TABE	$ (B) \leftarrow (ER_7 - ER_4) \\ (A) \leftarrow (ER_3 - ER_0) $			$\begin{array}{l} (A) \leftarrow (ROM(PC))_{3 \text{ to } 0} \\ \\ When URS=1 \\ (CY) \leftarrow (ROM(PC))_8 \end{array}$	Branch operation	BA a BLA p, a	(РСL) ← (а6–а4, Аз–Ао) (РСн) ← р
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	uo		$(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(PC) \leftarrow (SK(SP))$		BM a	$(PCL) \leftarrow (a6-a4, A3-A0)$ $(SP) \leftarrow (SP) + 1$
ses	LXY x, y	$ \begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 3 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array} $	Arithmetic operation		(SP) ← (SP) − 1			(SK(SP)) ← (PC) (РСн) ← 2
RAM addresses	INY	$(Y) \gets (Y) + 1$	rithmetic	AM AMC	$(A) \leftarrow (A) + (M(DP))$ $(A) \leftarrow (A) + (M(DP))$	tion	BMLp.a	(PCL) ← a6–a0 (SP) ← (SP) + 1
RAN	DEY	$(Y) \gets (Y) - 1$	A		$(A) \leftarrow (A) + (M(DP))$ + (CY) (CY) \leftarrow Carry	ne opera	Divic p, a	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p= 0 \text{ to } 7$
	TAM j	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$		A n	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$	Subroutine operation	BMLAD	$(PCL) \leftarrow a6-a0$ $(SP) \leftarrow (SP) + 1$
	XAM j	$(A) \leftarrow \rightarrow (M(DP))$		SC	$(CY) \leftarrow 1$		a	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p= 0 \text{ to } 7$
		$\begin{array}{l} (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$		RC	$(CY) \gets 0$		RT	$(PCL) \leftarrow (a_6-a_4, A_3-A_0)$ $(PC) \leftarrow (SK(SP))$
	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$		SZC	(CY) = 0 ?	peratior		$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
r transfer		$j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) - 1$		CMA	$(A) \leftarrow (\overline{A})$	Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
register	XAMI j	$(A) \longleftrightarrow (M(DP))$		RAR	\rightarrow CY \rightarrow A3A2A1A0			
RAM to register tran		$\begin{array}{l} (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \\ (Y) \leftarrow (Y) + 1 \end{array}$		LGOP	Logic operation instruction XOR, OR, AND			
			c	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3			
			Bit operation	RB j	$(Mj(DP)) \leftarrow 0$ j = 0 to 3			
				SZB j	(Mj(DP)) = 0 ? j = 0 to 3			

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

LIST OF INSTRUCTION FUNCTION (CONTINUED)

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	TV1A	$(V12-V10) \leftarrow (A2-A0)$		NOP	$(PC) \gets (PC) + 1$
	TAB1	$\begin{array}{l} (B) \leftarrow (T17-T14) \\ (A) \leftarrow (T13-T10) \end{array}$		POF	RAM back-up
	T1AB	at timer 1 stop (V1₀=0):	c	SNZP	(P) = 1 ?
ion		$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	peration	CCK TLOA	STCK changes to $f(XIN)$ (LO1, LO0) \leftarrow (A1, A0)
Timer operation		$(T13-T10) \leftarrow (A)$ at timer 1 operating:	Other operation	URSC	$(URS) \leftarrow 1$
Time		(V1₀=1) (R17–R14) ← (B)		TPU0A	(PU02–PU00) ← (A2–A0)
	0174	$(R1_3 - R1_0) \leftarrow (A)$		WRST	$(WDF1) \gets 0$
	SNZ1	(T1F) = 1 ? After skipping the next instruction $(T1F) \leftarrow 0$			
ave ration	TCA	$(C_2-C_0) \leftarrow (A_2-A_0)$ $(CARR) \leftarrow 0$			
Carrier wave control operation	TAC	$(A_2 - A_0) \leftarrow (C_2 - C_0)$			
Cont	OCRA	$(CARR) \leftarrow (A_3)$			
	CLD	(D) ← 1			
	RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7			
ation	SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7			
Input/Output operatior	SZD	(D(Y)) = 0 ? (Y) = 7			
nput/Ou	OEA	(E1, E0) ← (A1, A0)			
_	IAE	(A2–A0) ← (E2–E0)			
	OGA	$(G) \gets (A)$			
	IAG	$(A) \gets (G)$			

NOI	NUC				ADL	-													
	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	11000 11111
D3- D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAC	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	BM	В
0001	1	BA	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	BM	В
0010	2	_	_	SZB 2	BL	SNZT1	_	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	BM	В
0011	3	SNZP	INY	SZB 3	BL	_	_	XAM 3	BML	_	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	BM	В
0100	4		RD	SZD	BL	RT		TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	BM	В
0101	5	_	SD	SEAn	BL	RTS		TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	BM	В
0110	6	RC		SEAM	BL	_	IAE	TAM 2	BML	OCRA	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	BM	В
0111	7	SC	DEY	_	BL	T1AB	TAB1	TAM 3	BML	_	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	BM	В
1000	8		_	IAG		—	TLOA	XAMI 0	_	_	_	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	BM	В
1001	9			TDA		_	ССК	XAMI 1	_	_		A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	BM	В
1010	А	AM	TEAB	TABE		—	ТСА	XAMI 2		_		A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
1011	В	AMC	—	_		_	TV1A	XAMI 3	_	-	_	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	BM	В
1100	С	TYA	СМА			RB 0	SB 0	XAMD 0	_	_		A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	BM	В
1101	D	POF	RAR	_	_	RB 1	SB 1	XAMD 1	_	_		A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	BM	В
1110	Е	TBA	TAB	—	_	RB 2	SB 2	XAMD 2	_	_		A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	BM	В
1111	F	WRST	TAY	SZC		RB 3	SB 3	XAMD 3	_	TPU0A		A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	BM	В

INSTRUCTION CODE TABLE

The above table shows the relationship between machine language codes and machine language instructions. D3-D0 show the low-order 4 bits of the machine language code, and D8-D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "--."

