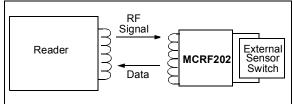
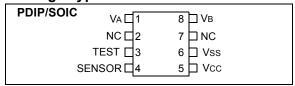
MCRF202


Passive RFID Device with Sensor Input

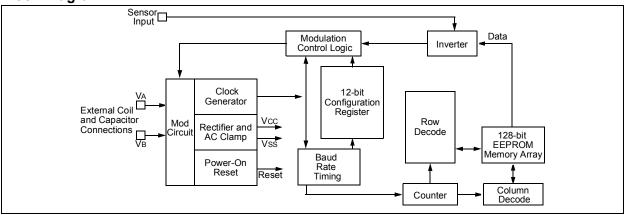
Features


- · External sensor input
- · Data polarity changes with sensor input condition
- · Read only data transmission
- 96- or 128-bits of factory programming user memory (also supports 48 and 64-bit protocols)
- · Operates up to 400 kHz carrier frequency
- · Low-power operation
- · Modulation options:
 - ASK, FSK, PSK
- · Data Encoding options:
 - NRZ Direct, Differential Biphase, Manchester Biphase
- · Die, Wafer, PDIP, or SOIC package option
- · Factory programming and device serialization

Applications

- Insect control
- Industrial tagging

Package Type


Description

The MCRF202 is a passive Radio Frequency Identification (RFID) device that provides an RF interface for reading the contents of a user memory array. This device is specially designed to detect the logic state of an external sensor, and alters its data transmissions, based on the condition of the sensor input. The device outputs a normal bit data stream if the sensor input has a logic '1' state, but outputs an inverted data stream for a logic '0' state. In this way, the reader can monitor the state (condition) of the external sensor input by detecting whether the data from the device is a normal or inverted data stream.

The device is powered by rectifying the incoming RF carrier signal that is transmitted from the reader. When the device develops sufficient DC voltage, it transmits the contents of its memory array by modulating the incoming RF carrier signal. The reader is able to detect the modulation and decodes the data being transmitted. Code length, modulation option, encoding option, and bit rate are set at the factory to fit the needs of particular applications.

The MCRF202 is available in die, wafer, PDIP and SOIC packages. The encoding, modulation, bit rate options, and data fields are specified by the customer and programmed by Microchip Technology Inc. prior to shipment. See TB023 for more information on factory serialization (SQTP™).

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

*Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: AC AND DC CHARACTERISTICS

All parameters apply across the specified operating ranges unless otherwise noted.	Industrial (I): TAMB = -40°C to +85°C					
Parameter	Sym	Min	Тур	Max	Units	Conditions
Clock frequency	FCLK	100	_	400	kHz	
Data retention		200	_	_	Years	25°C
Coil current (Dynamic)	ICD	_	50	_	μΑ	
Operating current with no Vcc load	IDD	_	5	_	μΑ	Vcc = 2V No load to Vcc pad
Operating current with Vcc load	IDL	_	10	_	μΑ	Vcc = 2V Vcc load through switch to sensor
Turn-on-voltage (Dynamic) for	VAVB	10	_	_	VPP	
modulation	Vcc	2	_	_	VDC	
Input Capacitance	CIN	_	2	_	pF	Between VA and VB
SENSOR pull-down	Rs	400	800	1200	kΩ	
SENSOR trigger threshold	Vs	0.5	1.0	1.5	V	

2.0 FUNCTIONAL DESCRIPTION

The device contains three major building blocks. They are RF front-end and sensor input, configuration and control logic, and memory sections. The Block Diagram is shown on page 1.

2.1 RF Front-End and Sensor Input

The RF front-end of the device includes circuits for rectification of the carrier, VDD (operating voltage), and high-voltage clamping to prevent excessive voltage from being applied to the device. This section also generates a system clock from the incoming carrier signal and modulates the carrier signal to transmit data to the reader.

