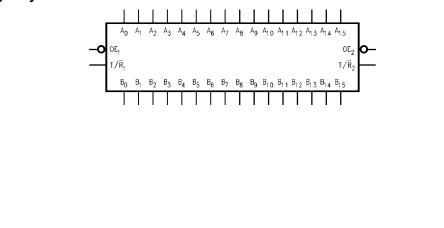
FAIRCHILD

74LCXH16245 Low Voltage 16-Bit Bidirectional Transceiver with **Bushold**

General Description


Features

- 2.3V-3.6V V_{CC} specifications provided
- = 4.5 ns t_{PD} max (V_{CC} = 3.3V), 20 μ A I_{CC} max
- Power-down high impedance outputs
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance conforms to the requirements of JESD78

- ESD performance: Human body model > 2000V
- Machine model > 200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Ordering Code:

Logic Symbol

Connection Diagrams

Pin Assigni	ment for SSOP	and TSSOP
_	\bigcirc	
t∕R ₁ —	1	48 - OE ₁
в _о —	2	47 — A ₀
в ₁ —	3	46 — A ₁
GND —	4	45 — GND
B ₂ —	5	44 — A ₂
В3 —	6	43 — A ₃
v _{cc} —	7	42 V _{CC}
4	8	41 A ₄
B ₅ —	9	40 — A ₅
GND —	10	39 — GND
в ₆ —	11	38 — A ₆
в ₇ —	12	37 — A ₇
в ₈ —	13	36 — A ₈
В ₉ —	14	35 — Ag
GND —	15	34 — GND
B ₁₀ —	16	33 — A ₁₀
B ₁₁ —	17	32 — A ₁₁
v _{cc} —	18	31 - V _{CC}
B ₁₂	19	30 — A ₁₂
B ₁₃ —	20	29 — A ₁₃
GND -	21	28 — GND
B ₁₄ —	22	27 A ₁₄
B ₁₅ —	23	$26 - A_{15}$
T∕R ₂ —	24	25 - OE ₂
Pin A	ssignment for	FBGA
	12345	5 6
<	00000	
В	00000	Sõl
O	00000	5ŏI
	ŏŏŏŏŏ	5ŏ l
ш	00000	50
ш	00000	
U	00000	
т	00000	
7	00000	
-		
	Top Thru View	7)

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input
T/R _n	Transmit/Receive Input
A ₀ -A ₁₅ B ₀ -B ₁₅	Side A Inputs or 3-STATE Outputs (Bushold)
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs (Bushold)

FBGA Pin Assignments

	1	2	3	4	5	6
Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
В	B ₂	B ₁	NC	NC	A ₁	A ₂
С	B ₄	B ₃	V _{CC}	V _{CC}	A ₃	A ₄
D	B ₆	B ₅	GND	GND	A ₅	A ₆
E	B ₈	В ₇	GND	GND	A ₇	A ₈
F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
G	B ₁₂	B ₁₁	V _{CC}	V _{CC}	A ₁₁	A ₁₂
н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
J	B ₁₅	NC	T/\overline{R}_2	OE ₂	NC	A ₁₅

Truth Tables

	In	puts	Outputo			
	OE ₁	T/R ₁	Outputs			
	L	L	Bus B_0-B_7 Data to Bus A_0-A_7			
	L	н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$			
	Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇			
	Inp	outs				
	OE ₂	T/R ₂	Outputs			
	L	L	Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅			
	L	н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅			
	н	Х	HIGH Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅			
2	K = Immaterii Z = High Imp Logic					

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 4)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$		
I _O	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 5)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	V _{CC}	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Parameter	Conditions	V _{cc}	T _A = -40°C to +85°C		Units
Symbol	Parameter		Conditions	(V)	Min	Max	
V _{IH}	HIGH Level Input Voltage			2.3 – 2.7	1.7		V
				2.7 - 3.6	2.0		v
VIL	LOW Level Input Voltage			2.3 – 2.7		0.7	V
				2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage		$I_{OH} = -100 \ \mu A$	2.3 - 3.6	V _{CC} - 0.2		
			$I_{OH} = -8 \text{ mA}$	2.3	1.8		
			$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
			$I_{OH} = -18 \text{ mA}$	3.0	2.4		
			$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage		I _{OL} = 100 μA	2.3 - 3.6		0.2	
			$I_{OL} = 8mA$	2.3		0.6	
			I _{OL} = 12 mA	2.7		0.4	V
			I _{OL} = 16 mA	3.0		0.4	
			I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	Data	$V_I = V_{CC}$ or GND	2.3 - 3.6		±5.0	μA
		Control	$O \le V_1 \le 5.5$	2.3 - 3.6		±5.0	μΑ