The codes for the second word of a two-word instruction are described below.

		The second	word
BL	1	1 a a a	аааа
BML	1	0 a a a	aaaa
BA	1	1 a a a	аааа
BLA	1	1 a a a	Оррр
BMLA	1	0 a a a	Оррр
SEA	0	1011	nnnn
SZD	0	0010	1011

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS

Parameter						lı	nstru	ictio	n co	de				er of Is	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number o words	Number o cycles	Function
	ТАВ	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \leftarrow (B)$
fer	ТВА	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
r trans	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
Register to register transfer	ТҮА	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
ster to	TEAB	0	0	0	0	1	1	0	1	0	0	1	А	1	1	$(ER7-ER4) \leftarrow (B) \ (ER3-ER0) \leftarrow (A)$
Regi	TABE	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$(B) \leftarrow (ER_7 - ER_4) \ (A) \leftarrow (ER_3 - ER_0)$
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
	LXY x, y	0	1	1	X 1	X 0	уз	у2	y 1	уо	0	C +x	y	1	1	$\begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 3 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array}$
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1		$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$
	XAM j	0	0	1	1	0	0	0	j1	jo	0	6	j	1		$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \end{array}$
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) EXOR(j) \\ j = 0 \text{ to } 3 \\ (Y) \leftarrow (Y) - 1 \end{array}$
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1		$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X) \; EXOR(j) \\ j = 0 \; to \; 3 \\ (Y) \leftarrow (Y) + 1 \end{array}$

	≿	
	Carry flag CY	Skip condition
	Ca	
Transfers the contents of register B to re	-	-
Transfers the contents of register A to re	-	-
Transfers the contents of register Y to re	-	-
Transfers the contents of register A to re	-	_
Transfers the contents of registers A and	-	_
Transfers the contents of register E to re	-	-
Transfers the contents of register A to re	-	_
Loads the value x in the immediate field t	-	Continuous
Y. When the LXY instructions are continuousl and other LXY instructions coded continu		description
Adds 1 to the contents of register Y. As next instruction is skipped.	-	(Y) = 0
Subtracts 1 from the contents of register is 15, the next instruction is skipped.	-	(Y) = 15
After transferring the contents of M(DP) to register X and the value j in the immedia	-	_
After exchanging the contents of M(DP) performed between register X and the va	_	-
After exchanging the contents of M(DP) performed between register X and the va Subtracts 1 from the contents of register is 15, the next instruction is skipped.	_	(Y) = 15
After exchanging the contents of M(DP) performed between register X and the va Adds 1 to the contents of register Y. As next instruction is skipped.	-	(Y) = 0

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Detailed description

- egister A.
- egister B.
- egister A.
- egister Y.
- nd B to register E.
- registers A and B.
- egister D.
- to register X, and the value y in the immediate field to register
- isly coded and executed, only the first LXY instruction is executed nuously are skipped.
- a result of addition, when the contents of register Y is 0, the
- er Y. As a result of subtraction, when the contents of register Y

to register A, an exclusive OR operation is performed between iate field, and stores the result in register X.

with the contents of register A, an exclusive OR operation is alue j in the immediate field, and stores the result in register X.

with the contents of register A, an exclusive OR operation is alue j in the immediate field, and stores the result in register X. er Y. As a result of subtraction, when the contents of register Y

with the contents of register A, an exclusive OR operation is alue j in the immediate field, and stores the result in register X. a result of addition, when the contents of register Y is 0, the

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS (CONTINUED)

Parameter	r					l	nstru	uctio	n cc	de				er of ds	er of es	
Type of	Mnemonic	D8	D7	D6	D5	D4	Dз	D2	D1	Do		adeo otati	cimal on	Number of words	Number of cycles	Function
	LA n	0	1	0	1	1	N3	n2	N1	no	0	В	n	1	1	$(A) \leftarrow n$ n = 0 to 15
	TABP p	0	1	0	0	1	0	p2	p1	po	0	9	р	1	3	$\begin{split} n &= 0 \text{ to } 15 \\ (SK(SP)) \leftarrow (PC) \\ (SP) \leftarrow (SP) + 1 \\ (PCH) \leftarrow p, p = 0 \text{ to } 7 \\ (PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0) \\ \text{When URS=0,} \\ (B) \leftarrow (ROM(PC))_{7 \text{ to } 4} \\ (A) \leftarrow (ROM(PC))_{3 \text{ to } 0} \\ \text{When URS=1,} \\ (CY) \leftarrow (ROM(PC))_8 \\ (B) \leftarrow (ROM(PC))_{7 \text{ to } 4} \end{split}$
Arithmetic operation		0	0	0	0	0	1		1	0		0		1	1	$(A) \leftarrow (ROM(PC))_{3 \text{ to } 0}$ $(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$ $(A) \leftarrow (A) + (M(DP))$
metic op	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arith	A n	0	1	0	1	0	ŊЗ	N2	N1	no	0	A	n	1	1	(A) ← (A) + n n = 0 to 15
	SC	0	0	0	0	0	0	1	1	1	0	0	7	1	1	$(CY) \leftarrow 1$
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \leftarrow 0$
	SZC	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(\overline{A}) \leftarrow (\overline{A})$
	RAR	0	0	0	0	1	1	1	0	1	0	1	D	1	1	\rightarrow CY \rightarrow A3A2A1A0
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