2.1.1 RECTIFIER – AC CLAMP

The AC voltage generated by the external tuned LC circuit is full wave rectified. This unregulated voltage is used as the maximum DC supply voltage for the rest of the device and for the Vcc supply to the external sensor or switch. Any excessive voltage on the tuned circuit is clamped by the internal circuitry to a safe level to prevent damage to the IC.

2.1.2 MODULATION CIRCUIT

The MCRF202 sends the encoded data to the reader by AM-modulating the coil voltage across the tuned LC circuit. A modulation transistor is placed between the antenna coil pads (VA and VB). The transistor turns on and off based on the modulation signal. As a result, the amplitude of the antenna coil voltage varies with the modulation signal. See Figure 2-1 for details.

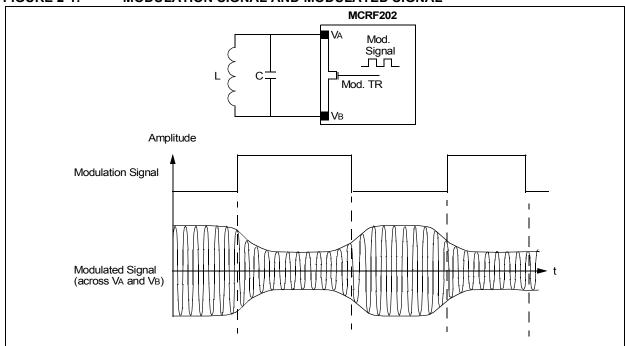
2.1.3 Vcc REGULATOR

The device generates a DC supply voltage from the unregulated coil voltage.

2.1.4 CLOCK GENERATOR

This circuit generates a clock based on the carrier frequency from the reader. This clock is used to derive all timing in the MCRF202, including the baud rate and modulation rate.

2.1.5 POWER-ON RESET


This circuit generates a power-on reset when the tag first enters the interrogator field. The reset releases when sufficient power has developed on the VDD regulator to allow correct operation.

2.1.6 SENSOR INPUT AND DATA INVERTER

The SENSOR input responds to logic high or logic low voltages to drive the internal inverter on or off. A logic high results in normal tag operation; a logic low at SENSOR input activates an inverter, which inverts the entire data stream prior to modulation.

The SENSOR input has an internal pull-down resistor of 800 k Ω (typical). See Figure 2-4 for application details.

FIGURE 2-1: MODULATION SIGNAL AND MODULATED SIGNAL

2.2 Configuration Register and Control Logic

The configuration register determines the operational parameters of the device. It directly controls logic blocks which generate the baud rate, memory size, encoded data, modulation protocol, etc. CB11 is always a zero. Once the array is successfully programmed at the factory, the lock bit CB12 is set. When the lock bit is set, programming and erasing the device becomes permanently disabled. Table 2-1 contains a description of the control register bit functions.

2.2.1 BAUD RATE TIMING OPTION

The chip will access data at a baud rate determined by bits CB2, CB3, and CB4 of the configuration register. For example, MOD32 (CB2 = 0, CB3 = 1, CB4 = 1) has 32 RF cycles per bit. This gives the data rate of 4 kHz for the RF carrier frequency of 128 kHz.

2.2.2 DATA ENCODING OPTION

This logic acts upon the serial data being read from the EEPROM. The logic encodes the data according to the configuration bits CB6 and CB7. CB6 and CB7 determine the data encoding method. The available choices are:

- · Non-return to zero-level (NRZ_L)
- · Biphase S (Differential)
- · Biphase L (Manchester)
- · Inverted Manchester

2.2.3 MODULATION OPTION

CB8 and CB9 determine the modulation protocol of the encoded data. The available choices are:

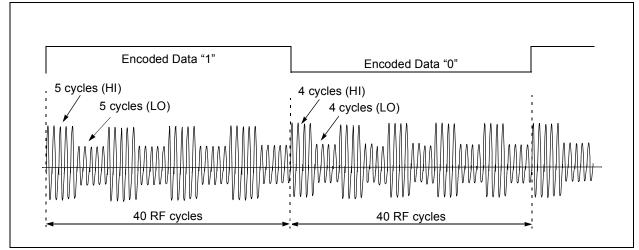
- ASK
- FSK
- PSK_1
- PSK 2

When ASK (direct) option is chosen, the encoded data is fed into the modulation transistor without change.

