

STD20NF06 N-CHANNEL 60V - 0.032 Ω - 24A DPAK STripFET™ II POWER MOSFET

PRELIMINARY DATA

1/7

TYPE	V _{DSS}	R _{DS(on)}	ID				
STD20NF06	60 V	< 0.040 Ω	24 A				

- TYPICAL $R_{DS}(on) = 0.032 \Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- APPLICATION ORIENTED CHARACTERIZATION
- SURFACE-MOUNTING DPAK (TO-252) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")

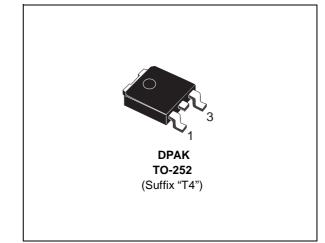
DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" stripbased process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

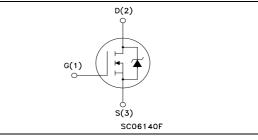
APPLICATIONS

- AUDIO AMPLIFIERS
- POWER TOOLS
- AUTOMOTIVE ENVIRONMENT

Ordering Information


-			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STD20NF06	STD20NF06	TO-252	TAPE & REEL

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V _{GS}	Gate- source Voltage	± 20	V
ID	Drain Current (continuous) at T _C = 25°C	24	A
ID	Drain Current (continuous) at T _C = 100°C	17	A
I _{DM} (●)	Drain Current (pulsed)	96	A
Ptot	Total Dissipation at $T_C = 25^{\circ}C$	60	W
	Derating Factor	0.4	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	10	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	300	mJ
T _{stg}	Storage Temperature	-55 to 175	°C
Тj	Operating Junction Temperature	-55 10 175	
Pulse width	limited by safe operating area.	(1) I _{SD} ≤24A, di/dt ≤100A/µs, V _{DD} ≤ V _{(BR)DSS} , T _j : (2) Starting T _j = 25 °C, I _D =10 A, V _{DD} = 45V	≤ T _{JMAX}

May 2003

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

INTERNAL SCHEMATIC DIAGRAM

THERMAL DATA

Rthj-amb T _l	Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose (1.6 mm from case, for 10 sec)	Max Max	2.5 100 275	°C/W °C/W °C
----------------------------	---	------------	-------------------	--------------------

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 12 A		0.032	0.040	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} = 25 V$ $I_D = 12 A$		15		S
Ciss C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V f = 1 MHz V_{GS} = 0$		690 170 68		pF pF pF

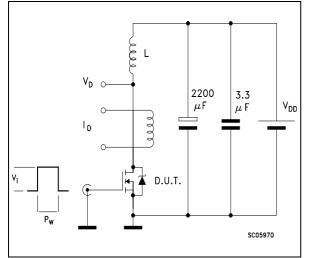
ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

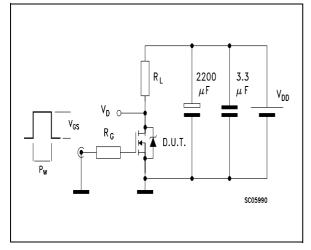
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			10 30		ns ns
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48 V I _D = 20 A V _{GS} = 10 V		23 5 7.5	31	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD}=30 \ V & I_{D}=10 \ A \\ R_{G}=4.7 \Omega, & V_{GS}=10 \ V \\ (\text{Resistive Load, Figure 3}) \end{array} $		30 8		ns ns


SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				24 96	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 96 \text{ A}$ $V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 96 \text{ A} \qquad di/dt = 100 \\ V_{DD} &= 20 \text{ V} \qquad T_j = 150' \\ (\text{see test circuit, Figure 5}) \end{split}$		65 150 4.6		ns nC A


(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

A7/

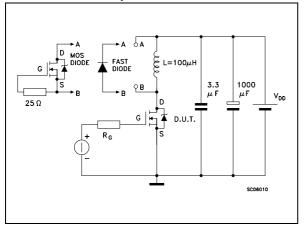

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

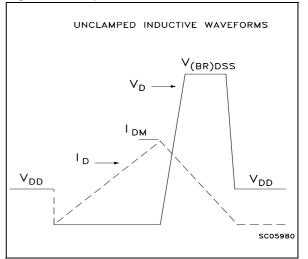
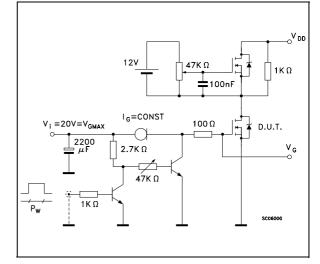
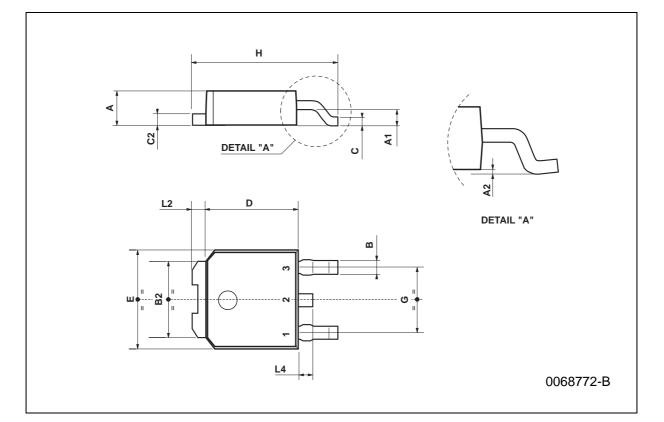
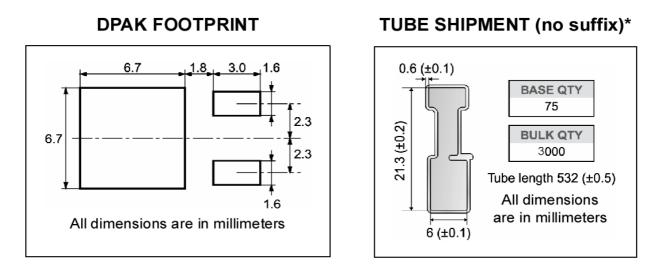



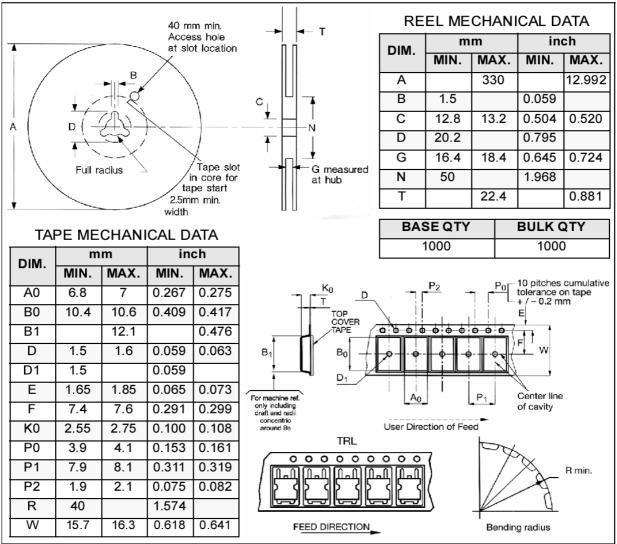
Fig. 4: Gate Charge test Circuit



57


4/7

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
Е	6.4		6.6	0.252		0.260	
G	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	



5/7

TAPE AND REEL SHIPMENT (suffix "T4")*

*on sales type

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

57