	Carry flag CY	Skip condition
Loads the value n in the immediate field When the LA instructions are continuously and other LA instructions coded continuo	_	Continuous description
Transfers bits 7 to 4 to register B and bits 7 to 0 are the ROM pattern in address (I page p. When this instruction is executed, 1 stag Transfers bit 8 of ROM pattern is transfe instruction is executed).	- 0/1	-
One of stack is used when the TABP p ir		
Adds the contents of M(DP) to register A remains unchanged.	_	-
Adds the contents of M(DP) and carry flag	0/1	-
Adds the value n in the immediate field to The contents of carry flag CY remains un Skips the next instruction when there is n	_	Overflow = 0
Sets (1) to carry flag CY.	1	-
Clears (0) to carry flag CY.	0	_
Skips the next instruction when the conte	-	(CY) = 0
Stores the one's complement for register	-	-
Rotates 1 bit of the contents of register A	0/1	-
Execute the logic operation selected by I register A and register E, and stores the	_	_

MITSUBISHI MICROCOMPUTERS

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Detailed description

l to register A. ly coded and executed, only the first LA instruction is executed ously are skipped.

3 to 0 to register A when URS flag is cleared to "0." These bits (DR2 DR1 DR0 A3 A2 A1 A0) specified by registers A and D in

ge of stack register is used. erred to flag CY when URS flag is set to "1" (after the URSC

instruction is executed.

A. Stores the result in register A. The contents of carry flag CY

g CY to register A. Stores the result in register A and carry flag

to register A. nchanged. no overflow as the result of operation.

ents of carry flag CY is "0."

er A's contents in register A.

A including the contents of carry flag CY to the right.

logic operation selection register LO between the contents of e result in register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						Ir	nstru	uctio	n cc	de				er of ds	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	Dз	D2	D1	Do		kadek otati		Number of words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	jo	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
с <u>-</u>	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ? n = 0 to 15
Ŭ Ŭ		0	1	0	1	1	n 3	N2	N1	n o	0	В	n			
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6-a0
	BL p, a	0	0	0	1	1	рз	p2	рı	p ₀	0	3	р	2	2	$(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$
Branch operation		1	1	a 6	a 5	a 4	a 3	a 2	aı	a 0	1	8 +a	а			(Note)
Jch ope	BA a	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6–a4, A3–A0)
Brar		1	1	a 6	a 5	a 4	a 3	a 2	aı	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(РСн) ← р (РС∟) ← (а6–а4, Аз–Ао)
		1	1	a 6	a 5	a 4	рз	p2	рı	po	1	8 +a	р			(Note)

Note : p is 0 to 7 for M34280E1, and p is 0 to 7 for M34280M1.

Skip condition	Carry flag CY	
_	-	Sets (1) the contents of bit j (bit specified
-	_	Clears (0) the contents of bit j (bit specif
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the cont of M(DP) is "0."
(A) = (M(DP))	_	Skips the next instruction when the cont
(A) = n n = 0 to 15	_	Skips the next instruction when the conte
	_	Branch within a page : Branches to addr
-	_	Branch out of a page : Branches to addr
_	_	Branch within a page : Branches to add order 4 bits of the address a in the ident
_	_	Branch out of a page : Branches to add order 4 bits of the address a in page p w

MITSUBISHI MICROCOMPUTERS 4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Detailed description

ed by the value j in the immediate field) of M(DP).

tified by the value j in the immediate field) of M(DP).

ntents of bit j (bit specified by the value j in the immediate field)

ntents of register A is equal to the contents of M(DP).

tents of register A is equal to the value n in the immediate field.

dress a in the identical page.

dress a in page p.

dress (a6 a5 a4 A3 A2 A1 A0) determined by replacing the lowntical page with register A.

dress (a6 a5 a4 A3 A2 A1 A0) determined by replacing the lowwith register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						h	nstru	ictio	n cc	de				er of ds	er of es	3	
ype of	Mnemonic	D8	D7	D6	D5	D4	Dз	D2	D1	Do		ade otati	cimal ion	Number of words	Number of cycles	Function	
	BM a	1	0	a 6	a 5	a 4	аз	a 2	a 1	a 0	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$	
operation	BML p, a	0	0	1	1	1	рз	p2	p1	po	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$	
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	а	а			(PCL) ← a6−a0 (Note)	
Su	BMLA p, a	0	0	1	0	1	0	0	0	0	0	5	0	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$	
		1	0	a 6	a 5	a 4	рз	p 2	рı	po	1	а	р			(PCH) ← p (PCL) ← (a6-a4, A3-A0) (Note)	
peration	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
Return operation	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1		
Timer operation	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) (T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A) at timer 1 operating (V10=1) (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)	
Tim	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$	
	SNZ1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1 ? After skipping the next instruction (T1F) $\leftarrow 0$	
ve ation	TAC	0	0	1	0	0	0	0	0	0	0	4	0	1	1	$(A_2-A_0) \leftarrow (C_2-C_0)$	
Carrier wave control operation	ТСА	0	0	1	0	1	1	0	1	0	0	5	A	1	1	$(C_2-C_0) \leftarrow (A_2-A_0), (CARR) \leftarrow 0$	
Cari contro	OCRA	0	1	0	0	0	0	1	1	0	0	8	6	1	1	$(CARR) \leftarrow (A_3)$	

Skip condition	Carry flag CY	
_	-	Call the subroutine in page 2 : Calls the
-	_	Call the subroutine : Calls the subroutine
-	_	Call the subroutine : Calls the subroutine low-order 4 bits of address a in page p w
_	-	Returns from subroutine to the routine ca
Skip at uncondition	-	Returns from subroutine to the routine call
_	-	Transfers the contents of timer 1 to regis
_	_	Transfers the contents of registers A and
-	_	Transfers the contents of register A to re
(T1F) = 1	-	Skips the next instruction when the conte After skipping, clears (0) to T1F flag.
_	_	Transfers the contents of register A to re
_	-	Transfers the contents of register C to reg

Note : p is 0 to 7 for M34280E1, and p is 0 to 7 for M34280M1.

