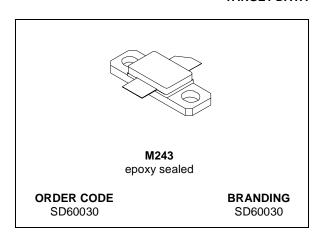
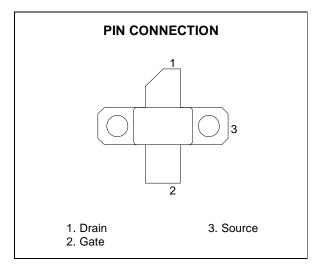


SD60030

RF POWER TRANSISTORS The LdmoST FAMILY


TARGET DATA


Designed for GSM / EDGE / IS-97 applications

- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION
- Pout = 30 W with 10 dB gain @ 2000 MHz

DESCRIPTION

The SD60030 is a common source N-Channel enhancement-mode lateral Field-Effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 2.0 GHz. The SD60030 is designed for high gain and broadband performance operating in common source mode at 26 V. It is ideal for base station applications requiring high linearity.

ABSOLUTE MAXIMUM RATINGS $(T_{CASE} = 25 \degree C)$

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V_{DGR}	Drain-Gate Voltage ($R_{GS} = 1 \text{ M}\Omega$)	65	V
V_{GS}	Gate-Source Voltage	± 20	V
ΙD	Drain Current	TBD	Α
P _{DISS}	Power Dissipation (@ Tc = 70 °C)	TBD	W
Tj	Max. Operating Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +200	°C

THERMAL DATA $(T_{CASE} = 70 \, ^{\circ}C)$

		,		
Rth	h(j-c)	Junction -Case Thermal Resistance	TBD	°C/W

November, 20 2001 1/4

ELECTRICAL SPECIFICATION (T_{CASE} = 25 °C)

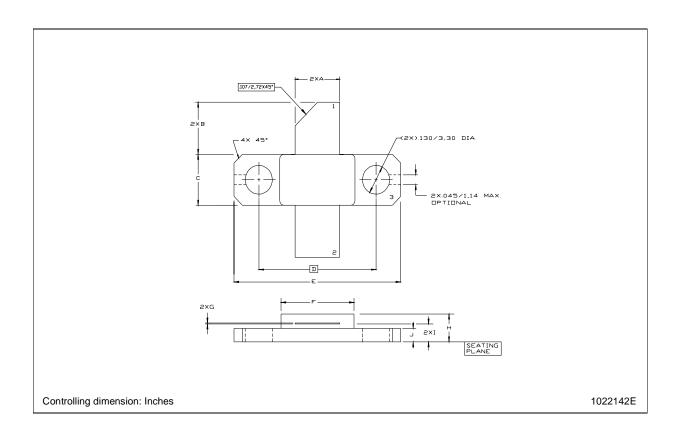
STATIC

Symbol		Test Condition	ns	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	V _{GS} = 0 V	$I_{DS} = 1 \text{ mA}$		65			V
I _{DSS}	V _{GS} = 0 V	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	V _{DS} = 0 V				1	μΑ
V _{GS(Q)}	V _{DS} = 28 V	$I_D = 300 \text{ mA}$		2.5		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 3 A			TBD		V
G _{FS}	V _{DS} = 10 V	I _D = 3 A		2.0	TBD		mho
C _{ISS}	V _{GS} = 0 V	$V_{DS} = 28 \text{ V}$	f = 1 MHz		TBD		pF
Coss	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		TBD		pF
C _{RSS}	V _{GS} = 0 V	$V_{DS} = 28 \text{ V}$	f = 1 MHz		TBD		pF

DYNAMIC

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Pout	$V_{DD} = 26 \text{ V}$ $I_{DQ} = 300 \text{ mA}$ $f = 2000 \text{ MHz}$	30			W
IMD3	V _{DD} = 26 V I _{DQ} = 300 mA P _{OUT} = 30 W PEP		-32	-28	dBc
G _{PS}	$V_{DD} = 26 \text{ V}$ $I_{DQ} = 300 \text{ mA}$ $P_{OUT} = 30 \text{ W PEP}$	10	11		dB
ηD	$V_{DD} = 26 \text{ V}$ $I_{DQ} = 300 \text{ mA}$ $P_{OUT} = 30 \text{ W PEP}$		35		%
Load mismatch	$V_{DD} = 26 \text{ V}$ $I_{DQ} = 300 \text{ mA}$ $P_{OUT} = 30 \text{ W}$ $f = 2000 \text{ MHz}$ ALL PHASE ANGLES	10:1			VSWR

note: $f_1 = 2000 \text{ MHz}$ PEP $f_2 = 2000.1 \text{ MHz}$


IMPEDANCE DATA

FREQ. MHz	Z _{IN} (Ω)	$Z_{DL}(\Omega)$
1800		
1850		
1900		
1950		
2000		

M243 (.230 x .360 2L N/HERM W/FLG) MECHANICAL DATA

DIM.		mm			Inch			
	MIN.	TYP.	MAX	MIN.	TYP.	MAX		
А	5.21		5.72	0.205		0.225		
В	5.46		6.48	0.215		0.255		
С	5.59		6.10	0.220		0.240		
D		14.27			0.562			
E	20.07		20.57	0.790		0.810		
F	8.89		9.40	0.350		0.370		
G	0.10		0.15	0.004		0.006		
Н	3.18		4.45	0.125		0.175		
I	1.83		2.24	0.072		0.088		
J	1.27		1.78	0.050		0.070		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2001 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