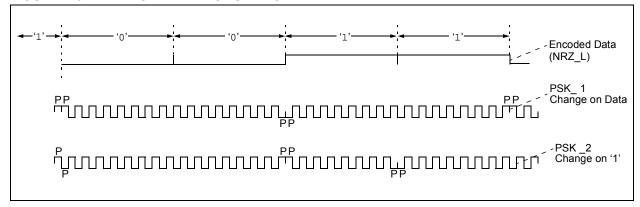
When FSK option is chosen, the encoded data is represented by:

- a. Sets of 10 RF carrier cycles (first 5 cycles \rightarrow higher amplitude, the last 5 cycles \rightarrow lower amplitude) for logic "high" level.
- b. Sets of 8 RF carrier cycles (first 4 cycles \rightarrow higher amplitude, the last 4 cycles \rightarrow lower amplitude) for logic "low" level.

For example, FSK signal for MOD40 is represented:


- a. 4 sets of 10 RF carrier cycles for data '1'.
- 5 sets of 8 RF carrier cycles for data '0'.

Refer to Figure 2-2 for the FSK signal with MOD40 option.


The PSK_1 represents change in the phase of the modulation signal at the change of the encoded data. For example, the phase changes when the encoded data is changed from '1' to '0', or from '0' to '1'.

The PSK_2 represents change in the phase at the change on '1'. For example, the phase changes when the encoded data is changed from '0' to '1', or from '1' to '1'.

FIGURE 2-3: PSK DATA MODULATION

2.2.4 MEMORY ARRAY LOCK BIT (CB12)

The CB12 bit must be a '1' for a factory programmed device.

2.3 Memory Section

The device has 128 bits of one-time-programmable (OTP) memory. The user can choose 96 or 128 bits by selecting the CB1 bit in the configuration register. See Table 2-1 for more details.

2.3.1 COLUMN AND ROW DECODER LOGIC AND BIT COUNTER

The column and row decoders address the EEPROM array at the clock rate and generate a serial data stream for modulation. This data stream can be up to 128 bits in length. The size of the data stream is user programmable with CB1 and can be set to 96 or 128 bits. Data lengths of 48 and 64 bits are available by programming the data twice in the array, end-to-end.

The column and row decoders route the proper voltage to the array for programming and reading. In the programming modes, each individual bit is addressed serially from bit 1 to bit 128.

2.4 Examples of Configuration Settings

EXAMPLE 2-1: "88D" Configuration

The "88D" (hex) configuration is interpreted as follows:

$$\begin{array}{c|c} \text{CB12} & \text{CB1} \\ & | & | \\ \text{"88D"} \rightarrow \text{1000-1000-1101} \end{array}$$

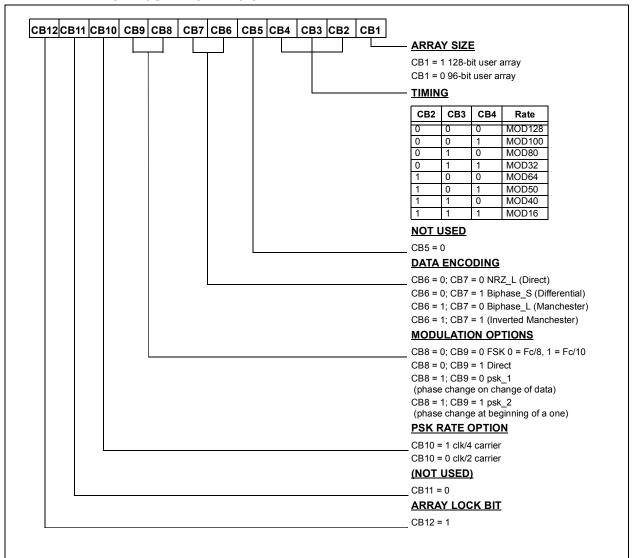
Referring to Table 2-1, the "88D" configuration represents:

Modulation = PSK_1
PSK rate = rf/2
Data encoding = NRZ_L (direct)
Baud rate = rf/32 = MOD32
Memory size: 128 bits
Programmed device

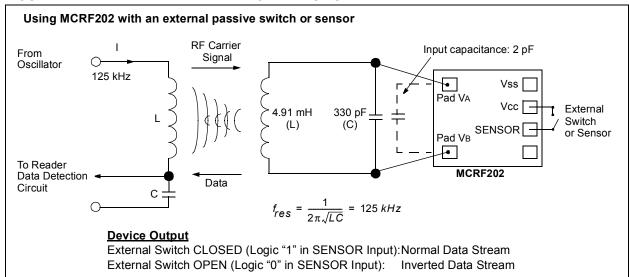
EXAMPLE 2-2: "80A" Configuration

The "80A" (hex) configuration is interpreted as follows:

$$\begin{array}{c|c} \text{CB12} & \text{CB1} \\ \text{``80A''} \rightarrow \text{1000-0000-1010} \end{array}$$


The MSB corresponds to CB12 and the LSB corresponds to CB1 of the configuration register. Therefore, we have:

CB12=1 CB11=0 CB10=0 CB9=0 CB8=0 CB7=0 CB6=0 CB5=0 CB4=1 CB3=0 CB2=1 CB1=0


Referring to Table 2-1, the "80A" configuration represents:

Programmed device, FSK protocol, NRZ_L (direct) encoding, MOD50 (baud rate = rf/50), 96 bits.

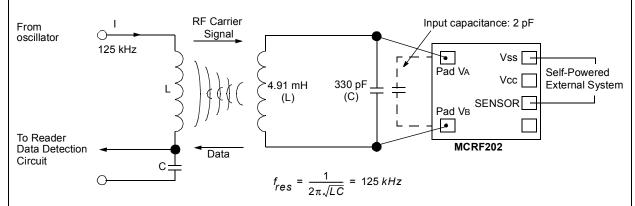
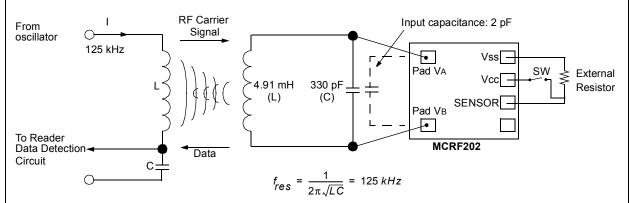

TABLE 2-1: CONFIGURATION REGISTER

FIGURE 2-4: TYPICAL APPLICATION CIRCUITS


Using MCRF202 with an external, self-powered system

Device Output

Logic "1" in SENSOR Input: Normal Data Stream Logic "0" in SENSOR Input: Inverted Data Stream

Using MCRF202 with a low-resistance pull-down

Device Output

External Switch CLOSED (Logic "1" in SENSOR Input): Normal Data Stream External Switch OPEN (Logic "0" in SENSOR Input): Inverted Data Stream

3.0 MECHANICAL SPECIFICATIONS FOR DIE AND WAFER

FIGURE 3-1: DIE PLOT

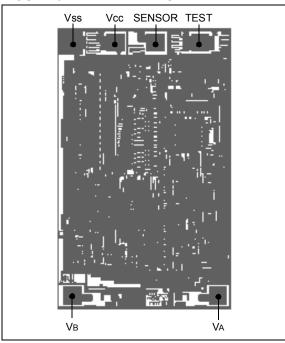


TABLE 3-1: PAD COORDINATES (μM)

		vation nings		
Pad Name	Pad Pad Width Height		Pad Center X	Pad Center Y
VA	90.0	90.0	427.50	-734.17
Vв	90.0	90.0	-408.60	-734.17
Vss	105.3	112.5	-417.60	722.47
Vcc	90.0	90.0	-164.70	723.82
SENSOR	90.0	90.0	69.30	723.82
TEST	90.0	90.0	325.35	723.82

Note 1: All coordinates are referenced from the center of the die.