MITSUBISHI MICROCOMPUTERS

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Detailed description

subroutine at address a in page 2.

ne at address a in page p.

e at address (a₆ a₅ a₄ A₃ A₂ A₁ A₀) determined by replacing the with register A.

called the subroutine.

alled the subroutine, and skips the next instruction at uncondition.

jisters A and B.

nd B to timer 1.

registers V1.

tents of T1F flag is "1."

register C.

egister A. In this case, port CARR output latch is cleared to "0."

egister A to port CARR output latch.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ictio	n co	de				er of ds	er of es	
Type of instructions	Mnemonic	D8	D7	D6	D5	D4	Dз	D2	D1	Do		adecir otatio		Number of words	Number of cycles	Function
	CLD	0	0	0	0	1	0	0	0	1	0	1 1		1	1	$(D) \leftarrow 0$
	RD	0	0	0	0	1	0	1	0	0	0	1 4	Ļ	1	1	$\begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 7 \end{array}$
uo	SD	0	0	0	0	1	0	1	0	1	0	15	5	1	1	$\begin{array}{l} (D(Y)) \leftarrow 1\\ (Y) = 0 \text{ to } 7 \end{array}$
Input/Output operation	SZD	0	0	0	1	0	0	1 0	0	0		2 4 2 E		2	2	(D(Y)) = 0 ? (Y) = 7
t/Outp			0				I	0								
Inpu	OEA	0	1	0	0	0	0	1	0	0	0	8 4	ŀ	1	1	$(E_1, E_0) \leftarrow (A_1, A_0)$
	IAE	0	0	1	0	1	0	1	1	0	0	56	6	1	1	$(A_2-A_0) \leftarrow (E_2-E_0)$
	OGA	0	1	0	0	0	0	0	0	0	0	8 ()	1	1	$(G) \leftarrow (A)$
	IAG	0	0	0	1	0	1	0	0	0	0	28	3	1	1	$(A) \gets (G)$
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$
	POF	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up
	SNZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	ССК	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)
Other o	TLOA	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(LO1, LO0) ← (A1, A0)
	URSC	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1
	TPU0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	$(PU02-PU00) \leftarrow (A2-A0)$
	WRST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	(WDF1) ← 0

Skip condition	Carry flag CY	
-	-	Clears (0) to port D (high-impedance sta
_	-	Clears (0) to a bit of port D specified by
-	-	Sets (1) to a bit of port D specified by re
(D(Y)) = 0 (Y) = 7	_	Skips the next instruction when a bit of p
_	-	Outputs the contents of register A to por
-	-	Transfers the contents of port E to regist
-	-	Outputs the contents of register A to por
-	-	Transfers the contents of port G to regis
_	-	No operation
_	-	Puts the system in RAM back-up state.
(P) = 1	-	Skips the next instruction when P flag is After skipping, P flag remains unchange
-	-	System clock (STCK) changes to f(XIN) fr 0.
-	_	Transfers the contents of register A to th
-	-	Sets the most significant ROM code refe
-	-	Transfers the contents of register A to re
-	-	Initializes the watchdog timer flag (WDF

MITSUBISHI MICROCOMPUTERS

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Detailed description

tate).

register Y (high-impedance state).

egister Y.

f port D specified by register Y is "0."

ort E.

ster A.

ort G.

ister A.

is "1." ged.

from f(XIN)/8. Execute this CCK instruction at address 0 in page

the logic operation selection register LO.

eference enable flag (URS) to "1."

register PU0.

F1).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

CONTROL REGISTERS

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W					
V12	Corrier wave output outploantral hit	0	Auto-control output	t by timer 1 is invalid						
V 12	Carrier wave output auto-control bit	1	Auto-control output	Auto-control output by timer 1 is valid						
V11	Timer 1 count source selection bit	0	Carrier output (CAI	RRY)						
V I 1		1	Bit 5 of watchdog t	imer (WDT)						
	Timer 1 control bit	0	Stop (Timer 1 state retained)							
V10		1	Operating							

	Pull-down control register PU0	at	reset : 0002	at RAM back-up : state retained W				
PU02	Port Dr. pull down control hit	0	Pull-down transisto	r OFF, input circuit OFF, key-on wake	up invalid			
P002	Port D7 pull-down control bit	1	Pull-down transistor ON, input circuit ON, key-on wakeup valid					
PU01	Port E1 pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid				
FUUT		1	Pull-down transisto	r ON, key-on wakeup valid				
PU00	Port E₀ pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid				
P000		1	Pull-down transisto	r ON, key-on wakeup valid				

	Carrier wave selection register C			at	reset : 1112	at RAM	back-up : 1112	R/W			
		C		Co		Carrier wave					
C2					Frequen	су	Duty				
		0	0	0	System clo	ck/12	1/3				
	-	0	0 0 1		System clo	ck/12	1/2				
C1		0	1	0	System clo	ock/8	1/4				
Ci	Carrier wave selection bits	0	1	1	System clo	ock/8	1/2				
	_	1	0	0	System c	lock	1/2				
_		1	1 0 1			No carrie	er wave				
Co		1	1	0	f(XIN)/4 (No	ote 2)	1/2				
		1	1	1		"L" leve	l fixed				