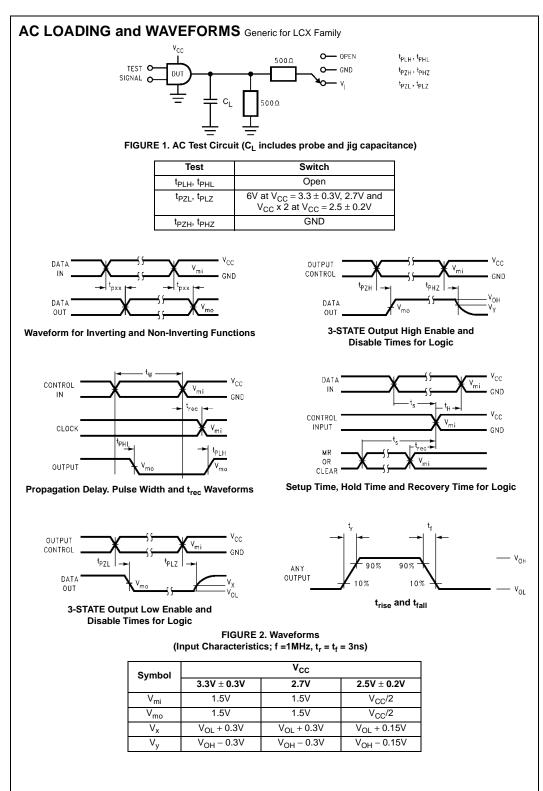
DC Electrical Characteristics (Continued)

$T_A = -40^{\circ}C$ to $+85^{\circ}C$ Vcc Symbol Parameter Conditions Units Min (V) Max Bushold Input Minimum $V_{IN} = 0.7V$ 45 I_{I(HOLD)} 2.3 Drive Hold Current $V_{IN} = 1.7V$ -45 μΑ $V_{IN} = 0.8V$ 75 3.0 V_{IN} = 2.0V -75 Bushold Input Over-Drive (Note 6) 300 I_{I(OD)} 2.7 Current to Change State (Note 7) -300 μΑ 450 (Note 6) 3.6 -450 (Note 7) 3-STATE I/O Leakage 2.3 - 3.6 ±5.0 $V_0 = V_{CC} \text{ or } GND$ μA I_{OZ} Power-Off Leakage Current $V_{I} \text{ or } V_{O} = 5.5 V$ 10 $\mathsf{I}_{\mathsf{OFF}}$ 0 μΑ I_{CC} Quiescent Supply Current $V_I = V_{CC} \text{ or } GND$ 2.3-3.6 20 μΑ ΔI_{CC} Increase in I_{CC} per Input $V_{IH} = V_{CC} - 0.6V$ 2.3–3.6 500 μΑ Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

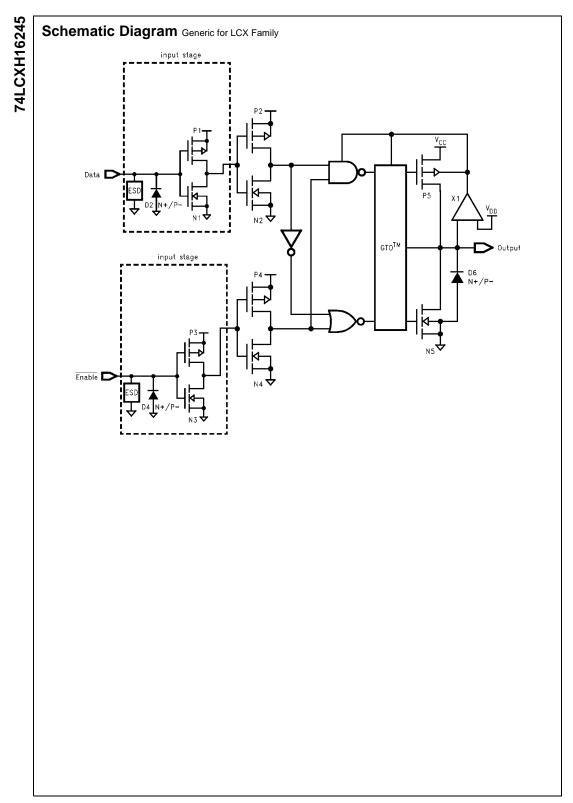
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