2: Die size: 1.1215 mm x 1.7384 mm.

TABLE 3-2: PAD FUNCTION TABLE

Name	Function
VA, VB	Coil and capacitor connections
Vss	Device ground
Vcc	DC supply out from device
SENSOR	Sensor input
TEST	Do Not Connect, Test pin

TABLE 3-3: DIE MECHANICAL DIMENSIONS

Specifications	Min	Тур	Max	Unit	Comments
Bond pad opening	_	3.5 x 3.5	_	mil	Note 1, Note 2
	_	89 x 89	_	μm	
Die backgrind thickness	_	7	_	mil	Sawed 6" wafer on frame
	_	177.8	_	μm	(option = WF) Note 3
	_	11	_	mil	Unsawed wafer
	_	279.4	_	μm	(option = W) Note 3
Die backgrind thickness tolerance	_	_	±1	mil	Note 4
	_	_	±25.4	μm	
Die passivation thickness (multilayer)	_	0.9050	_	μm	Note 5
Die Size:					
Die size X*Y before saw (step size)	_	44.15 x 68.44	_	mil	_
Die size X*Y after saw	_	42.58 x 66.87		mil	_

- **Note 1:** The bond pad size is that of the passivation opening. The metal overlaps the bond pad passivation by at least 0.1 mil.
 - 2: Metal Pad Composition is 98.5% Aluminum with 1% Si and 0.5% Cu.
 - **3:** As the die thickness decreases, susceptibility to cracking increases. It is recommended that the die be as thick as the application will allow.
 - 4: This specification is not tested. For design guidance only.
 - **5:** The Die Passivation thickness can vary by device depending on the mask set used:
 - Layer 1: Oxide (undopped oxide 0.135 μm)
 - Layer 2: PSG (dopped oxide, 0.43 μm)
 - Layer 3: Oxynitride (top layer, 0.34 μm)
 - 6: The conversion rate is 25.4 µm/mil.

Notice: Extreme care is urged in the handling and assembly of die products since they are susceptible to mechanical and electrostatic damage.

TABLE 3-4: WAFER MECHANICAL SPECIFICATIONS

Specifications	Min	Тур	Max	Unit	Comments
Wafer Diameter	_	6	_	inch	150 mm
Die separation line width	_	80	_	μm	
Dies per wafer	_	8,000	_	die	
Batch size	_	24	_	wafer	

4.0 FAILED DIE IDENTIFICATION

Every die on the wafer is electrically tested according to the datasheet specifications and visually inspected to detect any mechanical damage such as mechanical cracks and scratches.

Any failed die in the test or visual inspection is identified by black colored inking. Therefore, any die covered with black ink should not be used.

The ink dot specification:

• Ink dot size: minimum 20 μm x 20 μm

· Position: central third of die

· Color: black

5.0 WAFER DELIVERY DOCUMENTATION

Each wafer container is marked with the following information:

- · Microchip Technology Inc. MP Code
- · Lot Number
- · Total number of wafer in the container
- · Total number of good dice in the container
- Average die per wafer (DPW)
- · Scribe number of wafer with number of good dice.

6.0 NOTICE ON DIE AND WAFER HANDLING

The device is very susceptible to Electro-Static Discharge (ESD). ESD can cause critical damage to the device. Special attention is needed during the handling process.