	Lo	gic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W		
			LO1	LO ₀		Logic operation function			
LO1	LO1		0	0	Exclusive logic OR	operation (XOR)			
		_ogic operation selection bits	0	1	OR operation (OR)				
LO)		1	0	AND operation (AND)				
				1	Not available				

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: $f(X_{N})$ is valid only when $f(X_{N})/8$ is selected as the system clock.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vi	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, VDD = 1.8 V to 3.6 V, unless otherwise noted)

O week al	D				Limits		
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage			1.8		3.6	V
Vram	RAM back-up voltage (at	RAM back-up mode)		1.4		3.6	V
Vss	Supply voltage				0		V
Viн	"H" level input voltage Po	rts D7, E, G	Vdd = 3 V	0.7Vdd		Vdd	V
Vih	"H" level input voltage XIN	1	Vdd = 3 V	0.8Vdd		Vdd	V
VIL	"L" level input voltage Po	rts D7, E, G	Vdd = 3 V	0		0.2Vdd	V
VIL	"L" level input voltage XIN		Vdd = 3 V	0		0.2Vdd	V
юн(peak)	"H" level peak output curr	ent Ports D, E1, G	Vdd = 3 V			-4	mA
юн(peak)	"H" level peak output curr	ent Port Eo	Vdd = 3 V			-24	mA
юн(peak)	"H" level peak output curr	ent CARR	Vdd = 3 V			-20	mA
loL(peak)	"L" level peak output curr	ent CARR	Vdd = 3 V			4	mA
loн(avg)	"H" level average output of	current Ports D, E1, G	Vdd = 3 V			-2	mA
loн(avg)	"H" level average output	current Port Eo	Vdd = 3 V			-12	mA
loн(avg)	"H" level average output	current CARR	Vdd = 3 V			-10	mA
lo∟(avg)	"L" level average output of	current CARR	Vdd = 3 V			2	mA
f(XIN)	System clock frequency	when STCK = $f(X_{IN})/8$ selected	Ceramic resonance			4	MHz
	System clock frequency	when STCK = $f(X_{IN})$ selected	Ceramic resonance			500	kHz
Vdet	Voltage drop detection ci	reuit detection voltage		1.10		1.80	v
VDET	Voltage drop detection ch	real detection voltage	Ta=25 °C	1.40	1.50	1.56	v
TDET	Voltage drop detection ci	rcuit low voltage	Supply voltage is -10V/s and		0.16	1.2	ms
IDEI	determination time		drops under detected voltage.		0.10	1.2	1113
TPON	Power-on reset circuit va	lid power source rising time	VDD = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, Vdd = 3 V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Linit
		Test conditions	Min.	Тур.	Max.	Unit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Іон = –2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Іон = –12 mA	1.5			V
Vон	"H" level output voltage CARR	Іон = -10 mA	1.0			V
lı∟	"L" level input current Ports D7, E, G	VI = VSS			-1	μA
Ін	"H" level input current Ports Eo, E1	VI = VDD				
		Pull-down transistor in off-state			1	μΑ
loz	Output current at off-state Ports D, E0, E1	Vo = Vss			-1	μA
Idd	Supply current (when operating)	f(XIN) = 4.0 MHz	= 4.0 MHz		800	
		f(XIN) = 500 kHz		350	700	μA
	Supply current (at RAM back-up)			1	3	μA
		Ta = 25 °C		0.1	0.5	μA
Rрн	Pull-down resistor value Ports D7, E, G	Vdd = 3 V, Vi = 3 V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT	- 00 - 3 v, vi - 3 v	700		3200	kΩ

BASIC TIMING DIAGRAM

Machine cycle Parameter Pin name		Mi		Mi+1			
System clock	STCK						
Ports D, E0, E1, G output	D0–D7,E0,E1 G0–G3		Χ				X
Ports D7, E, G input	D7 E0-E2 G0-G3			X		X	

Table 10 shows the product of built-in PROM version. Figure 26

and 27 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

ROM version.

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4280 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 Product of built-in PROM version

PROM size RAM size Product ROM type Package (X 9 bits) (X 4 bits) M34280E1FP 1024 words 32 words 20P2N-A One Time PROM [shipped in blank] M34280E1GP 1024 words 32 words 20P2E/F-A One Time PROM [shipped in blank]

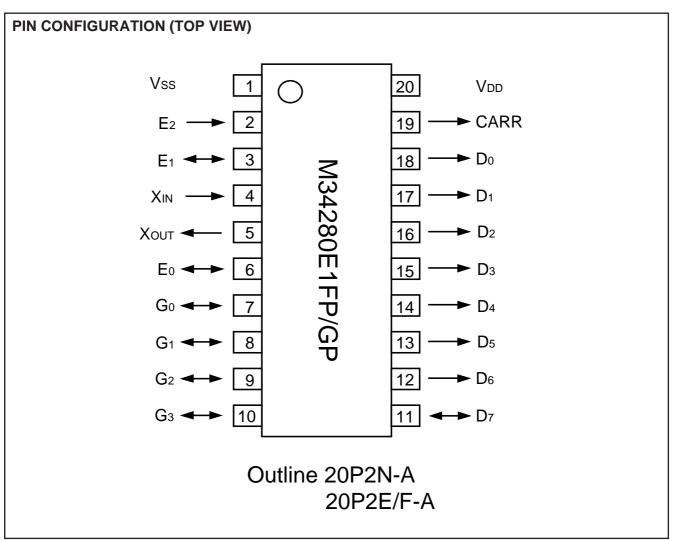


Fig. 26 Pin configuration of built-in PROM version

(1) PROM mode (serial input/output)

The M34280E1FP/GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 1 and powering on the VDD pin, and then applying 12.5V to the

VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Refer to the Mitsubishi Data Book "DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS" about the serial programmer for the Mitsubishi single-chip microcomputers.

