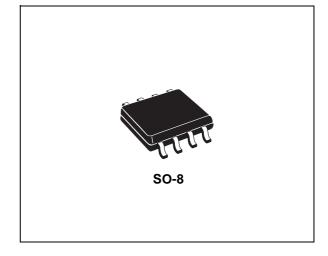


STS5N150

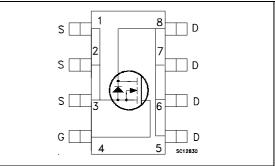
N-CHANNEL 150V - 0.045 Ω - 5A SO-8 LOW GATE CHARGE STripFET™ POWER MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	ID
STS5N150	150 V	<0.06 Ω	5 A


- TYPICAL $R_{DS}(on) = 0.045 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- EXTREMELY LOW GATE CHARGE

DESCRIPTION


This MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
- UPS AND MOTOR CONTROL

INTERNAL SCHEMATIC DIAGRAM

Ordering Information

er der nig internation			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STS5N150	S5N150	SO-8	TAPE & REEL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Value		Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	150	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	150	V
V _{GS}	Gate- source Voltage	± 20	V
Ι _D	Drain Current (continuous) at T _C = 25°C	5	A
ID	Drain Current (continuous) at T _C = 100°C	3	A
I _{DM} (●)	Drain Current (pulsed)	20	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	2.5	W
T _{stg} Storage Temperature		-55 to 150	°C
Тj	Operating Junction Temperature	-55 10 150	

(•) Pulse width limited by safe operating area.

June 2003

This is preliminary information on a new product forseen to be developped. Details are subject to change without notice

STS5N150

THERMAL DATA

Rthj-amb	(*)Thermal Resistance Junction-ambient	Max	50	°C/W

(*) When Mounted on 1 inch² FR-4 board, 2 oz of Cu and $t \leq$ 10 sec.

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	150			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125°C			1 10	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 2.5 A		0.045	0.06	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} = 75 V$ $I_D = 5 A$		TBD		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		TBD TBD TBD		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			TBD TBD		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 120V I _D = 5A V _{GS} = 10V (see test circuit, Figure 2)		TBD TBD TBD	28	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD}=75 \ V & I_D=2.5 \ A \\ R_G=4.7 \Omega, & V_{GS}=10 \ V \\ (\text{Resistive Load, Figure 1}) \end{array} $		TBD TBD		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				5 20	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 5 A$ $V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 5 \text{ A} & \text{di/dt} = 100 \text{A}/\mu\text{s} \\ V_{DD} &= 50 \text{ V} & T_j = 150^\circ\text{C} \\ (\text{see test circuit, Figure 3}) \end{split}$		TBD TBD TBD		ns nC A

(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

STS5N150

Fig. 1: Switching Times Test Circuits For Resistive Load

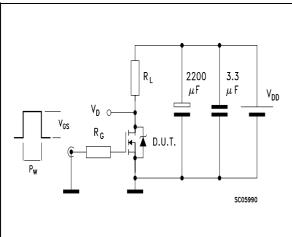
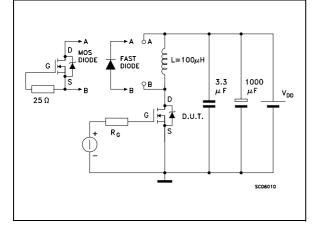
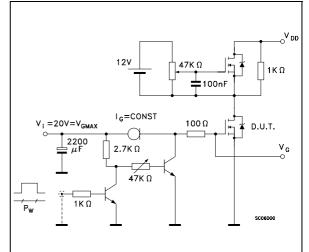




Fig. 3: Test Circuit For Diode Recovery Behaviour

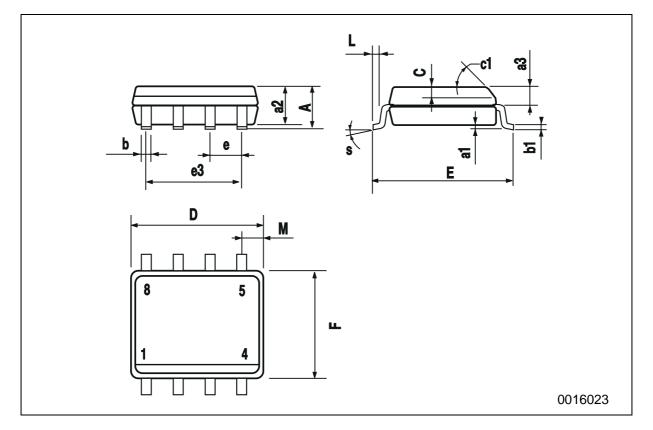


Fig. 2: Gate Charge test Circuit

DIM.		mm				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (r	nax.)		

SO-8 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

6/6