Any untraviolet (UV) light can erase the memory cell contents of an unpackaged device. Flourescent lights and sun light can also erase the memory cell although it takes more time than UV lamps. Therefore, keep any unpackaged devices out of UV light and also avoid direct exposure from strong flourescent lights and sun light.

Certain integrated circuit (IC) manufacturing, chip-onboard (COB) and tag assembly operations may use UV light. Operations such as backgrind, de-tape, certain cleaning operations, epoxy or glue cure should be done without exposing the die surface to UV light.

Using x-ray for die inspection will not harm the die, nor erase memory cell contents.

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

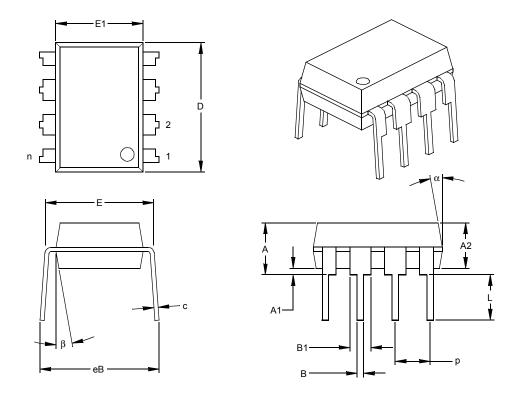
8-Lead PDIP (300 mil)

8-Lead SOIC (150 mil)

Example:

Example:

Legend: XX...X Customer specific information*


YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

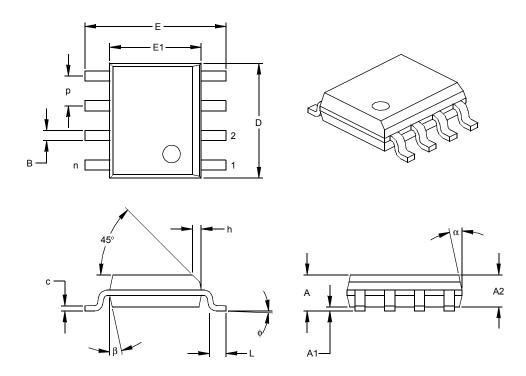
NNN Alphanumeric traceability code

ote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units INCHES*				MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001

Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)

Units			INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55	
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20	
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99	
Overall Length	D	.189	.193	.197	4.80	4.90	5.00	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.019	.025	.030	0.48	0.62	0.76	
Foot Angle	ф	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.013	.017	.020	0.33	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- · Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- · Design Tips
- · Device Errata
- · Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world.

013001

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

IO: RE:	Technical Publications Manager Total Pages Sent Reader Response	
Froi	Mame	
	olication (optional):	
Wou	uld you like a reply?YN	
Dev	vice: MCRF202 Literature Number: DS21308D	
Que	estions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and software development needs?	
3.	Do you find the organization of this data sheet easy to follow? If not, why?	
4.	What additions to the data sheet do you think would enhance the structure and subject?	
5.	What deletions from the data sheet could be made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading information (what and where)?	
7.	How would you improve this document?	
8.	How would you improve our software, systems, and silicon products?	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-X</u>	/XXX	xxx	
Device	Temperature Range	Package	Configuration	
Device:	MCRF202 =	125 kHz Micro 96/128-bit	oID tag with Sensor in	put,
Temperature Range:	= -40)°C to +85°C		
Package:	W = Wi S = Di WFB = Sa (1' WB = Bu SB = Bu SN = Pla	afer (11 mil bac ce in waffle pac wed, Bumped 1 mil backgrind Imped wafer (1 Imped die in wa astic SOIC (150	ck (11 mil backgrind) wafer on frame	
Configuration:	tory programr	ning) approval	assigned during the Soprocess. Always Qxx ustomer data files.	

Examples:

 a) MCRF202-I/WQ99 = 125 kHz, industrial temperature, wafer package, factory programmed, sensor input, "Q99" sample customer code.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

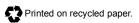
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

MCRF202

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

 $\ \ \, \ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza

No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