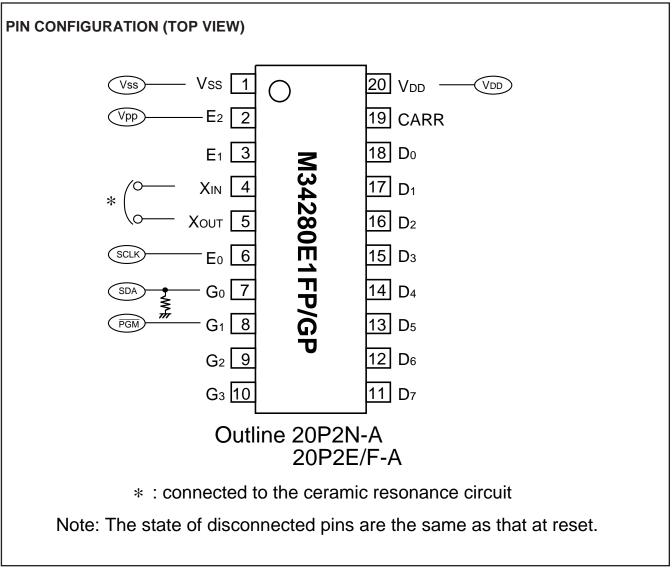


Fig. 27 Pin configuration of built-in PROM version (continued)

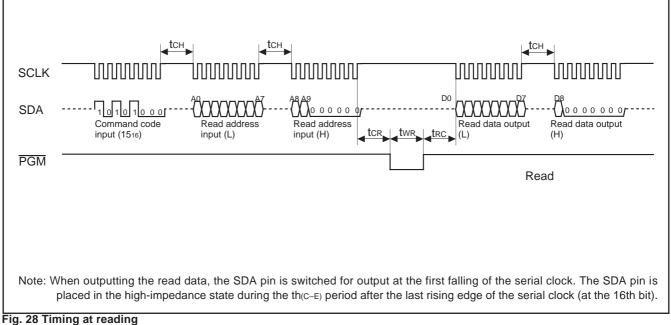
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(2) Functional outline

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits.

In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command


Number of transfer	First command	Second	Third	Fourth	
Command	code input	Second	Inira		
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)	
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)	
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)	

Number of transfer	Fifth	Sixth	Seventh	
Command	FIIUI	Sixtii		
Read	Read data H (output)			
Program	Program data H (input)			
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)	

(3) Read

Input the command code 1516 in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the PGM pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(4) Program

Input command code 2516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the PGM pin to "L." When this is done, the program data is programmed to the specified address.

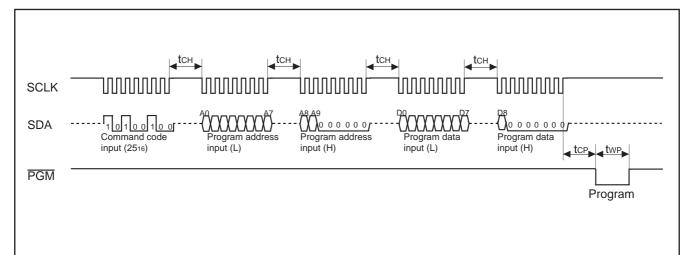


Fig. 29 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the PGM pin to "L." When this is done, the program data is programmed to the specified address. Then, when the PGM pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

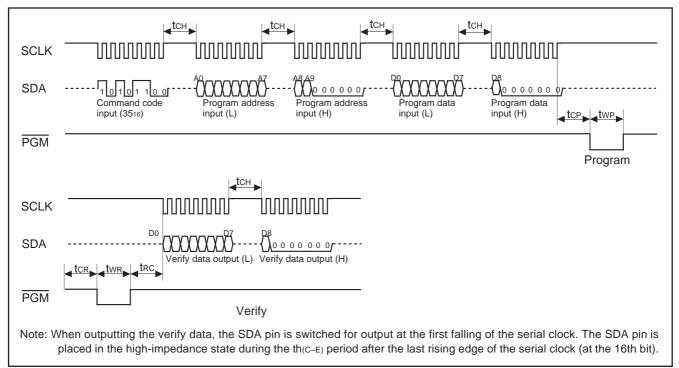
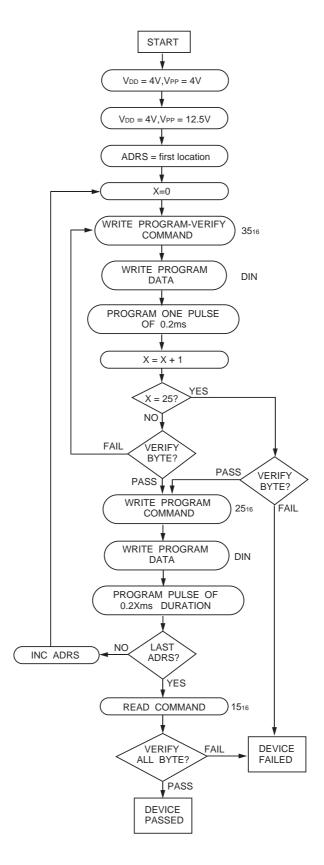
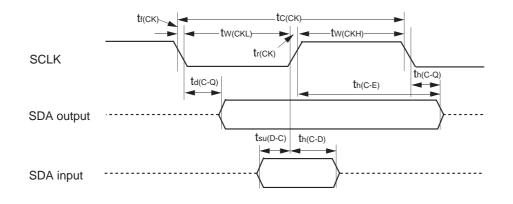