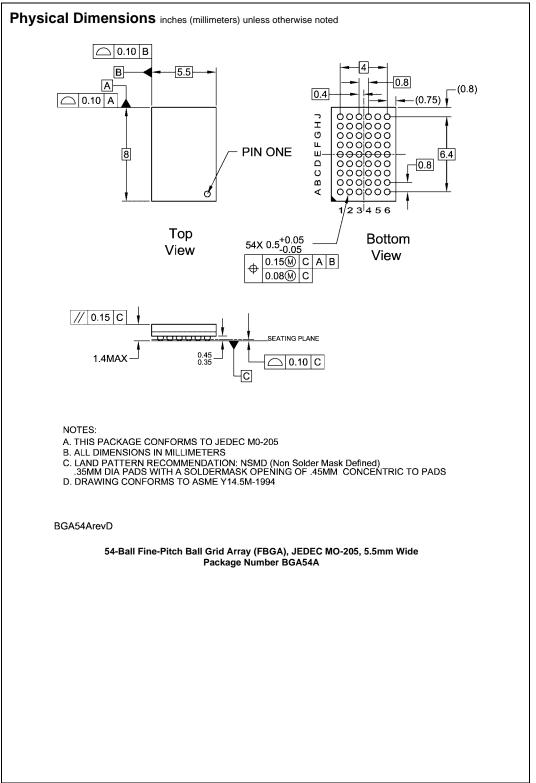
AC Electrical Characteristics

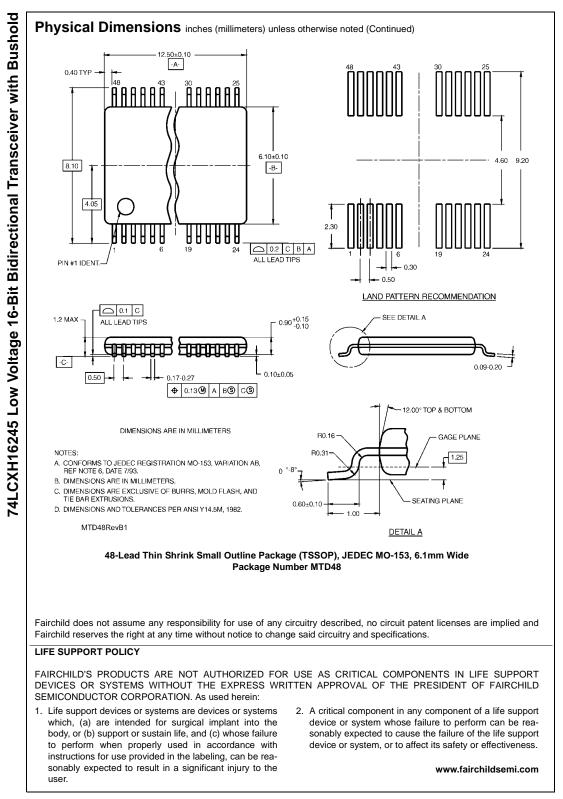
			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units	
	Faiameter	C _L =	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		
		Min	Max	Min	Max	Min	Max		
t _{PHL}	Propagation Delay	1.0	4.5	1.0	5.2	1.0	5.4		
t _{PLH}	A _n to B _n or B _n to A _n	1.0	4.5	1.0	5.2	1.0	5.4	ns	
t _{PZL}	Output Enable Time	1.0	6.5	1.0	7.2	1.0	8.5		
t _{PZH}		1.0	6.5	1.0	7.2	1.0	8.5	ns	
t _{PLZ}	Output Disable Time	1.0	6.4	1.0	6.9	1.0	7.7		
t _{PHZ}		1.0	6.4	1.0	6.9	1.0	7.7	ns	
t _{OSHL}	Output to Output Skew (Note 8)		1.0						
t _{OSLH}			1.0					ns	


Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Cymbol	ranneter	Conditions	(V)	Typical	onita
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	20	pF