Fig. 30 Timing at program verifying

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

PROGRAM ALGORITHM FLOW CHART

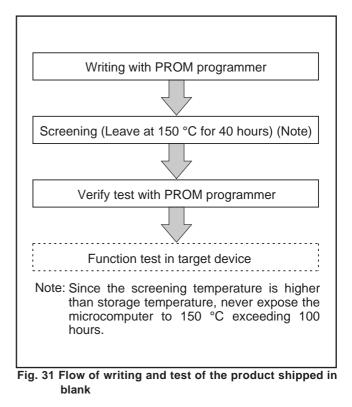

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS

(Ta = 25 °C, VDD = 4.0 V, VPP = 12.5 V)

Symbol	Parameter	Lin	nits	Unit	
Symbol	Falanielei	Min.	Max.	Onit	
tсн	Serial transfer width time	2.0		μs	
tcr	Read wait time after transfer	2.0		μs	
twr	Read pulse width	500		ns	
trc	Transfer wait time after read	2.0		μs	
tCP	Program wait time after transfer	2.0		μs	
twp	Program pulse width	0.19	0.21	ms	
towp	Added program pulse width	0.19	5.25	ms	
tc(cк)	SCLK input cycle time	1.0		μs	
tw(CKH)	SCLK "H" pulse width	450		ns	
tw(CKL)	SCLK "L" pulse width	450		ns	
tr(CK)	SCLK rising time	40		ns	
tf(СК)	SCLK falling time	40		ns	
td(C–Q)	SDA output delay time	0	180	ns	
th(C–Q)	SDA output hold time	0		ns	
th(C–E)	SDA output hold time (only for 16th bit)	100		ns	
tsu(D–C)	SDA input set-up time	60		ns	
th(C–D)	SDA input hold time	180		ns	

TIMING DIAGRAM


 $\begin{array}{l} \mbox{Measurement condition} \\ \mbox{Output timing voltage: Vol} = 0.8 \ \mbox{V}, \ \mbox{VoH} = 2.0 \ \mbox{V} \\ \mbox{Input timing voltage: Vil} = 0.2 \ \mbox{VdD}, \ \mbox{ViH} = 0.8 \ \mbox{VdD} \\ \end{array}$

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(6) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the M34280E1FP/GP, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 31 before using is recommended.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

GZ	ZZ-SH54-8	36B <91A0)>	Masł	ROM numbe	er
	S	INGLE-CH	MASK ROM ORDER CONFIRMATION FORM IP MICROCOMPUTER M34280M1-XXXFP/GP MITSUBISHI ELECTRIC ms marked * .	Receipt	Date: Section head signature	Supervisor signature
*	Customer	Company name	TEL ()		Responsible	Supervisor
		Date issued	Date:	Issuance signature		
*	Three	y the name sets of EF	e of the product being ordered (check in the approxima PROMs are required for each pattern if this order is pe is required for each pattern if this order is performed b	rform	ed by EPR	OMs.

Microcomputer name:

M34280M1-XXXFP

M34280M1-XXXGP

Ordering by the EPROMs

Specify the type of EPROMs submitted (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM area

(hexadecimal notation)

EPROM Type:

27C64	27C128	27C256	27C512	
Low-order	Low-order	Low-order	Low-order	
8-bit data	8-bit data	8-bit data	8-bit data	
Most significant	Most significant	Most significant	Most significant	
bit data	bit data	bit data	bit data	
000016	000016	000016	000016	
1.00K	1.00K	1.00K	1.00K	
100016	100016	100016	100016	
1.00K	1.00K	1.00K	1.00K	
13FF16	13FF16	13FF16	13FF16	
1FFF16	3FFF16	7FFF16	FFFF16	

Set "FF16" in the shaded area.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

GZZ-SH54-86B <91A0>

Mask ROM number

720 SERIES MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M34280M1-XXXFP/GP MITSUBISHI ELECTRIC

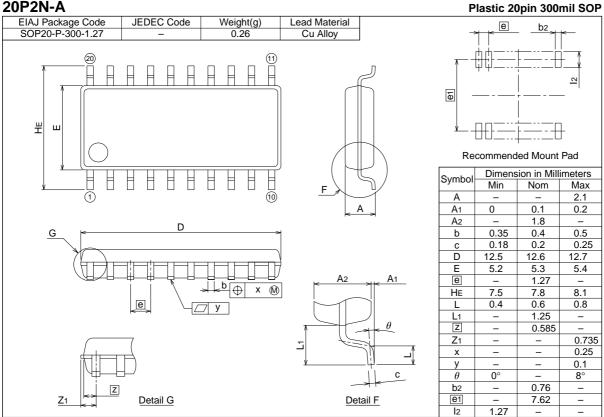
Ordering by floppy disk

We will produce masks based on the mask files generated by the mask file generating utility. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this mask file. Thus, extreme care must be taken to verify the mask file in the submitted floppy disk.

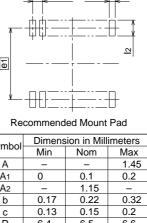
The submitted floppy disk must be-3.5 inch 2HD type and DOS/V format. And the number of the mask files must be 1 in one floppy disk.

File code					(hexadecimal notation)
Mask file name					.MSK (equal or less than eight characters)

* 2. Mark Specification


Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (20P2N-A for M34280M1-XXXFP, 20P2E/F-A for M34280M1-XXXGP) and attach to the Mask ROM Order Confirmation Form.

* 3. Comments

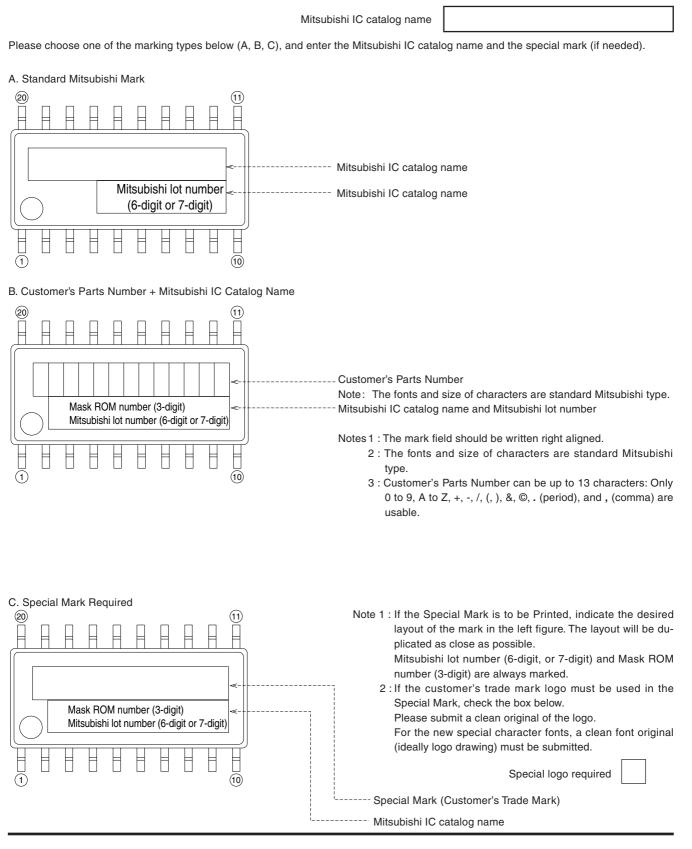

PACKAGE OUTLINE

20P2N-A

20P2E/F-A

Plastic 20pin 225mil SSOP EIAJ Package Code SSOP20-P-225-0.65 Lead Material JEDEC Code Weight(g) е b2 0.08 Alloy 42/Cu Alloy (20 e1 뿐 ш ŦF F Ħ ΗĦ Symbol Ħ Ē Min Ā (10) А A1 0 Δ2 D G Ĩ~Þ⊕ A1 хM е У θ ~ _ С Ζ Detail G Detail F Z1

n 2	-	1.15	_
b	0.17	0.22	0.32
с	0.13	0.15	0.2
D	6.4	6.5	6.6
Е	4.3	4.4	4.5
е	-	0.65	-
HE	6.2	6.4	6.6
L	0.3	0.5	0.7
L1	-	1.0	-
Z	-	0.325	-
Z1	-	-	0.475
х	-	-	0.13
У	-	-	0.1
θ	0°	-	10°
b2	_	0.35	_
e 1	-	5.8	-
12	1.0	-	-

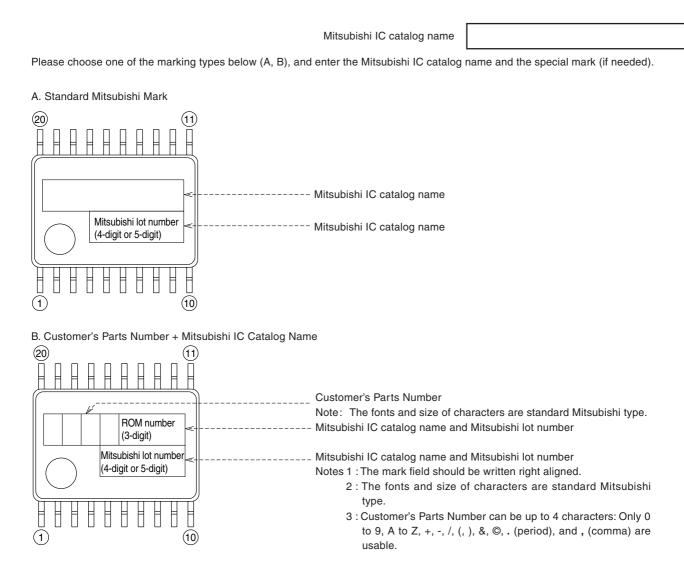


MITSUBISHI MICROCOMPUTERS

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

20P2N-A (20-PIN SOP) MARK SPECIFICATION FORM



MITSUBISHI MICROCOMPUTERS

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

20P2E/F-A (20-PIN SSOP) MARK SPECIFICATION FORM

RenesasTechnologyCorp.

Nippon Bldg., 6-2, Otemachi 2-chome, Chiyoda-ku, Tokyo, 100-0004 Japan

Keep safety first in your circuit designs!

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placemer substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. ent of

Notes regarding these materials

.

- .
- Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, belonging to Mitsubishi Electric Corporation or a third party.
 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, nedical, aerospace, nuclear, or undersear enepeater use.
 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 1999 MITSUBISHI ELECTRIC CORP. Effective June. 1999 Specifications subject to change without notice.

REVISION DESCRIPTION LIST

4280 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	980420
2.0	• 20P2E/F-A package added	990611
	• Figure XA-2: A resistor is added	